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Abstract    In the domain of point cloud registration, the coarse-to-fine feature matching paradigm has received signifi-

cant attention due to its impressive performance. This paradigm involves a two-step process: first, the extraction of multi-

level  features,  and subsequently,  the propagation of  correspondences from coarse to fine levels.  However,  this  approach

faces two notable limitations. Firstly, the use of the Dual Softmax operation may promote one-to-one correspondences be-

tween superpoints, inadvertently excluding valuable correspondences. Secondly, it is crucial to closely examine the overlap-

ping areas between point clouds, as only correspondences within these regions decisively determine the actual transforma-

tion. Considering these issues, we propose OAAFormer to enhance correspondence quality. On the one hand, we introduce

a soft matching mechanism to facilitate the propagation of potentially valuable correspondences from coarse to fine levels.

On the other hand, we integrate an overlapping region detection module to minimize mismatches to the greatest extent

possible. Furthermore, we introduce a region-wise attention module with linear complexity during the fine-level matching

phase, designed to enhance the discriminative capabilities of the extracted features. Tests on the challenging 3DLoMatch

benchmark demonstrate that our approach leads to a substantial increase of about 7% in the inlier ratio, as well as an en-

hancement of 2%–4% in registration recall. Finally, to accelerate the prediction process, we replace the Conventional Ran-

dom Sample Consensus (RANSAC) algorithm with the selection of a limited yet representative set of high-confidence cor-

respondences, resulting in a 100 times speedup while still maintaining comparable registration performance.

Keywords    point cloud registration, coarse-to-fine, overlapping region, feature matching, Transformer

  

1    Introduction

The  task  of  point  cloud  registration  involves  de-

termining a rigid transformation that aligns one point

cloud with another.  This  challenge is  of  fundamental

importance  in  the  fields  of  computer  vision  and

robotics  and has  wide-ranging applications,  including

3D reconstruction, SLAM (simultaneous location and

mapping),  and  autonomous  driving.  A  common  ap-

proach to this task involves two key stages: point fea-

ture  matching  and  globally  consistent  refinement.

During the point feature matching phase,  the goal  is

to  generate  a  set  of  initial  correspondences  with  a

high inlier ratio, ideally including as many true corre-

spondences  as  possible  while  minimizing  false  ones.

However, achieving this objective is a formidable chal-
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lenge due to inherent noise and disparities  in the in-

put  point  clouds,  as  well  as  the  possibility  of  partial

overlap  between  them.  In  the  globally  consistent  re-

finement step, the focus shifts to rapidly identifying a

subset  of  correspondences  capable  of  consistently  en-

coding  the  actual  transformation  through  further  re-

finement.

While  a  substantial  body of  literature[1, 2] has  fo-

cused  on  the  extraction  of  discriminative  features  to

enhance correspondence quality, the inherent sparsity

and  disparities  in  point  clouds,  along  with  potential

partial overlap, present persistent challenges. Recent-

ly,  the coarse-to-fine matching paradigm[3, 4] has gar-

nered  significant  attention  for  its  impressive  perfor-

mance.  This  paradigm  begins  by  downsampling  the

input  point  cloud  into  superpoints  and  establishing

correspondences  between  these  superpoints,  where

each  superpoint  inherently  represents  a  point  patch.

Subsequently,  sparse  correspondences  are  propagated

to encompass more points, resulting in the generation

of dense correspondences.

However,  accurately  matching  a  superpoint  from

one scan to another can be challenging, as the corre-

sponding point patches may not exhibit perfect align-

ment. As illustrated in Fig.1, suppose we have two in-

put point clouds P and Q. The superpoint (patch) A
is  overlapped with B, C,  and D simultaneously.  Yet,

the  use  of  the  Dual  Softmax  operation[5] within  the

coarse-to-fine  paradigm  has  the  potential  to  enforce

one-to-one  correspondences  between  superpoints,  un-

intentionally excluding valuable correspondences. This

represents  the  first  limitation  of  the  coarse-to-fine

paradigm. On the other hand, it is crucial to examine

the overlapping regions between point clouds, as only

correspondences  within  these  areas  decisively  deter-

mine  the  actual  transformation.  Consequently,  there

is  a  pressing  need  to  enhance  the  discriminability  of

the features extracted from points within these over-

lapping regions to improve the overall performance of

the coarse-to-fine paradigm.

Motivated  by  these  considerations,  we  propose  a

robust  matching  network,  named  OAAFormer,  with

the  explicit  objective  of  augmenting  the  performance

of  the  coarse-to-fine  matching  paradigm.  This  aug-

mentation is achieved through the systematic integra-

tion  of  a  suite  of  strategies  meticulously  designed  to

elevate  the  quality  of  correspondences.  Firstly,

OAAFormer  employs  a  sophisticated  soft  matching

mechanism,  with  the  explicit  purpose  of  seamlessly

propagating  potentially  valuable  correspondences

from the coarse to the fine levels of the matching pro-

cess. Secondly, OAAFormer incorporates an intricate-

ly  designed  overlapping  region  detection  module,

strategically engineered to minimize the probability of

mismatches.  Thirdly,  it  introduces  a  region-wise  at-

tention module characterized by linear computational
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Fig.1.  Illustration of coarse-level matching. (a) Patch A is overlapped with B, C, and D simultaneously. (b) Soft matching module
for one-to-many matching. (c) Overlap detection module for eliminating mismatches outside predicted overlapping regions. Color in-
tensity (yellow or blue) represents overlap scores.
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complexity, meticulously designed to enhance the dis-

criminative capabilities of the extracted features dur-

ing  the  fine-level  matching  phase.  Empirical  valida-

tion  underscores  the  efficacy  of  these  strategies.  For

instance,  tests  on  the  exacting  3DLoMatch  bench-

mark show that our approach yields a substantial in-

crease of approximately 7% in the inlier ratio, as well

as  a  discernible  enhancement  of  2%–4%  in  registra-

tion recall.  Furthermore, we replace the conventional

RANSAC algorithm[6] with  the  selection  of  a  limited

yet  representative  set  of  high-confidence  correspon-

dences for accelerating the prediction process.

In  summary,  the  main contributions  of  this  work

are as follows.

• We propose a soft matching mechanism and an

overlapping detection module  to  facilitate  the  propa-

gation  of  potentially  valuable  correspondences  from

coarse  to  fine  levels,  which  finally  results  in  a  sub-

stantial increase in inlier ratio and registration recall.

• We  introduce  a  region-wise  attention  module

with linear complexity during the fine-level matching

phase, designed to enhance the discriminative capabil-

ities of the extracted features.

• Through  the  replacement  of  the  inefficient

RANSAC  algorithm  with  a  more  intelligent  mecha-

nism for selecting high-confidence correspondences, we

achieve  a  remarkable  100  times  acceleration  in  the

prediction process. 

2    Related Work
 

2.1    Point Cloud Registration

The  construction  of  feature  descriptors  with  spe-

cific characteristics proves to be an effective means of

encoding the curvature of the underlying surface, pro-

viding valuable information for the alignment of point

clouds.  In  previous  researches,  a  multitude  of  tradi-

tional  methods[7, 8] have  relied  on  handcrafted  fea-

tures to craft such descriptors. With the proliferation

of  deep  learning  techniques,  various  learning-based

descriptors[9–16] have  been  introduced  to  enhance  the

expressiveness  of  these  feature  descriptors.  However,

the  task  of  identifying  valuable  correspondences  be-

tween points based solely on geometric descriptors re-

mains  a  challenging  one,  primarily  due  to  the  pres-

ence  of  various  defects  in  the  input  point  clouds,  in-

cluding  noise,  disparities,  and  partial  overlapping.

Consequently,  approaches  such  as  the  Conventional

Random Sample Consensus (RANSAC) algorithm[6, 17]

or meticulously designed neural networks[18, 19] are fre-

quently  employed  to  address  this  challenge.  These

methods  aim  to  eliminate  mismatches,  even  when

dealing  with  points  possessing  similar  features,  ulti-

mately resulting in a more robust and accurate regis-

tration outcome.

Additionally,  a  variety  of  keypoint  detectors  tai-

lored for rigid registration tasks have emerged. For in-

stance, D3Feat[1] introduces a keypoint selection strat-

egy that overcomes the inherent density variations of

3D point clouds. However, this approach does not ful-

ly account for overlapping areas and exhibits reduced

robustness  in  scenarios  with  low  overlap.  Another

noteworthy method, Predator[2],  develops an overlap-

attention  block  for  early  information  exchange  be-

tween  the  latent  encodings  of  the  two  point  clouds.

Keypoints  are  selected  based  on  both  saliency  and

overlap  scores.  While  Predator[2] demonstrates  sub-

stantial  improvements  over  existing  methods  across

indoor and outdoor benchmarks, challenges persist in

extracting a set of repeatable keypoints.

Recently,  the  coarse-to-fine  paradigm  has  gar-

nered  attention  for  enhancing  the  quality  of  corre-

spondences, not only in 2D image matching[20] but al-

so  in  the  domain  of  point  cloud  registration[3, 4].  For

instance,  CoFiNet[3] incorporates  an  optimal  trans-

port[21] matching  layer  to  establish  correspondences

between  mutually  nearest  patches  and  subsequently

refines  these  correspondences  at  the  fine-level  stage.

In a similar vein, GeoTrans[4] introduces a self-atten-

tion  mechanism  to  learn  geometric  features,  thereby

improving  the  matching  accuracy  between  super-

points  based  on  whether  their  neighboring  patches

overlap.

In  this  paper,  we  further  enhance  the  coarse-to-

fine mechanism through a set of  strategies,  including

a soft matching mechanism that streamlines the prop-

agation  of  potentially  valuable  correspondences  from

the  coarse  to  fine  levels  and  a  region-wise  attention

module characterized by linear complexity during the

fine-level matching phase. 

2.2    Efficient Transformer

In the standard Transformer model[22], the memo-

ry  cost  exhibits  a  quadratic  increase  due  to  matrix

multiplication,  which  has  become  a  bottleneck  when

handling  long  sequences.  Recently,  several  efficient

Transformer  variants[23–25] have  been introduced.  For

example, the Linear Transformer[23] reformulates self-

attention  as  a  linear  dot  product  of  kernel  feature
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maps  and  exploits  the  associativity  property  of  ma-

trix  products  to  reduce  computational  complexity.

BigBird[24] combines local and global attention mecha-

nisms at specific positions and introduces random at-

tention  for  selected  token  pairs.  FastFormer[25] em-

ploys an additive attention mechanism to model glob-

al contexts, achieving effective context modeling with

linear  complexity.  Inspired  by  these  advancements,

we  propose  a  region-wise  attention  module  with  lin-

ear  complexity  during  the  fine-level  matching  phase,

meticulously  designed  to  enhance  the  discriminative

capabilities  of  the  extracted features  for  points  with-

in overlapping areas. 

3    Method
 

3.1    Pipeline

P = {pi ∈ R3 | i = 1, . . . , N}
Q = {qi ∈ R3 | i = 1, . . . ,M}

T = (R, t) R

t

C∗ = {pik 7→ qjk , k = 1, . . . , K}
P Q

T

pik ∈ P qjk ∈ Q

R · pik + t− qjk

Suppose  that  we  have  a  source  point  cloud

 and a target point cloud

.  The  objective  of  rigid

registration is to estimate the unknown rigid transfor-

mation ,  where  represents  a  rotation

matrix  and  represents  a  translation  vector.  Let

 denotes  the  set  of

ground-truth correspondences between  and . The

true  transformation  should  accurately  map  each

 to ,  meaning that it  should minimize

the difference vector  to be nearly ze-

ro. In real-world scenarios,  where the elusive optimal

C∗correspondences  set  is  challenging  to  obtain,  the

prevalent  approach  involves  extracting  a  subset  of

correspondences  that  are  deemed  reasonably  reliable

between  two  point  clouds.  Subsequently,  the  estima-

tion of the transformation matrix relies on the consis-

tency of these correspondences.

As  shown  in Fig.2,  our  algorithmic  pipeline  in-

cludes four main modules.

1)  In  the  feature  extraction  module,  we  utilize

KPConv[13] as the backbone to downsample the point

cloud  and  extract  multi-level  features.  Subsequently,

we  select  sample  points  from  both  the  first  and  last

levels for the subsequent matching process.

2) In the coarse-level matching module, we utilize

GeoTrans[4] to generate the geometric features of  the

superpoints. Additionally, we estimate the overlap re-

gion  using  a  dedicated  detection  module  specifically

designed for this purpose. Subsequently, we introduce

a soft matching mechanism to extract valuable corre-

spondences at the patch level,  followed by a filtering

step to remove potential mismatches (refer to Subsec-

tion 3.2).

3)  In  the  fine-level  matching  module,  we  intro-

duce a region-wise attention module characterized by

linear  complexity.  This  module  is  designed  to  en-

hance the discriminative  capabilities  of  the extracted

features (refer to Subsection 3.3).

4) In the efficient registration module, we propose

an  efficient  seeding  mechanism  for  the  identification

of  high-confidence  correspondences,  aiming  to  expe-
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Fig.2.  Algorithmic pipeline of our proposed OAAFormer. (a) Feature extraction. The feature extraction module downsamples the
point cloud and extracts multi-level features. (b) Coarse-level matching. The coarse-level matching module employs a soft matching
mechanism to establish one-to-many correspondences, while simultaneously utilizing an overlap detection module to eliminate mis-
matches outside the predicted overlapping regions. (c) Fine-level matching. The fine-level matching module employs a linear atten-
tion mechanism to enhance feature matching capabilities and utilizes a hard matching module to reduce mismatches, resulting in a
set  of  correspondences  along  with  their  associated  confidence  scores.  (d)  Efficient  registration.  The  efficient  registration  module,
based on feature similarity, is utilized to accelerate registration. Simi. means similarity.
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dite the process (refer to Subsection 3.4). 

3.2    Coarse-Level Matching
 

3.2.1    Intra- and Inter- Consistency Enhancements

P̂ Q̂

F P̂ ∈ R|P̂ |×dt F Q̂ ∈ R|Q̂|×dt

Nc

In the coarse-level matching phase, considering su-

perpoints  and  with  associated  features

 and , respectively, we alter-

nately apply the self-attention layer within each point

cloud  and  the  cross-attention  layer  between  point

clouds  times  to  enhance  the  consistency.  It  is

worth noting that we utilize the geometry-aware self-

attention  mechanism[14] instead  of  the  vanilla  self-at-

tention[22], as the former is better suited for capturing

long-range contextual information. 

3.2.2    Overlap Region Detection Module

T P̂

T P̂

H P̂

T P̂ Ṫ P̂

T P̂

H P̂

Ṫ P̂ Ṫ Q̂

H P̂ H Q̂

To  enhance  the  distinction  between  overlapping

and  non-overlapping  regions,  we  introduce  a  token-

based attention mechanism. Specifically, we employ a

feature token, denoted as , to encapsulate informa-

tion related to the overlapping region. The initializa-

tion of  is accomplished through a max-pooling op-

eration  applied  to  the  augmented  feature  set .

Subsequently,  we  employ  a  cross-attention  operation

to update the token , resulting in . This updat-

ed  token  is  instrumental  in  distinguishing  between

overlapping  and  non-overlapping  regions.  In  the  im-

plementation,  the  query  originates  from  the  initial-

ized  token ,  while  both  keys  and  values  are  de-

rived from the feature set . Finally, the tokens ob-

tained,  and , serve as guiding elements for up-

dating the original features  and  through an

additional  cross-attention  operation,  respectively.

This is formally represented as:
 

Ṫ P̂ = VanillaTransformer(a = T P̂ , b = H P̂ , c = H P̂ ),

a, b c

Ṫ Q̂

where , and  stand for the query, key, and value,

respectively.  is computed in the same way.

Ṫ P̂ Ṫ Q̂

H P̂ H Q̂

Subsequently, the obtained tokens  and  are

used  as  guide  items  to  update  the  original  features

 and  through  another  cross-attention  opera-

tion:
 

Ḣ P̂ = VanillaTransformer(a = H P̂ , b = T Q̂, c = T Q̂),

Ḣ Q̂

H P̂ H Q̂ Ḣ P̂ Ḣ Q̂

P̂ Q̂

and  is  computed  in  the  same  way.  During  this

process,  and  are  updated  to  and ,

respectively, such that they are aware of the overlap-

ping region between  and . The overlapping-aware

mechanism is highly advantageous as it enhances the

ability to effectively discriminate between the overlap-

ping region and the non-overlapping region.

Ṫ P̂ Ṫ Q̂

wP̂

W O ∈ Rdt×1

To  further  identify  the  location  of  the  overlap-

ping regions, we introduce an additional module that

assigns  a  probability  score  indicating  the  likelihood

that a point is within the overlapping region. Specifi-

cally,  we  project  the  decoded  tokens  and 

through  matrix  multiplication  and  the  sigmoid  func-

tion  to  create  the  weight  mapping.  The  weight  map

 is  employed  to  enhance  the  overlap  information

within the features.  Subsequently,  a linear projection

operator , and a sigmoid function are ap-

plied to obtain the overlapping confidence:
 

wP̂ = sigmoid((Ḣ P̂ )TṪ P̂ ),

 

OP̂ = sigmoid((wP̂ ⊙ Ḣ P̂ + Ḣ P̂ )W O),

OQ̂

θo

where  is then computed in the same way. To this

end,  we  consider  the  points  whose  confidences  are

greater  than a  threshold  to  be  within  the  overlap

region. 

3.2.3    Soft-Matching Module

Ḣ P̂ Ḣ Q̂

M ∈ R|P̂ |×|Q̂|

mi,j =

exp
(
−
∥∥∥hP̂

i − hQ̂
j

∥∥∥2

2

)

For  the  output  features  and  generated

by  the  overlapping  region  detection  module,  we  first

normalize them to the unit hypersphere. Subsequent-

ly,  we  calculate  the  similarity  matrix ,

where  each  element  is  defined  as 

.

S

θm

Accordingly,  we  apply  the  softmax  operation  to

the similarity matrix  on two dimensions separately

to allow one-to-many matching. Next, we extract pu-

rified correspondences by applying a threshold .
 

Mk = softmax(M(i, ·))j,

Ĉk = {(p̂i, q̂j)|Sk(i, j) ⩾ θm∥} , (1)

k ∈ {0, 1} M0 M1

Ĉ0 Ĉ1

k

where ,  and  are the matching prob-

ability  matrix  obtained  by  softmax  operation  along

the first dimension and the zeroth dimension, respec-

tively,  and  and  are  the  corresponding  coarse-

level  correspondences  proposals.  Compared  with  the

commonly used top-  selection strategy that needs to

specify the number of matches, our strategy of using a

tolerance can ensure that the number of selected cor-

respondences is adaptive to the overlapping rate.

It is important to acknowledge that while the pre-

viously mentioned strategy generates a larger number
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S

k

k + 1

Ĉk

of  potentially  beneficial  correspondences,  it  may lead

to a low inlier ratio.  To enhance this inlier ratio,  we

introduce  a  procedure  where,  for  each  superpoint  in

the source point cloud, we initially identify the most

closely matched target superpoint based on , as well

as  the -nearest  neighbors  of  the  target  superpoint.

Out  of  these  correspondences,  only  those  that

satisfy the condition defined in (1) are retained. Simi-

larly,  for  each  superpoint  in  the  target  point  cloud,

this  process  is  repeated  until  a  pruned  correspon-

dence set  is obtained. Finally, we further filter out

mismatches outside predicted overlap regions. 

3.3    Fine-Level Matching
 

3.3.1    Linear Transformer

Linear  Transformer[23] is  proposed  to  reduce  the

computation complexity by substituting the exponen-

tial kernel used in the original attention layer[22] with

an alternative kernel function:
 

sim(a, b) = ϕ(a)× ϕ(b)T,

ϕ(·) = elu(·) + 1

ϕ(a)T c

dt ≪ |P | O(dt)

a, b c

where .  Utilizing  the  associativity

property  of  matrix  products,  the  multiplication  be-

tween  and  can  be  carried  out  first.  Since

,  the  computation  cost  is  reduced  to .

Here ,  and  stand for the query, key, and value,

respectively.

P̄ {GP̃
pi
|pi ∈ OP̂}

P̃ F P̄

Q̄ F Q̄

Thanks  to  our  overlap  region  detection  module,

we perform linear attention operations to improve fea-

ture discrimination only for points within the overlap

region and not for  all  dense points.  This  reduces the

impact of points in the non-overlapping region on the

one hand,  and reduces the cost  of  calculation on the

other  hand.  To  be  specific,  we  only  focus  on  the

points  within  patch  instead  of  all

dense points , and the relevant features note as .

We perform the same operation to get overlapping re-

gion points  and relevant features .

F P̄ F Q̄

Next, we adopt the Linear Transformer[23] to per-

form the self- and cross-attention to collect the glob-

al  information  through  intra- and  inter-relationship

between features  and . The self-attention lay-

er updates its message by:
 

Z P̄ = LinearTransformer(a = F P̄ , b = F P̄ , c = F P̄ ),

ZQ̄, a = F Q̄, b = F Q̄, c = F Q̄and for . The cross-atten-

tion layer updates messages with information collect-

ed from the inter-relationship between two frame fea-

tures:
 

Z P̄ = LinearTransformer(a = F P̄ , b = F Q̄, c = F Q̄),

ZQ̄, a = F Q̄, b = F P̄ , c = F P̄and for . 

3.3.2    Relative Position Embedding

Unlike the previous work, which either chooses to

reduce the point cloud resolution[26, 27] to decrease the

computing overhead of the Transformer or only aims

to enhance the feature representation capability of su-

perpoints[4, 27],  our  approach  introduces  a  Linear

Transformer[23] to augment the fine-level features. To

improve  the  rotation  invariance  of  the  features,  in-

spired  by  the  work  of  Lepard[26],  we  integrate  rota-

tion-invariant  information  by  adding  rotation  posi-

tion embeddings[28] to the inputs at each Transformer

layer.  This  helps  mitigate  limitations  on  rotation

datasets. 

3.3.3    Hard-Matching Module

C

C ZC

Through  the  aforementioned  operations,  we  ob-

tain  a  series  of  one-to-many  superpoint  correspon-

dences  situated  in  overlapping  regions.  The  associat-

ed  patches  may  have  a  low  overlap  rate,  inevitably

leading to a large number of dense point mismatches.

Therefore,  different  from  the  soft  matching  strategy

in Subsection 3.2, adopting a stricter matching strate-

gy to suppress mismatches at the fine level is the key

to  obtaining  robust  registration.  Hence,  we  employ

the point  matching module[4],  which operates  in  con-

junction with the optimal transmission strategy[21], to

extract  dense  correspondences.  The  resultant  corre-

spondence set is denoted as . Additionally, the con-

fidence score of  is denoted as . 

3.4    Feature Similarity Based Efficient

Registration

In  robust  pose  estimators  such as  RANSAC[21],  a

large  number  of  iterations  is  typically  required  to

guarantee accuracy,  leading to inefficiency.  Consider-

ing the high inlier ratio of OAAFormer, we have de-

signed  an  efficient  estimator  to  achieve  comparable

performance while significantly reducing the computa-

tional  cost.  This  design  is  motivated  by  the  crucial

observation  that  a  well-distributed  set  of  correspon-

dences, which are more similar in the feature space, is

beneficial for transform estimation. 
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3.4.1    Global Sampling Strategy

R

Ns

|C|
k ZC

S ∈ RNs×k

In  order  to  obtain  the  global  sampling  distribu-

tion, we employ the spectral matching technique[29] to

select  reliable  seeds.  Correspondences  with  a  local

maximum confidence score within their neighborhood

with  radius  are  then  chosen.  The  number  of  seed

points  is  determined  by  the  proportion  of  the

whole  correspondences .  For  each  seed,  we  select

its -nearest  neighbors  in  to  expand into  a  con-

sensus set. The total consensus sets can be noted as:

. 

3.4.2    Feature Similarity Compatibility

DF ∈ Rk×1

DF = 1−DF/max(DF )

We conduct  further  analysis  on  the  feature  simi-

larity  of  correspondences  within  each  consensus  set.

The intra-difference of each correspondence in a con-

sensus set is denoted as ,  and subsequent-

ly normalized as: . Moreover,

we  employ  a  sigmoid  operation  to  expand  the  inter-

difference of correspondences as follows:
 

DF = sigmoid((DF −mean(DF ))× σs),

σs

DF

M ∈ Rk×k M

where  is a parameter controlling the sensitivity to

differences  in  features.  Simultaneously,  serves  as

a  feature  similarity  score.  The  closer  the  correspon-

dence features are, the closer the score is to 1; other-

wise,  it  approaches  0.  Subsequently,  we compute the

compatibility matrix of this consensus set, denoted as

,  where  each element  of  represents  the

minimum value of the two correspondence scores. 

3.4.3    Hypothesis Selection

(Ri, ti)

C

The  association  of  each  correspondence  with  the

leading  eigenvector  is  adopted  as  the  weight  for  this

correspondence and can be solved by the power itera-

tion algorithm. Then we use the weighted SVD on the

consensus  set  to  generate  an  estimation  for

each seed. Finally, we choose the transformation that

allows the most correspondences in :
 

R, t = max
Ri, ti

∑
(p̃j , q̃j)∈C

[[
∥Ri · p̃j + ti − q̃j∥

2

2
< τa

]]
,

[[ ·]] τawhere  is the Iverson bracket and  is the accep-

tance radius. 

3.5    Loss Function

L = Lc + Lf + 0.5× Lo

The final  loss consists  of  the coarse-fine-level  loss

and the overlap loss: .  As with

Lc

Lf

Lo =
(
LP̂

o + LQ̂
o

)
/2

GeoTrans[4],  we  use  overlap-aware  circle  loss  and
negative log-likelihood loss  for coarse and fine lev-
el features, respectively. This also benefits us in allow-
ing features to be closer between superpoints/patches
with  higher  overlap  ratios  in  coarse-level  matching,
rather  than strictly  limiting one-to-one  matching.  At
the  fine  level,  stricter  supervise  can  also  help  elimi-
nate mismatches. Here, the overlap region estimation
is  regarded  as  a  binary  classification  task,  and  the

overlap loss  is defined as:
 

LP̂
o =

1

|P̂ |

|P̂ |∑
i=1

ōp̂i
log (op̂i

) + (1− ōp̂i
) log (1− op̂i

) ,

op̂i

ōp̂i
p̂i

C∗

where  represents the predicted overlap score, and
the ground truth label  of superpoint  is defined
based  on  whether  it  is  in  the  ground-truth  coarse
matches set .
 

ōp̂i
=

{
1, if i ∈ C∗(x, ·),
0, otherwise.

LQ̂
o ōp̂i

The  reverse  loss  and  ground  truth  label 

are computed in the same way. 

4    Experiments

Nc = 3

θm θm = 0.05

[256, 512] k

k = 3

Nf = 3

σs = 10
k = 20

Ns

In  this  section,  we  evaluate  OAAFormer  on  in-
door  3DMatch/3DLoMatch  benchmarks  (Subsection
4.1),  the  outdoor  KITTI  odometry  benchmark  (Sub-
section 4.2),  and  synthetic  ModelNet/ModelLoNet
benchmarks  (Subsection 4.3).  For  the  coarse-level
matching  module,  we  repeatedly  alternate  between
the geometric  self-attention module[4] and the  vanilla
cross-attention module[22] by setting  and then
pass through the overlap region detection module. Re-
garding  the  threshold ,  we  observe  that 
is  safe  to limit  the number of  superpoint  matches  to
be within the range of . For -nearest neigh-

bors, we find that  achieves the best results. For
fine-level matching, we also interleave the linear self-/
cross-attention  module  by  setting  to  enhance
feature discrimination. In the proposed efficient regis-
tration  module,  is  used  to  enhance  the  dis-
tinctiveness of correspondences, with  for estab-
lishing  the  minimum  consensus  set,  and  the  number
of seeds  set to 30% of the total sampled correspon-
dence count. 

4.1    Indoor Benchmark: 3DMatch
 

4.1.1    Dataset and Metrics

Dataset. 3DMatch[9] is a collection of 62 scenes, of
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which we employ 46 scenes for training, 8 for valida-

tion,  and  8  for  testing.  We  utilize  the  training  data

preprocessed  by [2]  and conduct  evaluations  on  both

the  3DMatch  and  3DLoMatch  benchmarks.  The  for-

mer features a 30% overlap, while the latter exhibits

low overlap in the range of 10% to 30%. To assess ro-

bustness to arbitrary rotations, we follow [14] to cre-

ate  rotated  benchmarks,  where  full-range  rotations

are  independently  applied  to  the  two  frames  of  each

point cloud pair.

Metrics.  We follow [3, 4] to employ three metrics

for  evaluation:  1)  inlier  ratio  (IR),  which  computes

the ratio  of  putative  correspondences  with a residual

distance  smaller  than  a  threshold  (i.e.,  0.1  m)  under

the ground-truth transformation; 2) feature matching

recall  (FMR),  which  calculates  the  fraction  of  point

cloud  pairs  with  an  IR  exceeding  a  threshold  (i.e.,

5%); and 3) registration recall (RR), which quantifies

the  fraction  of  point  cloud  pairs  that  are  accurately

registered (i.e., with a root mean square error, RMSE

< 0.2 m). 

4.1.2    Correspondence Results

We begin by comparing the results of OAAFormer

with  the  recent  state-of-the-art  methods  in Table 1,

and then proceed to analyze the impact of varying the

number  of  correspondences  in Tables 2–5.  Notably,

our method excels in terms of FMR, outperforming all

baselines  significantly,  particularly  in  the  case  of

3DLoMatch. This implies a substantial increase in the

likelihood  of  achieving  correct  registration  with  our

robust pose estimator in low-overlap scenarios, where

we  consistently  find  more  than  5%  inliers.  Further-

more,  for  IR,  our  approach  exhibits  even  more  sub-

stantial  improvements,  surpassing  all  benchmarks  by

over  10% on  3DMatch  and  more  than  7% on  3DLo-

Match. It is worth mentioning that our method main-

tains a stable  performance even when the number of

correspondences  varies.  Additionally,  due  to  our  in-

corporation of rotational invariance position informa-

tion  during  fine-level  matching,  we  perform  ad-

mirably on the rotated benchmarks. 

4.1.3    Registration Results

As Table 1 shows,  the  primary  metric  related  to

the  ultimate  objective  of  point  cloud  registration  is

RR. In all the tables of the paper, the boldfaced num-

bers are the best results, and the underlined ones are

the  second  best.  For  this  metric,  we  compute  the
 

Table  1.    Evaluation Results on 3DMatch and 3DLoMatch

Method FMR (%) IR (%) RR (%)

3DMatch 3DLoMatch 3DMatch 3DLoMatch 3DMatch 3DLoMatch

Original Rotated Original Rotated Original Rotated Original Rotated Origin Rotated Original Rotated

SpinNet[12] 97.4 97.4 75.5 75.2 48.5 48.7 25.7 25.7 88.8 93.2 58.2 61.8

Predator[2] 96.6 96.2 78.6 73.7 58.0 52.8 26.7 22.4 89.0 92.0 59.8 58.6

CoFiNet[3] 98.1 97.4 83.1 78.6 49.8 46.8 24.4 21.5 89.3 92.0 67.5 62.5

YOHO[14] 98.2 97.8 79.4 77.8 64.4 64.1 25.9 23.2 90.8 92.5 65.2 66.8

RIGA[16] 97.9 98.2 85.1 84.5 68.4 68.5 32.1 32.1 89.3 93.0 65.1 66.9

Lepard[26] 98.0 97.4 83.1 79.5 58.6 53.7 28.4 24.4 91.7 84.9 62.5 49.0

GeoTrans[4] 97.9 97.8 88.3 85.8 71.9 68.2 43.5 40.0 92.0 92.0 75.0 71.8

Ours 98.6 98.2 89.8 89.5 82.9 79.6 50.1 48.2 94.2 93.8 77.2 76.0

 

Table  2.    Evaluation Results on 3DMatch (Original) with a Varying Number of Correspondences

Method FMR (%) IR (%) RR (%)

5 000 2 500 1 000 500 250 5 000 2 500 1 000 500 250 5 000 2 500 1 000 500 250

PMatch[10] 95.0 94.3 92.9 90.1 82.9 36.0 32.5 26.4 21.5 16.4 78.4 76.2 71.4 67.6 50.8

FCGF[11] 97.4 97.3 97.0 96.7 96.6 56.8 54.1 48.7 42.5 34.1 85.1 84.7 83.3 81.6 71.4

D3Feat[1] 95.6 95.4 94.5 94.1 93.1 39.0 38.8 40.4 41.5 41.8 81.6 84.5 83.4 82.4 77.9

SpinNet[12] 97.6 97.2 96.8 95.5 94.3 47.5 44.7 39.4 33.9 27.6 88.6 86.6 85.5 83.5 70.2

Predator[2] 96.6 96.6 96.5 96.3 96.5 58.0 58.4 57.1 54.1 49.3 89.0 89.9 90.6 88.5 86.6

YOHO[14] 98.2 97.6 97.5 97.7 96.0 64.4 60.7 55.7 46.4 41.2 90.8 90.3 89.1 88.6 84.5

CoFiNet[3] 98.1 98.3 98.1 98.2 98.3 49.8 51.2 51.9 52.2 52.2 89.3 88.9 88.4 87.4 87.0

GeoTrans[4] 97.9 97.9 97.9 97.9 97.6 71.9 75.2 76.0 82.2 85.1 92.0 91.8 91.8 91.4 91.2

Ours 98.6 98.6 98.5 98.5 98.2 82.9 83.1 83.3 85.5 86.1 94.2 94.2 93.8 93.2 93.0
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transformation using RANSAC[6] with 50k iterations.

OAAFormer excels in terms of RR, outperforming the

competition with significant  margins.  Specifically,  we

achieve  improvements  of  2.2%  on  both  the  original

and  rotated  benchmarks  for  3DMatch.  On  the  origi-

nal  and  rotated  benchmarks  of  3DLoMatch,  we

achieve  significant  improvements  of  2.2%  and  4.2%,

respectively.

Additionally,  we  report  RR under  different  num-

bers  of  correspondences  in Tables 2–5.  It  is  evident

that  the  performance  of  our  method  is  remarkably

stable,  eliminating  the  need  for  extensive  correspon-

dence sampling as seen in previous methods aimed at

performance  improvement.  It  is  worth  noting  that,

due to its greater focus on overlapping regions and ex-

ploration  of  more  potentially  useful  correspondences,

our method exhibits superior performance on datasets

with low overlap and large rotation.

We subsequently  report  the  RR using  RANSAC-

free  estimators  in Table 6.  We  begin  with  weighted

SVD over correspondences to solve for the alignment

transformation.  Thanks  to  high  values  of  FMR  and

IR, OAAFormer achieves RR of 88.4% and 62.1% on

3DMatch and 3DLoMatch, respectively, while the re-

sults of the baseline methods deteriorate significantly.

This  can  be  explained  by  the  fact  that,  on  the  one

hand,  the  coarse-to-fine  mechanism  constrains  the

correspondences  to  specific  patches  rather  than  the

global domain. On the other hand, our model further

narrows down the correspondences to the overlapping

region and enhances the discriminative capabilities of

fine-level features.

Subsequently, we employ the local-to-global regis-

tration  module  (LGR)[4] and  our  proposed  feature

similarity  registration  (FSR)  in Subsection 3.3 sepa-

rately  to  compute  the  transformation.  In  comparison

with LGR, the FSR maintains a similar time cost but

significantly improves the sampling distribution, mak-

 

Table  3.    Evaluation Results on 3DLoMatch (Original) with a Varying Number of Correspondences

Method FMR (%) IR (%) RR (%)

50 00 2 500 1 000 500 250 5 000 2 500 1 000 500 250 5 000 2 500 1 000 500 250

PMatch[10] 63.6 61.7 53.6 45.2 34.2 11.4 10.1 8.0 6.4 4.8 33.0 29.0 23.3 17.0 11.0

FCGF[11] 76.6 75.4 74.2 71.7 67.3 21.4 20.0 17.2 14.8 11.6 40.1 41.7 38.2 35.4 26.8

D3Feat[1] 67.3 66.7 67.0 66.7 66.5 13.2 13.1 14.0 14.6 15.0 37.2 42.7 46.9 43.8 39.1

SpinNet[12] 75.3 74.9 72.5 70.0 63.6 20.5 19.0 16.3 13.8 11.1 59.8 54.9 48.3 39.8 26.8

Predator[2] 78.6 77.4 76.3 75.7 75.3 26.7 28.1 28.3 27.5 25.8 59.8 61.2 62.4 60.8 58.1

YOHO[14] 79.4 78.1 76.3 73.8 69.1 25.9 23.3 22.6 18.2 15.0 65.2 65.5 63.2 56.5 48.0

CoFiNet[3] 83.1 83.5 83.3 83.1 82.6 24.4 25.9 26.7 26.8 26.9 67.5 66.2 64.2 63.1 61.0

GeoTrans[4] 88.3 88.6 88.8 88.6 88.3 43.5 45.3 46.2 52.9 57.7 75.0 74.8 74.2 74.1 73.5

Ours 89.8 89.9 90.1 90.1 89.9 50.1 52.4 55.6 58.6 60.1 77.2 77.2 77.0 76.8 76.4

 

Table  4.    Evaluation Results on 3DMatch (Rotated) with a Varying Number of Correspondences

Method FMR (%) IR (%) RR (%)

5 000 2 500 1 000 500 250 5 000 2 500 1 000 500 250 5 000 2 500 1 000 500 250

SpinNet[12] 97.4 97.4 96.7 96.5 94.1 48.7 46.0 40.6 35.1 29.0 93.2 93.2 91.1 87.4 77.0

Predator[2] 96.2 96.2 96.6 96.0 96.0 52.8 53.4 52.5 50.0 45.6 92.0 92.8 92.0 92.2 89.5

YOHO[14] 97.8 97.8 97.4 97.6 96.4 64.1 60.4 53.5 46.3 36.9 92.5 92.3 92.4 90.2 87.4

CoFiNet[3] 97.4 97.4 97.2 97.2 97.3 46.8 48.2 49.0 49.3 49.3 92.0 91.4 91.0 90.3 89.6

GeoTrans[4] 97.8 97.9 98.1 97.7 97.3 68.2 72.5 73.3 79.5 82.3 92.0 91.9 91.8 91.5 91.4

Ours 98.2 98.2 98.2 98.1 98.1 82.9 82.9 83.3 83.3 83.5 93.8 93.8 93.6 93.6 93.2

 

Table  5.    Evaluation Results on 3DLoMatch (Rotated) with a Varying Number of Correspondences

Method FMR (%) IR (%) RR (%)

5 000 2 500 1 000 500 250 5 000 2 500 1 000 500 250 5 000 2 500 1 000 500 250

SpinNet[12] 75.4 74.9 72.6 69.2 61.8 25.7 23.9 20.8 17.9 15.6 61.8 59.1 53.1 44.1 30.7

Predator[2] 73.7 74.2 75.0 74.8 73.5 22.4 23.5 23.0 23.2 21.6 58.6 59.5 60.4 58.6 55.8

YOHO[14] 77.8 77.8 76.3 73.9 67.3 23.2 23.2 19.2 15.7 12.1 66.8 67.1 64.5 58.2 44.8

CoFiNet[3] 78.6 78.8 79.2 78.9 79.2 21.5 22.8 23.6 23.8 23.8 62.5 60.9 60.9 59.9 56.5

GeoTrans[4] 85.8 85.7 86.5 86.6 86.1 40.0 40.3 42.7 49.5 54.1 71.8 72.0 72.0 71.6 70.9

Ours 89.8 89.6 89.6 89.4 89.2 48.2 48.5 50.4 52.3 54.6 76.0 75.4 75.4 75.3 74.9
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ing  it  more  effective  for  transformation  estimation

and yielding higher RR. This efficient estimator deliv-

ers  performance on par  with the robust  pose  estima-

tor  such  as  RANSAC  but  with  significantly  lower

time costs, offering over 100 times acceleration. 

4.1.4    Robustness to Noise

To test the robustness of our method to noise, we

add Gaussian noise at different levels on 3DLoMatch.

Here,  we primarily  compare our method with Preda-

tor[2] and GeoTrans[4], where the former is a detector-

based  sparse  matching  method  and  the  latter  is  a

dense matching method. As shown in Fig.3, the RR of

different methods under various noise levels is depict-

ed.  With the increase in noise level,  the performance

of all methods declines to varying degrees. Predator[2]

is severely affected due to limitations in the accuracy

of  score  estimation  and  the  repeatability  of  sampled

keypoints.  This  significantly  impacts  its  registration

success  rate  when  noise-induced  degradation  in  fea-

ture  matching  capability  occurs.  In  contrast,  com-

pared  with  GeoTrans[4],  our  method  demonstrates

stronger  robustness  against  high  noise  levels.  This  is

attributed to our proposed soft matching mechanism,

which  exploits  more  potentially  valuable  correspon-

dences and effectively eliminates mismatches through

an overlapping detection module.  Additionally,  a lin-

ear attention module enhances the feature representa-

tion capability. Therefore, our method exhibits superi-

or robustness even under high noise levels.
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Fig.3.   Registration  results  with  various  noise  levels  on  3DLo-
Match.
  

4.1.5    Ablation Studies

To  gain  a  more  comprehensive  understanding  of

the  individual  modules  within  our  method,  we  con-

duct  a  series  of  ablation  studies.  Following  the

methodology outlined in [4], we introduce the metric,

patch  inlier  ratio  (PIR),  to  measure  the  fraction  of

patch  matches  with  actual  overlap.  Additionally,  we

introduce  another  metric,  patch  overlap  precision

(POP),  to  assess  the  precision  of  patches  within  the

actual  overlap.  It  is  worth  noting  that  the  metrics

FMR and IR are reported with correspondences, while

RANSAC[6] is employed for the registration process.

To investigate the effectiveness of the overlap de-

tection module (ODM), we compare it with the MLP-

directly[2] module  (MLP)  in Table 7.  Leveraging  the

attention  mechanism,  our  module  has  the  capability

to model the global overlap position, allowing for bet-

ter  perception of  the  overlap region.  With a  well-de-

signed re-weighted prediction module, we obtain more

 

Table   6.      Registration  Results  w/o  RANSAC  on  Original
3DMatch and 3DLoMatch

Method Estimator #Samples 3DMatch 3DLoMatch

SpinNet[12] RANSAC-50k 5 000 88.6 59.8

Predator[2] RANSAC-50k 5 000 89.0 59.8

CoFiNet[3] RANSAC-50k 5 000 89.3 67.5

GeoTrans[4] RANSAC-50k 5 000 92.0 75.0

Ours RANSAC-50k 5 000 94.2 77.2

SpinNet[12] Weighted SVD 250 34.0 2.5

Predator[2] Weighted SVD 250 50.0 6.4

CoFiNet[3] Weighted SVD 250 64.6 21.6

GeoTrans[4] Weighted SVD 250 86.5 59.9

Ours Weighted SVD 250 88.4 62.1

CoFiNet[3] LGR 5 000 85.5 63.2

GeoTrans[4] LGR 5 000 91.2 73.4

Ours LGR 5 000 93.2 76.2

CoFiNet[3] FSR 5 000 85.8 64.2

GeoTrans[4] FSR 5 000 91.5 73.8

Ours FSR 5 000 93.4 76.8

Note:  The  time  consumption  for  the  four  pose  estimators  is
2.344 s, 0.008 s, 0.019 s, and 0.022 s, respectively.

 

Table  7.    Ablation Study of Overlap Detection Module

Method 3DMatch 3DLoMatch

POP PIR FMR IR RR POP PIR FMR IR RR

MLP[2] 89.6 84.2 98.2 73.4 92.5 84.5 53.4 88.5 45.2 75.5

ODM 93.5 85.6 98.6 82.9 94.2 88.1 54.2 89.8 50.1 77.2

Note: The values of all metrics in this table are in percentage.
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accurate  detection  results  for  the  overlap  region.  As

accurate  overlap estimation is  pivotal  for  eliminating

mismatches,  our  proposed  module  outperforms  alter-

natives across all metrics.

Moving  forward,  to  explore  the  interactions  be-

tween the  soft-matching  module  (SMM),  overlapping

detection  module  (ODM),  and  linear  transformer

module  (LTM),  we  conduct  relevant  ablation  experi-

ments  in Table 8.  When  all  modules  are  removed,

OAAFormer reverts to GeoTrans[4] and serves as the

baseline.  In  general,  when  we  replace  the  strict

matching  mechanism  of  the  original  implementation

with SMM, due to the introduction of a one-to-many

matching  paradigm,  while  introducing  a  prior  for  lo-

cal-to-local  matching,  some  mismatches  are  in-

evitably introduced, resulting in a decline in all  met-

rics. The introduction of ODM and LTM, on the oth-

er  hand,  enhances  the  accuracy  of  coarse- and  fine-

level  matching,  respectively,  and  outperforms  the

original  implementation.  When all  three  modules  are

introduced  simultaneously,  SMM  mines  more  poten-

tial  patch matches,  ODM eliminates  mismatches  dis-

tributed  outside  the  estimated  overlapping  regions,

and  LTM  makes  the  dense  features  of  the  overlap-

ping  region  more  discriminative,  achieving  the  best

performance.

To better elucidate the impact of each module, we

present  qualitative  results  of  coarse-/fine-level  corre-

spondences under different module ablations. Fig.4(a)

showcases  the  outcomes  of  GeoTrans[4],  which  ex-

tracts a fixed number of coarse and dense correspon-

dences. Fig.4(b)  illustrates  the  outcomes  when  solely

the  SMM  module  is  incorporated.  Due  to  the  intro-

duction  of  one-to-many  matching  and  adaptive

threshold  settings,  more  matches  are  established  at

the  coarse-level  matching  stage,  inevitably  introduc-

ing  some  outliers  that  propagate  to  the  fine-level

matching  step.  However,  more  inliers  are  fortunately

discerned at this stage. Fig.4(c) demonstrates that in-

troducing the ODM module can preserve inliers while

predominantly  eliminating  outliers  introduced by the

SMM module. In comparison with GeoTrans[4], which

samples a fixed number of coarse correspondences, we

can  adaptively  sample  fewer  correspondences  in  low-

 

Table  8.    Ablation Study of Main Modules

SMM ODM LTM 3DMatch 3DLoMatch

PIR (%) FMR (%) IR (%) RR (%) PIR (%) FMR (%) IR (%) RR (%)

× × × 86.1 97.9 71.9 92.0 54.9 88.3 43.5 75.0

√ × × 82.7 97.4 68.0 91.3 46.4 86.1 38.1 73.5

× √ × 86.4 98.1 73.6 92.7 55.3 88.7 44.8 75.5

× × √ 86.1 98.4 79.2 93.4 54.9 89.3 46.4 75.8

√ √ √ 85.6 98.6 82.9 94.2 54.4 89.8 50.1 77.2
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#  Coarse Corrs: 163
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Fig.4.  Qualitative results of coarse-/fine-level correspondences under different module ablations. (a) Results of GeoTrans[4]. (b) Re-
sults  with  SMM. (c)  Results  with  SMM+ODM. (d)  Results  with  SMM+ODM+LTM. Green/red  lines  indicate  inliers/outliers.  #
Coarse Corrs: the number of coarse correspondense.
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overlap scenes, thereby enhancing PIR and diminish-

ing  unnecessary  interference  in  the  fine-level  match-

ing  stage. Fig.4(d)  illustrates  that  introducing  the

LTM module  notably  enhances  the  feature  matching

capability in the overlapping regions, thereby further

refining  the  matching  capability  at  the  fine-level

matching step.

In  addition,  we  replace  the  relative  position  em-

bedding[28] with the absolute position embedding[22] in

the linear attention module and conduct relevant ab-

lation experiments.  As shown in Table 9, in the con-

text  of  the  rotated  version  benchmark  within  the

3DMatch/3DLoMatch  dataset,  it  is  evident  that  the

inclusion  of  relative  position  embedding  resulted  in

superior  performance.  This  observation  suggests  that

incorporating relative positional information not only

assists the neural network in effectively modeling dis-

tant  spatial  relationships  but  also  enhances  the  net-

work's  capacity  to  discriminate  between  features

within  regions  that  are  otherwise  similar.  Further-

more,  it  contributes  to  the  augmentation  of  feature

rotation  invariance,  thereby  strengthening  the  net-

work's robustness in handling variations in rotational

transformations.
 

4.1.6    Qualitative Results

Fig.5 offers  a  visualization  of  the  overlap  region

prediction in the coarse level and the dense correspon-

dence results in the fine level. The overlapping region

detection module excels in perceiving the global posi-

tion,  and the  interaction  module  aids  in  determining

whether  superpoints  are  situated  within  the  overlap

region. Moreover, the linear transformer module with

the relative position embedding strategy enhances the

discriminative  ability  for  dense  correspondences,  re-

sulting in more reliable correspondences.

A  gallery  of  registration  and  matching  compari-

son results  with state-of-the-art  methods is  shown in

Fig.6.  It  is  evident  that  our  method  can  establish

more accurate correspondences across a broader spec-

trum  of  domains,  yielding  robust  registration  out-

comes. 

4.2    Outdoor Benchmark: KITTI
 

4.2.1    Dataset and Metrics

Dataset. The KITTI odometry dataset[30] compris-

es  11  sequences  of  LiDAR-scanned  outdoor  driving

scenarios. For training, we adhere to the setup of [2, 4],

utilizing  sequences  0–5,  while  sequences  6–7  are  re-

served  for  validation,  and  sequences  8–10  are  desig-

nated for testing. In line with the approach described

in  [2],  we  refine  the  ground-truth  poses  using  ICP,

and  restrict  the  evaluation  to  point  cloud  pairs  that

are within a maximum distance of 10 meters.

 

Table  9.    Ablation Study of Position Embedding

Method 3DMatch (Rotated) 3DLoMatch (Rotated)

FMR (%) IR (%)RR (%) FMR (%) IR (%) RR (%)

Absolute[22] 98.0 80.2 93.2 88.4 43.8 75.2

Relative[28] 98.2 82.9 93.8 89.8 48.2 76.0
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Inlier Ratio: 97.8%
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Overlap Ratio:
10.8%

Overlap Ratio:
10.9%
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(b)(a) (c) (d) (e)

Fig.5.  Qualitative results on 3DLoMatch. (a) Input point cloud. (b) Visualization of predicted overlap region. (c) Correspondence
results. (d) Registration results. Green/red lines indicate inliers/outliers.
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Metrics.  We adhere  to  the  evaluation  metrics  es-

tablished by [2, 4], which include the following: 1) rel-

ative  rotation  error  (RRE),  which  quantifies  the

geodesic distance between the estimated and ground-

truth  rotation  matrices;  2)  relative  translation  error

(RTE),  which  calculates  the  Euclidean  distance  be-

tween  the  estimated  and  ground-truth  translation

vectors;  3)  registration  recall  (RR),  which  measures

the fraction of point cloud pairs for which both RRE

and  RTE  fall  below  specific  thresholds,  typically  set

as RRE <  and RTE < 2 meters. 

4.2.2    Registration Results

In Table 10 (rows 2–9),  we compare OAAFormer

with  recent  state-of-the-art  methods,  employing

RANSAC  as  the  pose  estimator:  3DFeat-Net[31],

FCGF[11],  D3Feat[1],  SpinNet[12],  Predator[2],

CoFiNet[3],  and  GeoTrans[4].  Our  method  performs

0.03◦

comparably to these methods on RR but outperforms
the  baseline  by  approximately  0.7  cm  in  terms  of
RTE and  in RRE. We also compare our method
with  four  RANSAC-free  methods  in Table 10 (rows
10–14): FMR[32],  DGR[18],  HRegNet[33],  and GeoTrans
(with LGR)[4].  Our method outperforms all  the base-
lines significantly. Furthermore, when using FSR as a
pose  estimator,  our  method  surpasses  all  the
RANSAC-based methods. 

4.3    Synthetic Benchmark: ModelNet
 

4.3.1    Dataset and Metrics

Dataset.  ModelNet comprises 12 311 CAD models

of  synthetic  objects  spanning  40  distinct  categories.

We  adhere  to  the  practice  of  employing 5 112 sam-

ples for training, 1 202 samples for validation, and 1 266

samples for testing. Similar to [2, 4], we conduct eval-

uations  under  two  partial  overlap  scenarios:  Model-

Net,  characterized  by  an  average  pairwise  overlap  of

73.5%,  and  ModelLoNet,  exhibiting  a  lower  average

overlap of 53.6%.

Metrics.  We  adhere  to  the  methodology  outlined

in [2, 4]  for  performance evaluation,  employing three

key metrics: 1) RRE, 2) RTE (with definitions consis-

tent  with  those  in Subsection 4.2),  and  3)  Chamfer

distance (CD), which quantifies the chamfer distance

between two registered scans. 

4.3.2    Registration Results

In Table 11, we conduct a comparative analysis of
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Fig.6.  Qualitative comparison results on 3DLoMatch. GeoTrans[4] serves as the baseline. (a) Input point cloud. (b) Correspondence
results of GeoTrans[4] (c) Correspondence results of OAAFormer. (d) Registration results of GeoTrans[4]. (e) Registration results of
OAAFormer. (f) Ground-truth. Green/red lines indicate inliers/outliers.

 

Table  10.    Registration Results on KITTI Odometry

Method RTE (cm) RRE (deg) RR (%)

3DFeat-Net[31] 25.9 0.25 96.0

FCGF[11] 9.5 0.30 96.6

D3Feat[1] 7.2 0.30 99.8

SpinNet[12] 9.9 0.47 99.1

Predator[2] 6.8 0.27 99.8

CoFiNet[3] 8.2 0.41 99.8

GeoTrans[4] 7.4 0.27 99.8
Ours (RANSAC) 6.6 0.24 99.8

FMR[32] ∼66 1.49 90.6

DGR[18] ∼32 0.37 98.7

HRegNet[33] ∼12 0.29 99.7

GeoTrans (LGR)[4] 6.8 0.24 99.8
Ours (FSR) 6.0 0.21 99.8
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OAAFormer  against  state-of-the-art  RANSAC-based

methods  (rows  3  and  4)  and  RANSAC-free  methods

(rows  5–10).  Notably,  a  few  RANSAC-free  methods

are optimized primarily for ModelNet, and these mod-

els  exhibit  rapid  performance  deterioration  in  real-

world  scenarios.  In  contrast,  OAAFormer  demon-

strates  a  substantial  performance  advantage  over  all

baseline  methods  across  all  metrics,  whether  in  the

context  of  high  overlap  (ModelNet)  or  low  overlap

(ModelLoNet) scenarios. 

5    Conclusions

In  this  paper,  we  enhanced  the  coarse-to-fine

matching  mechanism  through  a  series  of  strategies.

The key enhancements include: 1) the development of

a  soft  matching  module  to  preserve  valuable  corre-

spondences among superpoints, 2) the introduction of

an overlapping region detection module for the elimi-

nation  of  mismatches,  and  3)  the  incorporation  of  a

region-wise  attention  module  with  linear  complexity

to  bolster  the  discriminative  capabilities  of  the  ex-

tracted  features.  Furthermore,  we  proposed  a  tech-

nique to accelerate the prediction process by carefully

selecting  limited  but  representative  correspondences

with  high-confidence.  Compared  with  RANSAC,  our

method achieved a 100 times acceleration. Additional-

ly,  we  conducted  extensive  experiments  on  multiple

benchmarks. Notably, on the challenging 3DLoMatch

benchmark,  our  method  improved  the  inlier  ratio  by

7% and  the  registration  recall  by  2%–4%.  This  fully

demonstrates  the  superior  performance  and  robust-

ness of our method. 
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