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Abstract    Graph neural networks (GNNs) have gained increasing popularity, while usually suffering from unaffordable

computations for real-world large-scale applications. Hence, pruning GNNs is of great need but largely unexplored. The re-

cent work Unified GNN Sparsification (UGS) studies lottery ticket learning for GNNs, aiming to find a subset of model pa-

rameters and graph structures that can best maintain the GNN performance. However, it is tailed for the transductive set-

ting, failing to generalize to unseen graphs, which are common in inductive tasks like graph classification. In this work, we

propose a simple and effective learning paradigm, Inductive Co-Pruning of GNNs (ICPG), to endow graph lottery tickets

with inductive pruning capacity. To prune the input graphs, we design a predictive model to generate importance scores

for each edge based on the input. To prune the model parameters, it views the weight’s magnitude as their importance

scores. Then we design an iterative co-pruning strategy to trim the graph edges and GNN weights based on their impor-

tance scores. Although it might be strikingly simple, ICPG surpasses the existing pruning method and can be universally

applicable  in  both  inductive  and  transductive  learning  settings.  On  10  graph-classification  and  two  node-classification

benchmarks, ICPG achieves the same performance level with 14.26%–43.12% sparsity for graphs and 48.80%–91.41% spar-

sity for the GNN model.
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1    Introduction

Graph neural networks (GNNs)[1–3] have become a

prevalent  solution  for  machine  learning  tasks  on

graph-structured  data.  Such  success  is  usually  as-

cribed  to  the  powerful  representation  learning  of

GNN, which incorporates the graph structure into the

representations,  such  as  aggregating  neural  messages

from the neighboring nodes to update the ego node's

representation.

As the field grows,  there is  an increasing need of

building deeper GNN architectures[4, 5] on larger-scale

graphs[6].  While  deepening  GNNs  shows  potential  on

large-scale  graphs,  it  also  brings  expensive  computa-

tions  due  to  the  increased  scale  of  graph  data  and

model  parameters,  limiting  their  deployment  in  re-

source-constrained  applications.  Taking  fraud  detec-

tion in a transaction network as an example, the scale

of  user  nodes  easily  reaches  millions  or  even  larger,

making  a  GNN-detector  model  prohibitive  to  stack

deep  layers  and  predict  malicious  behaviors  in  real

time.  Hence,  pruning  over-parameterized  GNNs  is  of

great  need,  which  aims  to  answer  the  question:  can

we co-sparsify the input graphs and the GNN model,

while preserving or even improving the performance?

Recently,  a  pruning  approach,  UGS[7],  has  been
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proposed  to  find  graph  lottery  tickets  (GLTs)  —
smaller  subsets  of  model  parameters  and  input

graphs.  At  its  core  is  the  Lottery  Ticket  Hypothesis

(LTH)[8] speculating that any dense, randomly-initial-

ized  neural  network  contains  a  sparse  subnetwork,

which  can  be  trained  independently  to  achieve  a

matching  performance  as  the  dense  network.  Specifi-

cally,  UGS employs  trainable  masks  on each edge  in

the input graph and each weight in the model param-

eters,  to specify their  importance.  When training the

model with the masks, the strategy of iterative mag-

nitude-based  pruning  (IMP)[8] is  used  to  discard  the

edges  and  weights  with  the  lowest  mask  values  at

each iteration.

Despite the effectiveness, there exist the following

limitations. 1) UGS focuses solely on providing trans-

ductive  graph  masks  by  generating  a  painstakingly

customized mask for a single edge individually and in-

dependently.  That  is,  the  edge  masks  are  limited  to

the given graph, making UGS infeasible to be applied

in  the  inductive  setting  since  the  edge  masks  hardly

generalize to unseen edges or entirely new graphs. 2)

Applying a mask for each edge alone only provides a

local understanding of the edge, rather than the glob-

al  view  of  the  entire  graph  (e.g.,  in  node  classifica-

tion) or multiple graphs (e.g., in graph classification).

Moreover,  the  way  of  creating  trainable  edge  masks

will  double  the  parameters  of  GNNs,  which  violates

the  purpose  of  pruning  somehow.  As  a  result,  these

edge masks could be suboptimal to guide the pruning.

3)  The  unsatisfactory  graph  pruning  will  negatively

influence  the  pruning  of  model  weights.  Worse  still,

low-quality  weight  pruning  will  amplify  the  mislead-

ing signal of edge masks in turn. They influence each

other  and  form a  vicious  circle.  We ascribe  all  these

limitations of UGS to its transductive nature. Hence,

conducting  combinatorial  pruning  in  the  inductive

setting is crucial to high-quality winning tickets.

In  this  work,  we  emphasize  the  inductive  nature

within the combinatorial pruning of input graphs and

GNN parameters  and  present  our  framework,  Induc-

tive Co-Pruning of GNNs (ICPG). It is an extremely

simple but effective pruning framework that is appli-

cable to any GNN in both inductive and transductive

settings.  Specifically,  for  the input graphs,  we design

a predictive model, AutoMasker, which learns to gen-

erate edge masks from the observed graphs. It is pa-

rameterized  with  an  additional  GNN-based  encoder,

whose parameters are shared across the population of

observed  graphs.  As  a  consequence,  AutoMasker  is

naturally capable of specifing the significance of each

edge  and  extracting  core  subgraphs  from  a  global

view of the entire observations. For the model param-

eters,  we  simply  exploit  the  magnitude  of  a  model

weight to assess  whether  it  should be pruned,  rather

than training an additional mask. Having established

the  edge  masks  and  weight  magnitudes,  we  can  ob-

tain  high-quality  GLTs  by  pruning  the  lowest-mask

edges and lowest-magnitude weights. Experiments on

ten  graph  classification  and  two  node  classification

datasets consistently validate our framework ICPG by

identifying  high-quality  GLTs.  Moreover,  we  inspect

the  GNN-level  and  graph-level  transferability,  which

promises  for  deploying ICPG in the pre-training and

fine-tuning paradigm to save the computational cost.

The visualizations show that ICPG always retains de-

cisive subgraphs, such as edges located on digital pix-

els  in  MNIST graphs,  which  further  illustrates  ratio-

nality and explainability.

In all, our main contributions can be summarized

as follows.

• We  introduce  ICPG,  an  innovative  pruning

framework,  capable  of  pruning  both  the  GNN model

and  input  graphs,  which  excels  at  identifying  high-

quality  GLTs  across  diverse  graph  representation

tasks in both inductive and transductive settings.

• We  have  validated  ICPG's  capacity  to  find

GLTs in datasets  of  various scales  through extensive

experiments,  while  maintaining  performance  with  a

range  of  graph  sparsity  from  22.62%  to  43.12%  and

GNN sparsity from 67.23% to 91.41%.

• We demonstrate that ICPG offers transferabili-

ty at both the GNN and graph levels, resulting in im-

proved performance and lower computational costs in

downstream tasks. This is substantiated by thorough

comparisons, analyses, and visual inspections that val-

idate its effectiveness, applicability, and explainability. 

2    Related Work

G = (A, X) V E
A ∈ {0, 1}|V|×|V|

A[i, j] = 1 vi
vj A[i, j] = 0 X ∈ R|V|×d

Graph  neural  networks  (GNNs)[1–3, 9, 10] have

emerged as a powerful tool for learning the represen-

tation  of  graph-structured  data.  The  great  success

mainly  comes  from  the  structure-aware  learning,

which  follows  the  iterative  message-passing  scheme.

Specifically,  we  denote  an  undirected  graph  by

 with the node set  and the edge set .

 is  the  adjacency  matrix,  where

 denotes  the  edge  between  node  and

node , otherwise .  is the ma-
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xi = X[i, :] d

vi ∈ V K

k

vi

trix  of  node  features,  where  is  the -di-

mensional feature of the node . Given a -lay-

er GNN, its -th layer generates the representation of

node  as in (1) and (2).
 

a(k)
i = AGGREGATION (k)({h(k−1)

j |j ∈ N (i)}), (1)
 

h(k)
i = COMBINE(k)(h(k−1)

i , a(k)
i ), (2)

h(k)
i a(k)

i vi

N (i) AGGREGATION

COMBINE

K

READOUT

G

where  and  are the representation of node 

and  the  message  aggregated  from its  neighbor  nodes

set ,  respectively,  and  the 

and  operators  are  the  message  passing

and update functions, respectively. After propagating

through  layers, we get the final representations of

nodes,  which  facilitate  downstream  node-level  tasks,

such as node classification and link prediction. As for

graph-level  tasks  like  graph  classification  and  graph

matching, we further hire the  function to

generate the representation of the whole graph ,  as

in (3).
 

ZG = READOUT ({h(k)
i |vi ∈ V , k ∈ {1, . . . , K}}).

(3)

AGGREGA

TION, COMBINE, READOUT

Various GNNs[2, 9, 10] adopt different -

 and  functions  to

refine the desired information.

The  Lottery  Ticket  Hypothesis  (LTH)[8] states

that a sparse subnetwork exists in a dense randomly-

initialized  network  that  can  be  trained  to  achieve

comparable  performance  to  the  full  models.  LTH  is

explored in many fields  such as  computer  vision and

natural language processing[11–15]. Recently, UGS[7] ex-

tends  LTH  to  GNNs,  proposing  the  Graph  Lottery

Ticket  (GLT),  which  includes  subgraph  and  subnet-

work pairs that can be trained independently to reach

comparable performance to the dense pairs. However,

due  to  the  transductive  nature  of  graph-specific

masks,  UGS[7] cannot  develop  in  inductive  learning

settings.  To address  this  issue,  we have incorporated

AutoMasker  into  our  approach.  This  tool  possesses

the  capability  to  learn  the  importance  of  each  edge

from training graphs on a global scale and predict sig-

nificance  scores  for  newly  introduced  graphs.  By  be-

ing  both  graph-agnostic  and  inductive,  AutoMasker

effectively surmounts  the limitations traditionally  as-

sociated  with  graph-specific  masks,  thus  paving  the

way  for  novel  advancements  within  inductive  learn-

ing settings.

Graph  sparsification  and  sampling  aim  to  find

core  subgraphs  in  graph  learning.  Numerous  strate-

gies[16–27] were proposed to achieve efficient training or

inference.  SGAT[16] adopts  sparse  attention  to  re-

move edges. NeuralSparse[17] utilizes a DNN to identi-

fy task-irrelevant edges. Sampling-based methods[18–21]

sample  and  aggregate  features  from  a  node's  local

neighborhood.  DropEdge[18] randomly  drops  edges

from  the  input  graph,  which  can  be  seen  as  a  data

augmenter. Another research line selects subgraphs in

an  optimization  way.  SGCN[19] and  GEBT[22] adopt

the ADMM optimization algorithm to sparsify the ad-

jacency  matrix.  UGS[7] utilizes  trainable  masks  to

prune graphs. Unfortunately, these methods either fail

to  utilize  sparse  graphs  in  the  inductive  inference

stage  or  do  not  use  sparse  GNNs  for  efficient  infer-

ence.  Distinct  from  them,  ICPG endows  GNNs  with

inductive sparsification capacity, which can universal-

ly  work  in  both  transductive  and  inductive  settings

with both sparse  graphs and models.  We make com-

prehensive  comparisons  with  the  above  methods  in

Table 1.
  
Table  1.    Comprehensive Comparisons in the Inference Stage

Method Sparse Graph Sparse Model

Transductive Inductive

SGAT[16] √ × ×

NeuralSparse[17] √ √ ×

GraphSAGE[21] √ √ ×

DropEdge[18] √ √ ×

SGCN[19] √ × ×

GEBT[22] √ × √
UGS[7] √ × √
ICPG (ours) √ √ √

 

3    Preliminaries

In  this  section,  we  first  briefly  introduce  the  in-

ductive graph learning. Then we formulate the task of

learning graph lottery tickets under inductive setting. 

3.1    Inductive Graph Learning

Before entering our method, we first clarify the in-

ductive learning settings of our work. Compared with

inductive graph learning, transductive graph learning

denotes  that  unlabeled  test  data  can  be  used  in  the

training  process.  For  example,  in  semi-supervised

node  classification  tasks[1],  training  and  test  nodes

form an entire graph. During model training, we need

to  take  the  full  graph data  as  input  and predict  the

class of test nodes based on all node features (includ-

ing test node features), all edges, and labels of train-

ing  nodes.  Hence,  all  information  (except  labels)  on

Yong-Duo Sui et al.: Inductive Lottery Ticket Learning for Graph Neural Networks 1225



the test data is available during training. In contrast,

inductive graph learning means that all information of

the  test  graph  is  not  available  during  the  training

process. For example, in graph classification tasks, we

use  the  training data  at  hand to  train  GNN models,

hoping  that  the  models  can  effectively  generalize  to

the  unseen  test  data.  Compared  with  the  transduc-

tive  graph  learning  setting,  inductive  graph  learning

cannot utilize any information from test data. There-

fore,  inductive  learning  requires  better  generalization

ability  of  the  model.  Unfortunately,  UGS[7] designs

learnable  weights  for  all  edges  of  an  entire  graph.

This  training  strategy  requires  that  the  topological

structure of the graph data is fixed and invariant be-

tween the training and inference stage. Hence, UGS[7]

is  only  possible  to  apply  to  the  setting  of  transduc-

tive graph learning, while it cannot apply to the set-

ting of inductive graph learning. 

3.2    Inductive Graph Lottery Ticket

f(·, Θg0)

Θg0

Θg

G = (A, X)

C

ŷ = f(G, Θg)

Without loss of generality, we consider the task of

graph classification as an example. Given a GNN clas-

sifier ,  it  starts  from  the  randomly-initial-

ized parameters  before training and arrives at the

well-optimized  parameters  after  training.  Once

trained, it takes any graph  as the input

and  yields  a  probability  distribution  over  classes

.

G
Θg0

mG mΘ

G Θg0

G ′ = (mG ⊙A, X)

Θ′
g0 = mΘ ⊙Θg0

f(·, Θ′
g0) {G ′}

Θ′
g

G ′ f(·, Θ′
g0)

Learning  GLTs  aims  to  make  the  input  graph 

and the model weights  sparse to reduce the com-

putational  costs,  while  preserving  the  performance.

Formally, it aims to generate two masks  and ,

which  are  applied  on  and  correspondingly,  so

as  to  establish  the  sparser  input  graph

 and  initialized  weights

.  Hereafter,  through  retraining  the

subnetwork  on  the  sparse  versions  of

training graphs, we can get the new converged param-

eters .  If  the  well-optimized  subnetwork  can

achieve comparable performance with full graphs and

networks,  we  term the  pair  of  and  as  a

GLT.  Although  a  recent  study,  UGS[1],  proposes  to

learn GLTs, it focuses solely on the transductive set-

ting  but  leaves  the  inductive  setting  untouched.

Specifically,  it  assigns  a  trainable  mask to  each edge

of  the  input  graph  and  trains  such  graph-specific

masks  individually  and  independently.  As  a  conse-

quence, these edge-dependent masks are limited to the

given  graph,  hardly  generalizing  to  unseen  edges  or

entirely  new  graphs.  Distinct  from  UGS,  we  aim  to

uncover GLTs in the inductive learning setting. 

4    Methodology

In this section, we propose a novel pruning frame-

work,  named  inductive  co-pruning  of  GNNs  (ICPG),

to find the GLTs. We first introduce the key compo-

nent in ICPG, named AutoMasker.  Then we present

our inductive strategy of co-pruning the input graphs

and model parameters. 

4.1    AutoMasker

G = (A, X)

g(·)

Instead of  assigning a  mask to  a  single  edge,  our

idea is extremely simple: we take a collection of graph

instances  and  design  a  trainable  model  to  learn  to

mask  edges  collectively.  The  key  ingredient  of  this

model is an additional GNN-based model, termed Au-

toMasker,  whose  parameters  are  shared  across  the

population of observed graphs. Here we represent Au-

toMasker as the combination of a graph encoder and

a  subsequent  scoring  function.  Formally,  given  a

graph , AutoMasker applies a GNN-based

graph  encoder  to  create  representations  of  all

nodes as:
 

H = g(A, X),

H ∈ R|V×d| d

i hi

vi g(·)

(i, j) vi
vj

hi hj αij

σ(·) αij

(0, 1)

(i, j)

where  stores -dimension  representations

of all nodes, whose -th row  denotes the represen-

tation  of  node ;  is  a  GNN  following  the  mes-

sage-passing  paradigm  in  (1).  To  assess  the  impor-

tance  score  of  edge  between  node  and node

,  AutoMasker  builds  a  multi-layer  perceptron

(MLP)  upon  the  concatenation  of  node  representa-

tions  and ,  which yields  the score .  In what

follows, the sigmoid function  projects  into the

range  of ,  which  represents  the  probability  of

edge  being the winning ticket. The scoring func-

tion is represented as follows:
 

sij = σ(αij), αij = MLP ([hi, hj]).

sG sG[i, j] = sij (i, j)

sG[i, j] = 0

By employing the  scoring  function over  all  possi-

ble  edges,  we  are  able  to  collect  the  matrix  of  edge

masks ,  where  if  edge  holds,

otherwise .  In  a  nutshell,  we  summarize

the AutoMasker function as:
 

sG = AutoMasker(G, Θa), (4)

Θawhere  is  the  parameter  of  AutoMasker,  covering

the parameters of the GNN encoder and MLP.
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Although  the  key  ingredient  of  AutoMasker  is

simple,  it  has  several  conceptual  advantages  over

UGS.

Global  View.  Although  edge  masks  derived  from

UGS might  preserve  the  fidelity  to  local  importance,

they  do  not  help  to  delineate  the  general  picture  of

the whole graph population. Distinct from UGS, Au-

toMasker  takes  a  global  view  of  making  decisions.

Specifically, for the instance level, AutoMasker adopts

GNN  as  its  backbone.  Because  of  the  message-pass-

ing mechanism of GNN, AutoMasker can fully consid-

er the topology information of the entire graph data.

For  the  dataset  level,  all  graph  data  share  an  Au-

toMasker,  therefore  it  can  make  decisions  for  each

edge in each graph data from a global perspective by

observing all graph data in the dataset. As edges usu-

ally  collaborate  to  make  predictions,  rather  than

working  individually,  they  form  a  coalition  like  the

functional groups of a molecule graph, the communi-

ty of a social network. Hence, AutoMasker will  learn

the invariant and stable patterns in training data and

can  well  transfer  the  learned  patterns  to  the  unseen

test data.

∑
G |E|

Θa

Lightweight  Edge  Masks.  When  using  UGS  to

prune graph data with millions of edges or nodes, the

cost of assigning local edge masks one by one will be

prohibitive  with  such  a  large-scale  dataset  in  real-

world  scenarios.  Moreover,  UGS introduces  addition-

al  parameters,  whose  scale  remains  the  same  as  the

edge number  and is much larger than that of

the original parameters being pruned. Hence, it some-

how  violates  the  purpose  of  pruning.  In  our  Au-

toMasker,  the  additional  parameter  is  in  (4),

which  remains  invariant  across  the  change  of  data

scale.

Generalization.  In  contrast  to  UGS,  AutoMasker

can  generalize  the  mechanism  of  mask  generation  to

new  graphs  without  retraining,  making  it  more  effi-

cient  to  prune  unseen  and large-scale  graphs.  Hence,

it makes ICPG more scalable and flexible for pruning

in diverse real-world graph learning tasks or applica-

tions.  In  addition,  we  also  conduct  extensive  experi-

ments to verify this point. 

4.2    Inductive Co-Pruning Strategy

Here  we  present  Inductive  Co-Pruning  of  GNNs

(ICPG)  to  learn  the  GLTs. Fig.1 demonstrates  its

overview, which consists of the following two steps.

G = (A,X)

sG

sG A

Gs = (sG ⊙A,X)

Step 1: Co-Training  AutoMasker  and  the  GNN
Model of Interest. Given an input graph ,

AutoMasker first generates the edge mask  via (4).

Then we apply  to the adjacency matrix  to cre-

ate  the  soft-masked  graph ,  which

fully  reflects  AutoMasker's  decision  for  the  impor-

tance of each edge, such that less important edges are

prone to have lower mask values. Finally, we feed the

soft-masked  graph  into  the  GNN  model  to  co-train

AutoMasker and the model.  The GNN model  adopts

the  masked  graph  to  learn  the  representation  and

make predictions, which can be viewed as the supervi-

sion  signals  to  guide  AutoMasker  to  achieve  a  more

accurate  decision.  The  detailed  co-training  process  is

shown in Algorithm 1. When the training is done, we

conduct step 2 to perform the pruning.

Step 2: Co-Sparsifying  the  Input  Graphs  and  the
GNN  Model. Having  obtained  the  well-trained  Au-

toMasker and GNN, we can apply the learned knowl-
 

Training Graph(s)

Rating
Scores

Training/Testing Graph(s)

Rating
Scores

GNNMasked Graph(s)

Masked Graph(s) Sparse GNNSparse Graph(s)

AutoMasker

AutoMasker

0.99

0.720.93

0.96

0.49
0.82

0.87
0.95

0.45

0.34

0.37

0.98

0.41

0.74

0.84

0.89

0.82

0.99

0.95

0.96
0.13

0.99

0.98
0.94

0.87
0.25

0.18
0.88

0.77

0.57

0.83

0.16

0.91

0.86

0.36
0.89

Step1: Co-Training AutoMasker and the GNN Model

Step2: Co-Sparsifying the Input Graphs and GNN Model
Magnitude-Based
Pruning

Mask-Based
Pruning

Fig.1.  ICPG framework to find GLTs.
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pg

mG

pθ

mΘ

G ′ = (mG ⊙A, X)

mΘ

edge  to  co-sparsify  the  graphs  and  the  GNN  model.

For  graphs,  AutoMasker  predicts  the  importance

score (e.g., mask value) for each edge. Then the edges

of a certain graph are sorted based on their mask val-

ues,  and the edges with  ratio of  the lowest-masks

are pruned to obtain the mask . For GNN, we sort

the  parameters  based  on  the  their  magnitudes  and

prune  ratio of the lowest-magnitude parameters to

obtain  the  binary  model  mask .  Under  the  cur-

rent  sparsity,  we  now  successfully  obtain  the  sparsi-

fied  graph  and  the  sparsified

GNN  mask .  Finally,  we  need  to  check  whether

the sparsity meets our condition. If the sparsity is sat-

isfied, the algorithm is completed; if not, we reuse the

found  GLT  to  update  the  original  graphs  and  GNN

model,  and iteratively  run step 1 and step 2 (dotted

arrow in Fig.1) until the condition is met.

Algorithm 1. Mask & Magnitude-Based Pruning

D f(·, Θg0) AutoMasker(·, Θa0) M mΘ TInput: , , , , , Epoch 

{m′
Gi
}Ni=1 m′

Θ
Output: sparsified masks , 

t = 0 T − 11:   for  to  do

Gi ∈ D mGi
∈M2: 　  for  and  do

Gi ← (mGi
⊙Ai,Xi)3: 　　 

sGi
← AutoMasker(Gi, Θat)4: 　　 

Gi ← (sGi
⊙Ai,Xi)5: 　　 

f(Gi, mΘ ⊙Θgt)6: 　　  Forward 

Θat+1
Θgt+1

7: 　　  Backward to update , 

8: 　  end for
9:   end for

Gi ∈ D10: for  do

sGi
← AutoMasker(Gi, ΘaT )11: 　

pg = 5% sGi
0

1 m′
Gi

12:  　Set  of  the  lowest  mask  values  in  to  and
  others to , creating 

pθ = 20%
ΘgT m′

Θ

13:  　Prune  of  the  lowest  magnitude  parameters  in
  , creating 

14: end for

sθ sd

In  summary, Algorithm 2 offers  the  detailed  pro-

cess of ICPG, where the sparsity levels  and  re-

fer  to  the  proportions  of  model  weights  and  graph

edges  that  need  to  be  pruned.  Following  LTH[8] and

UGS[7], we also adopt an iterative pruning strategy to

locate  GLTs.  In Algorithm 2,  it  will  conduct Algo-

rithm 1 to prune a certain proportion of graph edges

and model weights. In our experiments, for graph da-

ta,  we prune 5% of the edges each time, and for the

model,  we  prune  20%  of  the  weights  each  time.

Therefore  we  need  to  execute Algorithm 1 several

times to achieve the given sparsity levels. 

5    Experiments

In this section, we conduct extensive experiments

to validate the effectiveness of ICPG. We first intro-

duce  the  experimental  settings  and  explore  the  exis-

tence of GLTs in graph classification and node classi-

fication.  Then,  we  demonstrate  the  practicability,

such  as  transferability,  performance,  and  computa-

tional cost saving. Finally, more ablation studies and

visualizations are provided.

Algorithm 2. Finding GLTs by ICPG

D = {Gi = (Ai, Xi)}Ni=1 f(·, Θg0)

AutoMasker(·, Θa0) sd sθ

Input: graphs , ,

  , sparsity levels , 

{G ′
i = (mGi

⊙Ai, Xi)}Ni=1 f(·; mΘ ⊙Θg0)Output: GLT , 

M← {mGi
← Ai}Ni=1

1: Initialize masks set 

mΘ ← 1 ∈ R∥Θg0
∥02: Initialize GNN mask 

M < sd mΘ < sθ3: while the sparsity of ,  do

f(·; Θg0) mΘ

{Gi = (Ai,Xi)}Ni=1
M

4:  　 Sparsify  GNN  with  and  graphs

   with  the  mask  set  and  get  the

  new masks as presented in Algorithm 1.

M← {mGi
←m′

Gi
}Ni=1

5: 　Update 

mΘ ←m′
Θ

6: 　Update 

Θa0
7: 　Rewind AutoMasker's weight to 

Θg0
8: 　Rewind GNN's weight to 
9: end while
 

5.1    Experimental Settings

Datasets. For  graph  classification,  we  adopt  the

TU  datasets[28–30],  including  biological  graphs  (NCI1,

MUTAG),  social  graphs  (COLLAB,  RED-B,  RED-

M5K,  RED-M12K).  We  also  use  superpixel  graphs

(MNIST,  CIFAR-10)[31, 32],  and  Open  Graph  Bench-

mark  (ogbg-ppa  and  ogbg-code2)[6].  We  use  these

graph classification datasets for inductive graph learn-

ing. For node classification, we choose a transductive

learning  dataset,  Cora,  and  an  inductive  learning

dataset,  PPI.  The  detailed  statistics  of  the  datasets

are  shown in Table 2,  where “#" refers  to  the  num-

ber and “Avg." means the average number.

Models. We adopt the same model architecture for

the  GNN  backbone  and  the  GNN  encoder  in  Au-

toMasker. For graph classification tasks and Cora, we

adopt the GCN[1] model.  For PPI,  we choose GAT[2]

to achieve a better baseline performance.

Training  Settings. Here  we  provide  the  detailed

training  settings  of  the  proposed  ICPG.  All  training

hyper-parameters  such  as  epoch,  learning  rate  (LR),

optimizer,  batch  size,  and  weight  decay  are  summa-

rized  in Table 3.  For  the  devices,  we  adopt  the

NVIDIA  GeForce  RTX  3090  (24  GB  GPU)  to  con-

duct all our experiments. To help readers easily repro-
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duce our results, we also provide the code of our work①. 

5.2    GLTs in Graph Classification Tasks

We first conduct experiments to find the GLTs in

graph  classification  tasks.  The  results  of  different

graph sparsity-levels are displayed in Fig.2 and Fig.3.

Due  to  the  limited  space,  we  omit  the  results  of

weight sparsity,  which follow a similar trend. We al-

so  plot  the  random  pruning  (RP)  for  comparison.

Stars  denote  extreme sparsity,  which  is  the  maximal

sparsity-level  without  performance  degradation.  We

make the following observations.

Observation 1.  GLTs  extensively  exist  in  graph

classification tasks. Utilizing ICPG, we successfully lo-

cate  the  GLTs  with  different  sparsity-levels  from di-

verse  types  of  graphs.  For  NCI1  and  MUTAG,  we

precisely  identify  GLTs  with  extreme  graph  sparsity

at  26.49% and 30.17%,  GNN sparsity  of  73.79% and

79.03%, respectively. On four social network datasets,

we  find  the  GLTs  with  graph  sparsity  of  22.62%–
51.23%  and  GNN  sparsity  of  67.23%–95.60%.  For

MNIST and CIFAR-10,  the  GLTs are  achieved with

graphs  sparsity  of  43.13%  and  14.26%,  and  GNN

sparsity of 91.41% and 48.80%, respectively. These re-

sults show that ICPG can inductively locate the high-

quality GLTs with different graph types, and demon-

strate the potential of efficient training and inference

with  sparser  graphs  and  lightweight  GNNs  without

sacrificing performance.

Observation 2.  AutoMasker  has  good  generaliza-

tion  ability.  The  mainstream  graph  sparsification

techniques[7, 17, 19] cannot  inductively  prune  unseen

graphs.  However,  AutoMasker  can  flexibly  overcome

this  challenge.  Compared  with  RP,  ICPG  can  find

more  sparse  subgraphs  and  subnetworks  and  keep  a

large gap with RP. For instance, the RED-M5K and

RED-M12K  graphs  pruned  by  ICPG  can  achieve

40.13%  and  51.23%  extreme  graph  sparsity,  improv-

ing  25.87%  and  41.48%  compared  with  RP,  respec-

tively,  which  keeps  an  extremely  large  superiority.

These  indicate  that  AutoMasker  can  precisely  cap-

ture  more  significant  core-patterns  from  the  training

graphs  and  has  a  good  generalization  ability  to  pre-

dict the high-quality masks for unseen graphs.

Observation 3. The extreme sparsity of GLTs de-

pends on the property of the graphs. Although ICPG

achieves higher sparsity than RP on most graphs, the

improvements are not obvious on a small part of the

graphs,  such  as  biochemical  molecule  graphs  NCI1

and  MUTAG.  We  give  the  following  explanations.

Firstly, most of the edges in these graphs are impor-

tant, such as a certain edge may correspond to a cru-

cial  chemical  bond,  which  may  drastically  affect  the

 

Table  2.    Datasets Statistics

Dataset #Graphs Avg. Nodes Avg. Edges Avg. Degree #Classes

NCI1 4 110 29.87 32.30 1.08 2

MUTAG 188 17.93 19.79 1.10 2

COLLAB 5 000 74.49 2 457.78 32.99 3

RED-B 2 000 429.63 494.07 1.15 2

RED-M5K 4 999 508.52 594.87 1.17 5

RED-M12K 11 929 391.41 456.89 1.16 11

MNIST 70 000 70.57 564.56 8.00 10

CIFAR-10 60 000 117.63 941.04 8.00 10

ogbg-ppa 158 100 243.40 2 266.10 9.31 37

ogbg-code2 452 741 125.20 124.20 0.99 -

Cora 1 2 708.00 5 429.00 2.00 7

PPI 24 2 372.67 34 113.16 14.38 121

 

Table  3.    Training Details of ICPG

Dataset #Epochs LR Optimizer Batch Size Weight Decay

TU 100 0.001 Adam 128 0.000 0

Superpixel 100 0.001 Adam 128 0.000 0

ogbg-ppa 100 0.001 Adam 32 0.000 0

ogbg-code2 25 0.001 Adam 128 0.000 0

Cora 200 0.010 Adam 1 0.000 5

PPI 100 0.005 Adam 1 0.000 0
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①https://github.com/yongduosui/ICPG, Nov. 2024.

https://github.com/yongduosui/ICPG


chemical  properties  of  the  molecule  if  pruned.  Fur-

thermore, the graph size is relatively small, which just

includes  a few dozen nodes  and edges,  therefore  it  is

more sensitive to pruning. The study GraphCL[33] al-
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Fig.2.  Graph classification performance across different graph sparsity-levels. (a) NCI1. (b) MUTAG. (c) COLLAB. (d) RED-B. (e)
RED-M5K. (f) RED-M12K. (g) MNIST. (h) CIFAR-10.
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so finds a similar phenomenon with us. It states that

the  performance  of  these  chemical  and  molecular

datasets  could  not  be  improved  by  data  augmenta-

tion.  In  our  work,  we  also  experimentally  demon-

strate the phenomenon that edges in datasets of bio-

chemical molecules, are more important than those of

social  networks.  For  example,  on  the  biochemical

molecule  datasets,  ICPG can  achieve  an  average  ex-

treme sparsity  of  28.6%,  while  on the  social  network

datasets, ICPG can achieve an average extreme spar-

sity of 36.9%.

Observation 4. AutoMasker can well tackle larger-

size  and  larger-quantity  graphs. Fig.3 demonstrates

the  results  on  the  challenging  OGB  datasets,  which

consist  of  larger-size  graphs  (2 266.1 edges  and  243.4

nodes on average per graph for ogbg-ppa) and larger-

quantity graphs (452 741 graphs for ogbg-code2). We

surprisingly  find  that  the  OGB  datasets  are  so  in-

tractable that RP can only locate 5% graph sparsity-

level of GLT on ogbg-ppa, and it is even impossible to

find  any  sparser  GLTs  on  ogbg-code2.  Despite  this,

the proposed ICPG can locate the GLTs with 14.26%

and 18.55% graph sparsity, 48.80% and 59.40% GNN

sparsity  on  ogbg-ppa  and  ogbg-code2,  respectively.

The superior performance further verifies the general-

ization ability and strong scalability. 

5.3    GLTs in Node Classification Tasks

Since ICPG can achieve excellent performance on

diverse  types  and  scales  of  graphs,  we  also  want  to

explore  if  it  can  also  tackle  node-level  tasks.  To  an-

swer  this  question,  we  conduct  experiments  on  Cora

and  PPI,  which  are  commonly  used  in  transductive

and inductive node classification tasks. We also repro-

duce the recent work ADMM[19, 22] and UGS[7] for Co-

ra  (cannot  apply  for  inductive  setting)  for  compari-

son.  From the results  in Fig.4,  we give the following

observations.

↑ ↑

Observation 5.  ICPG  achieves  excellent  perfor-

mance  in  node  classification  tasks.  Firstly,  for  Cora,

all  pruning methods  consistently  outperform RP and

keep a large gap as the sparsity-level  increases.  UGS

just adopts simple trainable masks for edges without

considering the global topological structure of the en-

tire graph. ADMM only optimizes the adjacency ma-

trix without considering the GNN model. ICPG over-

comes these two issues, thereby predicting more high-

quality masks. Hence, ICPG can locate sparser GLTs

than ADMM ( 21.49%) and UGS ( 7.94%).  Second-

ly, the performance of ICPG drops faster in the later

stage.  These  phenomena  also  exist  in  several  other

datasets,  such  as  ogbg-code2,  RED-B,  and  RED-

M5K.  From Algorithm 2,  each  round  of  ICPG  will

preferentially  prune  the  model  weights  and  graph

edges  with  the  lowest  importance  score,  therefore

those  unimportant  weights  and  edges  will  be  re-

moved  at  an  early  stage.  Some  recent  studies[34–36]

have  also  demonstrated  that  there  exist  important

features  in  graph  data,  often  called  causal

subgraphs[35] or  rationales[34, 36].  These  features  often

determine  the  intrinsic  property  of  the  graph  data,

such  as  the  functional  groups  in  molecular  data,  or

some important edge collections in social networks[35].

Perturbing or pruning them may greatly affect perfor-

mance.  Based  on  our  results,  ICPG tends  to  remove

the  redundant  parts  of  the  data  in  the  early  stage,

and the remaining parts  are  basically  the causal  fea-
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Fig.3.  Graph classification performance across different graph sparsity levels on large-scale datasets. (a) ogbg-ppa. (b) ogbg-code2.
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tures of  the graph data.  Intuitively,  the visualization

results  in Subsection 5.7 can  also  prove  this  point.

Hence, the performance of ICPG will drop significant-

ly in later stages. 

5.4    Transferability of AutoMasker

We consider two perspectives to verify the trans-

ferability  of  AutoMasker:  GNN-level  transferability

and graph-level transferability. From GNNs view, we

transfer  the sparse  graphs pruned by AutoMasker  to

the  other  two  popular  GNN  models:  GIN[9] and

GAT[2].  From  graphs  view,  we  first  pre-train  Au-

toMasker  on  the  larger-scale  social  dataset  RED-

M12K and then transfer the well-trained AutoMasker

to  prune  the  other  two  smaller-scale  social  datasets:

RED-B  and  RED-M5K.  We  keep  the  GNN  models

unpruned  on  transferred  tasks.  The  performance  of

graph  classification  over  different  sparsity-levels  are

provided  in Fig.5 and Table 4.  The  best  results  are

shown in bold. We make the following observations.

Observation 6.  AutoMasker  has  both  GNN-level

and graph-level transferability. For the GNN level, we

observe from Fig.5 that GIN and GAT achieve rang-

ing  9.75%–45.96%  and  18.55%–22.62%  sparsity  on

NCI1  and  RED-M12K,  respectively,  without  sacrific-

ing  performance.  AutoMasker  also  outperforms  RP

and keeps a large gap. These results demonstrate that

AutoMasker  can  effectively  extract  the  model-agnos-

tic subgraphs. These subgraphs contain significant se-

mantic  information  and  can  be  universally  trans-

ferred  to  diverse  GNN  architectures  without  perfor-

mance  degradation.  As  for  the  graph-level  transfer-

ability  in Table 4,  the  classification  accuracy  of  ran-

dom pruning decreases as the sparsity level increases.

For  RED-B  and  RED-M5K,  when  the  sparsity  level

increases from 0 to 55.99%, the accuracy decreases by

7.39% and 2.97%, respectively; while AutoMasker can

achieve  consistent  improvement  within  all  sparsity

levels.  Furthermore,  the  GNN  model  trained  with

more  sparse  graphs  even  outperforms  the  GNN

trained with the original dense graphs, such as RED-

B  at  9.75%  and  RED-M5K  at  9.75%–45.96%.  It

demonstrates  that  AutoMasker  can  well  transfer  the

knowledge  from  large-scale  upstream  tasks  to  small-

scale  downstream  tasks  and  achieve  a  double-win:

with  lower  computational  cost  and  better  perfor-

mance. In summary, AutoMasker can learn model-ag-

nostic, general, and significant sparse subgraph struc-

tures  from  the  graphs,  so  that  it  has  outstanding

GNN-level and graph-level transferability. 

5.5    Performance and Inference

Multiply-Accumulate Operations

Performance  Comparison. To  demonstrate  the

practicability  of  ICPG,  we  validate  the  performance

of the GLTs. We adopt GraphSAGE[21], DropEdge[18],

and NeuralSparse[17],  which can achieve graph sparsi-

fication inductively. For a fair comparison, we adjust

the hyper-parameters in GraphSAGE (sampling rate)

and DropEdge (dropping rate) to achieve similar spar-

sity  levels.  In Table 5,  we  observe  that  our  method

consistently outperforms other baselines at all sparsi-

ty levels. It demonstrates the superiority of ICPG.

Inference  Multiply-Accumulate  Operations. Fol-

lowing  UGS[1],  we  translate  the  sparsity  level  to  the

inference  Multiply-Accumulate  Operations  (MACs)
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Fig.4.  Transductive and inductive node classification performance across different graph sparsity levels. (a) Cora. (b) PPI.
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reduction  for  evaluating  the  computational  cost.  We

report  the  extreme  inference  MACs,  which  are  the

minimal  MACs  without  performance  degradation.

The results are shown in Table 6. Compared with the
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Fig.5.   Performance  of  diverse  GNNs on the  sparse  graphs  pruned by AutoMasker.  (a)  NCI1 (GIN).  (b)  NCI1 (GAT).  (c)  RED-
M12K (GIN). (d) RED-M12K (GAT).

 

Table  4.    Graph Classification Accuracy (%)

Dataset Method Graph Sparsity

0% (No Pruning) 9.75% 18.55% 33.66% 45.96% 55.99%

RED-B RP 92.15 90.60 89.75 86.75 85.15 85.34

AutoMasker 92.15 92.16 91.05 90.15 90.06 89.64

RED-M5K RP 56.63 56.33 55.85 54.81 54.19 54.95

AutoMasker 56.63 56.89 56.69 57.01 56.97 56.09

 

Table  5.    Graph Classification Accuracy (%) on the NCI1, COLLAB, and RED-M5K Datasets Across Different Sparsity-Levels

Method NCI1 COLLAB RED-M5K

22.62% 33.66% 40.13% 22.62% 33.66% 40.13% 22.62% 33.66% 40.13%

GraphSAGE[16] 76.62 72.97 71.27 73.93 69.04 68.50 47.65 44.25 36.83

DropEdge[18] 82.24 81.40 80.14 82.16 81.96 81.52 50.37 46.85 45.35

NeuralSparse[33] 81.43 80.34 79.83 81.63 77.76 75.35 52.82 51.56 49.95

ICPG (ours) 82.82 81.63 80.34 83.34 82.90 82.44 57.69 57.07 56.63

Improvement (ours) ↑0.58% ↑0.23% ↑0.20% ↑1.18% ↑0.94% ↑0.92% ↑4.87% ↑5.51% ↑6.68%
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full  baseline, our method can significantly reduce the

computational  cost  by  about  51.86%–93.71%  from

small-scale  (e.g.,  MUTAG) to  large-scale  (e.g.,  ogbg-

code2)  datasets,  without  sacrificing  performance.

These results further verify the practicability of ICPG. 

5.6    Ablation Study

Encoder  Networks. AutoMasker  is  designed  on  a

GNN-based  encoder,  which  leads  to  a  global  under-

standing of each edge from the entire graphs. There-

fore,  we extensively investigate the impact of  diverse

encoders, such as GNN-based or MLP-based encoders.

We can observe the results from Fig.6(a) that, for all

the  GNN-based  encoders,  AutoMasker  can  achieve

good performance:  45.96% extreme sparsity  for  GCN

and 51.23% for GIN and GAT, while MLP-based en-

coder only achieves 33.66% extreme sparsity.  It  indi-

cates  that  the  message-passing  scheme  of  the  GNN

encoder  naturally  considers  the  graph structure  from

a global view, while the MLP-based encoder does not.

Co-Sparsification. To  study  the  effectiveness  of

each  component  in  ICPG,  we  apply  them  to  the

graphs  and  the  model  independently.  We  explore

mask-based  pruning  for  graphs  (PG),  magnitude-

based pruning for model (PM), random pruning only

for graphs (RPG), only for models (RPM), both of all

(RP),  random  pruning  for  graphs  with  magnitude-

↑

based pruning for  model  (RPG-PM).  The results  are

summarized in Fig.6(b). We can find that: PG can al-

so  find  the  matching  subgraphs.  PM can  also  locate

the  matching  subnetworks  at  14.26% sparsity,  which

is  consistent  with  the  LTH[8] in  the  computer  vision

field.  ICPG  significantly  outperforms  RP  and  RPG-

PM, and the gap gradually widens as the sparsity in-

creases.  We  also  observe  that  ICPG  is  even  better

than  PG  ( 12.87%),  and  we  make  the  following  ex-

planations.

1) As for PG, with the sparsity level gradually in-

creasing,  the  graphs  also  become  more  simple.  If  we

still  train  the  over-parameterized  GNN  model  with

simple graphs, it may cause over-fitting.

2)  Slightly  pruning  the  over-parameterized  GNN

through PM can be regarded as a kind of regulariza-

tion,  which  will  improve  the  performance,  and  it  is

consistent with LTH[8]. Further, the regularized GNN

can additionally  provide  AutoMasker  with  more  pre-

cise supervision signals from the gradient in backprop-

agation to make wise decisions. In summary, these re-

sults  suggest  the  significance  of  co-training  Au-

toMasker  and  GNN,  and  co-sparsifying  the  input

graphs and model to achieve better performance. 

5.7    Visualization

To visualize the sparsifed subgraphs in GLTs, we

 

Table  6.    Inference MACs Comparisons

Method MUTAG NCI1 COLLAB RED-B RED-5K RED-12K ogbg-code2 ogbg-ppa

Baseline 23.53 M 834.97 M 3 445.43 M 4 723.60 M 13 661.66 M 24 366.16 M 1 397.95 G 5 680.79 G

ICPG (ours) 5.09 M 223.76 M 1 103.06 M 1 583.97 M 1 584.23 M 1 533.57 M 672.91 G 2 869.69 G

Reduction (ours) ↓ 78.36% ↓ 73.20% ↓ 67.98% ↓ 66.47% ↓ 88.40% ↓ 93.71% ↓ 51.86% ↓ 49.48%
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Fig.6.  (a) Comparison of different encoders in AutoMasker on the RED-M5K dataset. (b) Comparison of each component in ICPG
on the PPI dataset.
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select  graphs  with  64.15%  sparsity  from  the  MNIST

and  CIFAR-10  superpixel  datasets.  For  better  com-

parison,  we  also  plot  the  original  images,  original

graphs,  and random pruning (RP) graphs,  which are

depicted in Fig.7. We have the following findings.
 
 

(b)(a) (c) (d)

Fig.7.   Visualization  of  the  subgraphs  extracted  by  Au-
toMasker from MNIST and CIFAR-10 superpixel graphs. Origi-
nal  images  and  original  graphs  are  displayed  on  the  first  and
second columns.  The sparsity  of  RP and ICPG is  64.15%. (a)
Original  image.  (b)  Original  graph.  (c)  RP  graph.  (d)  ICPG
graph.
 

For  MNIST  and  CIFAR-10,  the  edges  between

nodes  that  locate  on  the  digitals  and  object  pixels

(the  dark  blue  nodes)  should  be  denser,  which  are

conducive to the graph classification tasks.  RP even-

ly  prunes  the  significant  edges  or  structures  without

considering any important reference, which makes the

core  subgraphs  destroyed  and  seriously  deteriorates

the  performance.  ICPG utilizes  AutoMasker  to  learn

the  significance  of  each edge  from a  global  view and

can precisely prune redundant edges. For the MNIST

ICPG graph, the pruned edges are mainly located on

non-digital  pixels,  such  as  the  upper-left,  lower-right

corners and the center part of the number 0 and the

lower-left  corner  of  the  number  8,  while  the  remain-

ing edges or nodes are mainly located on digital  pix-

els. These patterns further demonstrate the rationali-

ty and explainability of ICPG. 

6    Conclusions

In  this  work,  we endowed the graph lottery tick-

ets  with  inductive  pruning  capacity.  We  proposed  a

simple but effective pruning framework ICPG, to co-

sparsify  the  input  graphs  and  the  GNN  model.  Our

core innovation, AutoMasker, leverages a global com-

prehension  of  edge  significance  based  on  the  entire

graph's  topological  structure.  This  ensures  the  cre-

ation  of  superior  graph  masks,  exhibiting  a  strong

generalization  capability  in  inductive  learning  con-

texts.  Through  extensive  experiments  across  various

graph  types,  scales,  learning  settings,  and  tasks,  we

consistently showed that ICPG can effectively accom-

plish high sparsity within both graph data and GNN

models. This compelling evidence underscores ICPG's

potential to effectively optimize the efficiency of GNN

models.

In future work, we intend to refine ICPG's multi-

round iterative pruning paradigm, investigating meth-

ods to enhance pruning efficiency.  This  advancement

could significantly reduce computational  costs  during

training,  paving  the  way  for  more  resource-efficient

GNN models. 
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