

Inductive Lottery Ticket Learning for Graph Neural Networks

Yong-Duo Sui1 (隋勇铎), Xiang Wang1, * (王　翔), Member, CCF, Tianlong Chen2 (陈天龙)
Meng Wang3 (汪　萌), Fellow, IEEE, Xiang-Nan He1, * (何向南), Member, CCF, and Tat-Seng Chua4 (蔡达成)

1 School of Data Science, University of Science and Technology of China, Hefei 230027, China
2 Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin 78712, U.S.A.
3 School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230009, China
4 School of Computing, National University of Singapore, Singapore

E-mail: syd2019@mail.ustc.edu.cn; xiangwang@ustc.edu.cn; tianlong.chen@utexas.edu; wangmeng@hfut.edu.cn
hexn@ustc.edu.cn; dcscts@nus.edu.sg

Received June 28, 2022; accepted September 30, 2023.

Abstract Graph neural networks (GNNs) have gained increasing popularity, while usually suffering from unaffordable

computations for real-world large-scale applications. Hence, pruning GNNs is of great need but largely unexplored. The re-

cent work Unified GNN Sparsification (UGS) studies lottery ticket learning for GNNs, aiming to find a subset of model pa-

rameters and graph structures that can best maintain the GNN performance. However, it is tailed for the transductive set-

ting, failing to generalize to unseen graphs, which are common in inductive tasks like graph classification. In this work, we

propose a simple and effective learning paradigm, Inductive Co-Pruning of GNNs (ICPG), to endow graph lottery tickets

with inductive pruning capacity. To prune the input graphs, we design a predictive model to generate importance scores

for each edge based on the input. To prune the model parameters, it views the weight’s magnitude as their importance

scores. Then we design an iterative co-pruning strategy to trim the graph edges and GNN weights based on their impor-

tance scores. Although it might be strikingly simple, ICPG surpasses the existing pruning method and can be universally

applicable in both inductive and transductive learning settings. On 10 graph-classification and two node-classification

benchmarks, ICPG achieves the same performance level with 14.26%–43.12% sparsity for graphs and 48.80%–91.41% spar-

sity for the GNN model.

Keywords lottery ticket hypothesis, graph neural networks, neural network pruning

1 Introduction

Graph neural networks (GNNs)[1–3] have become a

prevalent solution for machine learning tasks on

graph-structured data. Such success is usually as-

cribed to the powerful representation learning of

GNN, which incorporates the graph structure into the

representations, such as aggregating neural messages

from the neighboring nodes to update the ego node's

representation.

As the field grows, there is an increasing need of

building deeper GNN architectures[4, 5] on larger-scale

graphs[6]. While deepening GNNs shows potential on

large-scale graphs, it also brings expensive computa-

tions due to the increased scale of graph data and

model parameters, limiting their deployment in re-

source-constrained applications. Taking fraud detec-

tion in a transaction network as an example, the scale

of user nodes easily reaches millions or even larger,

making a GNN-detector model prohibitive to stack

deep layers and predict malicious behaviors in real

time. Hence, pruning over-parameterized GNNs is of

great need, which aims to answer the question: can

we co-sparsify the input graphs and the GNN model,

while preserving or even improving the performance?

Recently, a pruning approach, UGS[7], has been

Regular Paper

This work was supported by the National Key Research and Development Program of China under Grant No. 2020YFB140-
6703, and the National Natural Science Foundation of China under Grant No. 9227010114.

*Corresponding Author

Sui YD, Wang X, Chen TL et al. Inductive lottery ticket learning for graph neural networks. JOURNAL OF COMPUT-

ER SCIENCE AND TECHNOLOGY 39(6): 1223−1237 Nov. 2024. DOI: 10.1007/s11390-023-2583-5

©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-023-2583-5
https://doi.org/10.1007/s11390-023-2583-5
https://doi.org/10.1007/s11390-023-2583-5
https://doi.org/10.1007/s11390-023-2583-5
https://doi.org/10.1007/s11390-023-2583-5
https://doi.org/10.1007/s11390-023-2583-5
https://doi.org/10.1007/s11390-023-2583-5

proposed to find graph lottery tickets (GLTs) —
smaller subsets of model parameters and input

graphs. At its core is the Lottery Ticket Hypothesis

(LTH)[8] speculating that any dense, randomly-initial-

ized neural network contains a sparse subnetwork,

which can be trained independently to achieve a

matching performance as the dense network. Specifi-

cally, UGS employs trainable masks on each edge in

the input graph and each weight in the model param-

eters, to specify their importance. When training the

model with the masks, the strategy of iterative mag-

nitude-based pruning (IMP)[8] is used to discard the

edges and weights with the lowest mask values at

each iteration.

Despite the effectiveness, there exist the following

limitations. 1) UGS focuses solely on providing trans-

ductive graph masks by generating a painstakingly

customized mask for a single edge individually and in-

dependently. That is, the edge masks are limited to

the given graph, making UGS infeasible to be applied

in the inductive setting since the edge masks hardly

generalize to unseen edges or entirely new graphs. 2)

Applying a mask for each edge alone only provides a

local understanding of the edge, rather than the glob-

al view of the entire graph (e.g., in node classifica-

tion) or multiple graphs (e.g., in graph classification).

Moreover, the way of creating trainable edge masks

will double the parameters of GNNs, which violates

the purpose of pruning somehow. As a result, these

edge masks could be suboptimal to guide the pruning.

3) The unsatisfactory graph pruning will negatively

influence the pruning of model weights. Worse still,

low-quality weight pruning will amplify the mislead-

ing signal of edge masks in turn. They influence each

other and form a vicious circle. We ascribe all these

limitations of UGS to its transductive nature. Hence,

conducting combinatorial pruning in the inductive

setting is crucial to high-quality winning tickets.

In this work, we emphasize the inductive nature

within the combinatorial pruning of input graphs and

GNN parameters and present our framework, Induc-

tive Co-Pruning of GNNs (ICPG). It is an extremely

simple but effective pruning framework that is appli-

cable to any GNN in both inductive and transductive

settings. Specifically, for the input graphs, we design

a predictive model, AutoMasker, which learns to gen-

erate edge masks from the observed graphs. It is pa-

rameterized with an additional GNN-based encoder,

whose parameters are shared across the population of

observed graphs. As a consequence, AutoMasker is

naturally capable of specifing the significance of each

edge and extracting core subgraphs from a global

view of the entire observations. For the model param-

eters, we simply exploit the magnitude of a model

weight to assess whether it should be pruned, rather

than training an additional mask. Having established

the edge masks and weight magnitudes, we can ob-

tain high-quality GLTs by pruning the lowest-mask

edges and lowest-magnitude weights. Experiments on

ten graph classification and two node classification

datasets consistently validate our framework ICPG by

identifying high-quality GLTs. Moreover, we inspect

the GNN-level and graph-level transferability, which

promises for deploying ICPG in the pre-training and

fine-tuning paradigm to save the computational cost.

The visualizations show that ICPG always retains de-

cisive subgraphs, such as edges located on digital pix-

els in MNIST graphs, which further illustrates ratio-

nality and explainability.

In all, our main contributions can be summarized

as follows.

• We introduce ICPG, an innovative pruning

framework, capable of pruning both the GNN model

and input graphs, which excels at identifying high-

quality GLTs across diverse graph representation

tasks in both inductive and transductive settings.

• We have validated ICPG's capacity to find

GLTs in datasets of various scales through extensive

experiments, while maintaining performance with a

range of graph sparsity from 22.62% to 43.12% and

GNN sparsity from 67.23% to 91.41%.

• We demonstrate that ICPG offers transferabili-

ty at both the GNN and graph levels, resulting in im-

proved performance and lower computational costs in

downstream tasks. This is substantiated by thorough

comparisons, analyses, and visual inspections that val-

idate its effectiveness, applicability, and explainability.

2 Related Work

G = (A, X) V E
A ∈ {0, 1}|V|×|V|

A[i, j] = 1 vi
vj A[i, j] = 0 X ∈ R|V|×d

Graph neural networks (GNNs)[1–3, 9, 10] have

emerged as a powerful tool for learning the represen-

tation of graph-structured data. The great success

mainly comes from the structure-aware learning,

which follows the iterative message-passing scheme.

Specifically, we denote an undirected graph by

 with the node set and the edge set .

 is the adjacency matrix, where

 denotes the edge between node and

node , otherwise . is the ma-

1224 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

xi = X[i, :] d

vi ∈ V K

k

vi

trix of node features, where is the -di-

mensional feature of the node . Given a -lay-

er GNN, its -th layer generates the representation of

node as in (1) and (2).

a(k)
i = AGGREGATION (k)({h(k−1)

j |j ∈ N (i)}), (1)

h(k)
i = COMBINE(k)(h(k−1)

i , a(k)
i), (2)

h(k)
i a(k)

i vi

N (i) AGGREGATION

COMBINE

K

READOUT

G

where and are the representation of node

and the message aggregated from its neighbor nodes

set , respectively, and the

and operators are the message passing

and update functions, respectively. After propagating

through layers, we get the final representations of

nodes, which facilitate downstream node-level tasks,

such as node classification and link prediction. As for

graph-level tasks like graph classification and graph

matching, we further hire the function to

generate the representation of the whole graph , as

in (3).

ZG = READOUT ({h(k)
i |vi ∈ V , k ∈ {1, . . . , K}}).

(3)

AGGREGA

TION, COMBINE, READOUT

Various GNNs[2, 9, 10] adopt different -

 and functions to

refine the desired information.

The Lottery Ticket Hypothesis (LTH)[8] states

that a sparse subnetwork exists in a dense randomly-

initialized network that can be trained to achieve

comparable performance to the full models. LTH is

explored in many fields such as computer vision and

natural language processing[11–15]. Recently, UGS[7] ex-

tends LTH to GNNs, proposing the Graph Lottery

Ticket (GLT), which includes subgraph and subnet-

work pairs that can be trained independently to reach

comparable performance to the dense pairs. However,

due to the transductive nature of graph-specific

masks, UGS[7] cannot develop in inductive learning

settings. To address this issue, we have incorporated

AutoMasker into our approach. This tool possesses

the capability to learn the importance of each edge

from training graphs on a global scale and predict sig-

nificance scores for newly introduced graphs. By be-

ing both graph-agnostic and inductive, AutoMasker

effectively surmounts the limitations traditionally as-

sociated with graph-specific masks, thus paving the

way for novel advancements within inductive learn-

ing settings.

Graph sparsification and sampling aim to find

core subgraphs in graph learning. Numerous strate-

gies[16–27] were proposed to achieve efficient training or

inference. SGAT[16] adopts sparse attention to re-

move edges. NeuralSparse[17] utilizes a DNN to identi-

fy task-irrelevant edges. Sampling-based methods[18–21]

sample and aggregate features from a node's local

neighborhood. DropEdge[18] randomly drops edges

from the input graph, which can be seen as a data

augmenter. Another research line selects subgraphs in

an optimization way. SGCN[19] and GEBT[22] adopt

the ADMM optimization algorithm to sparsify the ad-

jacency matrix. UGS[7] utilizes trainable masks to

prune graphs. Unfortunately, these methods either fail

to utilize sparse graphs in the inductive inference

stage or do not use sparse GNNs for efficient infer-

ence. Distinct from them, ICPG endows GNNs with

inductive sparsification capacity, which can universal-

ly work in both transductive and inductive settings

with both sparse graphs and models. We make com-

prehensive comparisons with the above methods in

Table 1.

Table 1. Comprehensive Comparisons in the Inference Stage

Method Sparse Graph Sparse Model

Transductive Inductive

SGAT[16] √ × ×

NeuralSparse[17] √ √ ×

GraphSAGE[21] √ √ ×

DropEdge[18] √ √ ×

SGCN[19] √ × ×

GEBT[22] √ × √
UGS[7] √ × √
ICPG (ours) √ √ √

3 Preliminaries

In this section, we first briefly introduce the in-

ductive graph learning. Then we formulate the task of

learning graph lottery tickets under inductive setting.

3.1 Inductive Graph Learning

Before entering our method, we first clarify the in-

ductive learning settings of our work. Compared with

inductive graph learning, transductive graph learning

denotes that unlabeled test data can be used in the

training process. For example, in semi-supervised

node classification tasks[1], training and test nodes

form an entire graph. During model training, we need

to take the full graph data as input and predict the

class of test nodes based on all node features (includ-

ing test node features), all edges, and labels of train-

ing nodes. Hence, all information (except labels) on

Yong-Duo Sui et al.: Inductive Lottery Ticket Learning for Graph Neural Networks 1225

the test data is available during training. In contrast,

inductive graph learning means that all information of

the test graph is not available during the training

process. For example, in graph classification tasks, we

use the training data at hand to train GNN models,

hoping that the models can effectively generalize to

the unseen test data. Compared with the transduc-

tive graph learning setting, inductive graph learning

cannot utilize any information from test data. There-

fore, inductive learning requires better generalization

ability of the model. Unfortunately, UGS[7] designs

learnable weights for all edges of an entire graph.

This training strategy requires that the topological

structure of the graph data is fixed and invariant be-

tween the training and inference stage. Hence, UGS[7]

is only possible to apply to the setting of transduc-

tive graph learning, while it cannot apply to the set-

ting of inductive graph learning.

3.2 Inductive Graph Lottery Ticket

f(·, Θg0)

Θg0

Θg

G = (A, X)

C

ŷ = f(G, Θg)

Without loss of generality, we consider the task of

graph classification as an example. Given a GNN clas-

sifier , it starts from the randomly-initial-

ized parameters before training and arrives at the

well-optimized parameters after training. Once

trained, it takes any graph as the input

and yields a probability distribution over classes

.

G
Θg0

mG mΘ

G Θg0

G ′ = (mG ⊙A, X)

Θ′
g0 = mΘ ⊙Θg0

f(·, Θ′
g0) {G ′}

Θ′
g

G ′ f(·, Θ′
g0)

Learning GLTs aims to make the input graph

and the model weights sparse to reduce the com-

putational costs, while preserving the performance.

Formally, it aims to generate two masks and ,

which are applied on and correspondingly, so

as to establish the sparser input graph

 and initialized weights

. Hereafter, through retraining the

subnetwork on the sparse versions of

training graphs, we can get the new converged param-

eters . If the well-optimized subnetwork can

achieve comparable performance with full graphs and

networks, we term the pair of and as a

GLT. Although a recent study, UGS[1], proposes to

learn GLTs, it focuses solely on the transductive set-

ting but leaves the inductive setting untouched.

Specifically, it assigns a trainable mask to each edge

of the input graph and trains such graph-specific

masks individually and independently. As a conse-

quence, these edge-dependent masks are limited to the

given graph, hardly generalizing to unseen edges or

entirely new graphs. Distinct from UGS, we aim to

uncover GLTs in the inductive learning setting.

4 Methodology

In this section, we propose a novel pruning frame-

work, named inductive co-pruning of GNNs (ICPG),

to find the GLTs. We first introduce the key compo-

nent in ICPG, named AutoMasker. Then we present

our inductive strategy of co-pruning the input graphs

and model parameters.

4.1 AutoMasker

G = (A, X)

g(·)

Instead of assigning a mask to a single edge, our

idea is extremely simple: we take a collection of graph

instances and design a trainable model to learn to

mask edges collectively. The key ingredient of this

model is an additional GNN-based model, termed Au-

toMasker, whose parameters are shared across the

population of observed graphs. Here we represent Au-

toMasker as the combination of a graph encoder and

a subsequent scoring function. Formally, given a

graph , AutoMasker applies a GNN-based

graph encoder to create representations of all

nodes as:

H = g(A, X),

H ∈ R|V×d| d

i hi

vi g(·)

(i, j) vi
vj

hi hj αij

σ(·) αij

(0, 1)

(i, j)

where stores -dimension representations

of all nodes, whose -th row denotes the represen-

tation of node ; is a GNN following the mes-

sage-passing paradigm in (1). To assess the impor-

tance score of edge between node and node

, AutoMasker builds a multi-layer perceptron

(MLP) upon the concatenation of node representa-

tions and , which yields the score . In what

follows, the sigmoid function projects into the

range of , which represents the probability of

edge being the winning ticket. The scoring func-

tion is represented as follows:

sij = σ(αij), αij = MLP ([hi, hj]).

sG sG[i, j] = sij (i, j)

sG[i, j] = 0

By employing the scoring function over all possi-

ble edges, we are able to collect the matrix of edge

masks , where if edge holds,

otherwise . In a nutshell, we summarize

the AutoMasker function as:

sG = AutoMasker(G, Θa), (4)

Θawhere is the parameter of AutoMasker, covering

the parameters of the GNN encoder and MLP.

1226 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

Although the key ingredient of AutoMasker is

simple, it has several conceptual advantages over

UGS.

Global View. Although edge masks derived from

UGS might preserve the fidelity to local importance,

they do not help to delineate the general picture of

the whole graph population. Distinct from UGS, Au-

toMasker takes a global view of making decisions.

Specifically, for the instance level, AutoMasker adopts

GNN as its backbone. Because of the message-pass-

ing mechanism of GNN, AutoMasker can fully consid-

er the topology information of the entire graph data.

For the dataset level, all graph data share an Au-

toMasker, therefore it can make decisions for each

edge in each graph data from a global perspective by

observing all graph data in the dataset. As edges usu-

ally collaborate to make predictions, rather than

working individually, they form a coalition like the

functional groups of a molecule graph, the communi-

ty of a social network. Hence, AutoMasker will learn

the invariant and stable patterns in training data and

can well transfer the learned patterns to the unseen

test data.

∑
G |E|

Θa

Lightweight Edge Masks. When using UGS to

prune graph data with millions of edges or nodes, the

cost of assigning local edge masks one by one will be

prohibitive with such a large-scale dataset in real-

world scenarios. Moreover, UGS introduces addition-

al parameters, whose scale remains the same as the

edge number and is much larger than that of

the original parameters being pruned. Hence, it some-

how violates the purpose of pruning. In our Au-

toMasker, the additional parameter is in (4),

which remains invariant across the change of data

scale.

Generalization. In contrast to UGS, AutoMasker

can generalize the mechanism of mask generation to

new graphs without retraining, making it more effi-

cient to prune unseen and large-scale graphs. Hence,

it makes ICPG more scalable and flexible for pruning

in diverse real-world graph learning tasks or applica-

tions. In addition, we also conduct extensive experi-

ments to verify this point.

4.2 Inductive Co-Pruning Strategy

Here we present Inductive Co-Pruning of GNNs

(ICPG) to learn the GLTs. Fig.1 demonstrates its

overview, which consists of the following two steps.

G = (A,X)

sG

sG A

Gs = (sG ⊙A,X)

Step 1: Co-Training AutoMasker and the GNN
Model of Interest. Given an input graph ,

AutoMasker first generates the edge mask via (4).

Then we apply to the adjacency matrix to cre-

ate the soft-masked graph , which

fully reflects AutoMasker's decision for the impor-

tance of each edge, such that less important edges are

prone to have lower mask values. Finally, we feed the

soft-masked graph into the GNN model to co-train

AutoMasker and the model. The GNN model adopts

the masked graph to learn the representation and

make predictions, which can be viewed as the supervi-

sion signals to guide AutoMasker to achieve a more

accurate decision. The detailed co-training process is

shown in Algorithm 1. When the training is done, we

conduct step 2 to perform the pruning.

Step 2: Co-Sparsifying the Input Graphs and the
GNN Model. Having obtained the well-trained Au-

toMasker and GNN, we can apply the learned knowl-

Training Graph(s)

Rating
Scores

Training/Testing Graph(s)

Rating
Scores

GNNMasked Graph(s)

Masked Graph(s) Sparse GNNSparse Graph(s)

AutoMasker

AutoMasker

0.99

0.720.93

0.96

0.49
0.82

0.87
0.95

0.45

0.34

0.37

0.98

0.41

0.74

0.84

0.89

0.82

0.99

0.95

0.96
0.13

0.99

0.98
0.94

0.87
0.25

0.18
0.88

0.77

0.57

0.83

0.16

0.91

0.86

0.36
0.89

Step1: Co-Training AutoMasker and the GNN Model

Step2: Co-Sparsifying the Input Graphs and GNN Model
Magnitude-Based
Pruning

Mask-Based
Pruning

Fig.1. ICPG framework to find GLTs.

Yong-Duo Sui et al.: Inductive Lottery Ticket Learning for Graph Neural Networks 1227

pg

mG

pθ

mΘ

G ′ = (mG ⊙A, X)

mΘ

edge to co-sparsify the graphs and the GNN model.

For graphs, AutoMasker predicts the importance

score (e.g., mask value) for each edge. Then the edges

of a certain graph are sorted based on their mask val-

ues, and the edges with ratio of the lowest-masks

are pruned to obtain the mask . For GNN, we sort

the parameters based on the their magnitudes and

prune ratio of the lowest-magnitude parameters to

obtain the binary model mask . Under the cur-

rent sparsity, we now successfully obtain the sparsi-

fied graph and the sparsified

GNN mask . Finally, we need to check whether

the sparsity meets our condition. If the sparsity is sat-

isfied, the algorithm is completed; if not, we reuse the

found GLT to update the original graphs and GNN

model, and iteratively run step 1 and step 2 (dotted

arrow in Fig.1) until the condition is met.

Algorithm 1. Mask & Magnitude-Based Pruning

D f(·, Θg0) AutoMasker(·, Θa0) M mΘ TInput: , , , , , Epoch

{m′
Gi
}Ni=1 m′

Θ
Output: sparsified masks ,

t = 0 T − 11: for to do

Gi ∈ D mGi
∈M2: 　 for and do

Gi ← (mGi
⊙Ai,Xi)3: 　　

sGi
← AutoMasker(Gi, Θat)4: 　　

Gi ← (sGi
⊙Ai,Xi)5: 　　

f(Gi, mΘ ⊙Θgt)6: 　　 Forward

Θat+1
Θgt+1

7: 　　 Backward to update ,

8: 　 end for
9: end for

Gi ∈ D10: for do

sGi
← AutoMasker(Gi, ΘaT)11: 　

pg = 5% sGi
0

1 m′
Gi

12: 　Set of the lowest mask values in to and
 others to , creating

pθ = 20%
ΘgT m′

Θ

13: 　Prune of the lowest magnitude parameters in
 , creating

14: end for

sθ sd

In summary, Algorithm 2 offers the detailed pro-

cess of ICPG, where the sparsity levels and re-

fer to the proportions of model weights and graph

edges that need to be pruned. Following LTH[8] and

UGS[7], we also adopt an iterative pruning strategy to

locate GLTs. In Algorithm 2, it will conduct Algo-

rithm 1 to prune a certain proportion of graph edges

and model weights. In our experiments, for graph da-

ta, we prune 5% of the edges each time, and for the

model, we prune 20% of the weights each time.

Therefore we need to execute Algorithm 1 several

times to achieve the given sparsity levels.

5 Experiments

In this section, we conduct extensive experiments

to validate the effectiveness of ICPG. We first intro-

duce the experimental settings and explore the exis-

tence of GLTs in graph classification and node classi-

fication. Then, we demonstrate the practicability,

such as transferability, performance, and computa-

tional cost saving. Finally, more ablation studies and

visualizations are provided.

Algorithm 2. Finding GLTs by ICPG

D = {Gi = (Ai, Xi)}Ni=1 f(·, Θg0)

AutoMasker(·, Θa0) sd sθ

Input: graphs , ,

 , sparsity levels ,

{G ′
i = (mGi

⊙Ai, Xi)}Ni=1 f(·; mΘ ⊙Θg0)Output: GLT ,

M← {mGi
← Ai}Ni=1

1: Initialize masks set

mΘ ← 1 ∈ R∥Θg0
∥02: Initialize GNN mask

M < sd mΘ < sθ3: while the sparsity of , do

f(·; Θg0) mΘ

{Gi = (Ai,Xi)}Ni=1
M

4: 　 Sparsify GNN with and graphs

 with the mask set and get the

 new masks as presented in Algorithm 1.

M← {mGi
←m′

Gi
}Ni=1

5: 　Update

mΘ ←m′
Θ

6: 　Update

Θa0
7: 　Rewind AutoMasker's weight to

Θg0
8: 　Rewind GNN's weight to
9: end while

5.1 Experimental Settings

Datasets. For graph classification, we adopt the

TU datasets[28–30], including biological graphs (NCI1,

MUTAG), social graphs (COLLAB, RED-B, RED-

M5K, RED-M12K). We also use superpixel graphs

(MNIST, CIFAR-10)[31, 32], and Open Graph Bench-

mark (ogbg-ppa and ogbg-code2)[6]. We use these

graph classification datasets for inductive graph learn-

ing. For node classification, we choose a transductive

learning dataset, Cora, and an inductive learning

dataset, PPI. The detailed statistics of the datasets

are shown in Table 2, where “#" refers to the num-

ber and “Avg." means the average number.

Models. We adopt the same model architecture for

the GNN backbone and the GNN encoder in Au-

toMasker. For graph classification tasks and Cora, we

adopt the GCN[1] model. For PPI, we choose GAT[2]

to achieve a better baseline performance.

Training Settings. Here we provide the detailed

training settings of the proposed ICPG. All training

hyper-parameters such as epoch, learning rate (LR),

optimizer, batch size, and weight decay are summa-

rized in Table 3. For the devices, we adopt the

NVIDIA GeForce RTX 3090 (24 GB GPU) to con-

duct all our experiments. To help readers easily repro-

1228 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

duce our results, we also provide the code of our work①.

5.2 GLTs in Graph Classification Tasks

We first conduct experiments to find the GLTs in

graph classification tasks. The results of different

graph sparsity-levels are displayed in Fig.2 and Fig.3.

Due to the limited space, we omit the results of

weight sparsity, which follow a similar trend. We al-

so plot the random pruning (RP) for comparison.

Stars denote extreme sparsity, which is the maximal

sparsity-level without performance degradation. We

make the following observations.

Observation 1. GLTs extensively exist in graph

classification tasks. Utilizing ICPG, we successfully lo-

cate the GLTs with different sparsity-levels from di-

verse types of graphs. For NCI1 and MUTAG, we

precisely identify GLTs with extreme graph sparsity

at 26.49% and 30.17%, GNN sparsity of 73.79% and

79.03%, respectively. On four social network datasets,

we find the GLTs with graph sparsity of 22.62%–
51.23% and GNN sparsity of 67.23%–95.60%. For

MNIST and CIFAR-10, the GLTs are achieved with

graphs sparsity of 43.13% and 14.26%, and GNN

sparsity of 91.41% and 48.80%, respectively. These re-

sults show that ICPG can inductively locate the high-

quality GLTs with different graph types, and demon-

strate the potential of efficient training and inference

with sparser graphs and lightweight GNNs without

sacrificing performance.

Observation 2. AutoMasker has good generaliza-

tion ability. The mainstream graph sparsification

techniques[7, 17, 19] cannot inductively prune unseen

graphs. However, AutoMasker can flexibly overcome

this challenge. Compared with RP, ICPG can find

more sparse subgraphs and subnetworks and keep a

large gap with RP. For instance, the RED-M5K and

RED-M12K graphs pruned by ICPG can achieve

40.13% and 51.23% extreme graph sparsity, improv-

ing 25.87% and 41.48% compared with RP, respec-

tively, which keeps an extremely large superiority.

These indicate that AutoMasker can precisely cap-

ture more significant core-patterns from the training

graphs and has a good generalization ability to pre-

dict the high-quality masks for unseen graphs.

Observation 3. The extreme sparsity of GLTs de-

pends on the property of the graphs. Although ICPG

achieves higher sparsity than RP on most graphs, the

improvements are not obvious on a small part of the

graphs, such as biochemical molecule graphs NCI1

and MUTAG. We give the following explanations.

Firstly, most of the edges in these graphs are impor-

tant, such as a certain edge may correspond to a cru-

cial chemical bond, which may drastically affect the

Table 2. Datasets Statistics

Dataset #Graphs Avg. Nodes Avg. Edges Avg. Degree #Classes

NCI1 4 110 29.87 32.30 1.08 2

MUTAG 188 17.93 19.79 1.10 2

COLLAB 5 000 74.49 2 457.78 32.99 3

RED-B 2 000 429.63 494.07 1.15 2

RED-M5K 4 999 508.52 594.87 1.17 5

RED-M12K 11 929 391.41 456.89 1.16 11

MNIST 70 000 70.57 564.56 8.00 10

CIFAR-10 60 000 117.63 941.04 8.00 10

ogbg-ppa 158 100 243.40 2 266.10 9.31 37

ogbg-code2 452 741 125.20 124.20 0.99 -

Cora 1 2 708.00 5 429.00 2.00 7

PPI 24 2 372.67 34 113.16 14.38 121

Table 3. Training Details of ICPG

Dataset #Epochs LR Optimizer Batch Size Weight Decay

TU 100 0.001 Adam 128 0.000 0

Superpixel 100 0.001 Adam 128 0.000 0

ogbg-ppa 100 0.001 Adam 32 0.000 0

ogbg-code2 25 0.001 Adam 128 0.000 0

Cora 200 0.010 Adam 1 0.000 5

PPI 100 0.005 Adam 1 0.000 0

Yong-Duo Sui et al.: Inductive Lottery Ticket Learning for Graph Neural Networks 1229

①https://github.com/yongduosui/ICPG, Nov. 2024.

https://github.com/yongduosui/ICPG

chemical properties of the molecule if pruned. Fur-

thermore, the graph size is relatively small, which just

includes a few dozen nodes and edges, therefore it is

more sensitive to pruning. The study GraphCL[33] al-

RP
ICPG (Ours)
RP-GLT (5.00%)
ICPG-GLT (26.49%)
Baseline

RP
ICPG (Ours)
RP-GLT (18.55%)
ICPG-GLT (30.17%)
Baseline

RP
ICPG (Ours)
RP-GLT (5.00%)
ICPG-GLT (33.66%)
Baseline

RP
ICPG (Ours)
RP-GLT (9.75%)
ICPG-GLT (22.62%)
Baseline

RP
ICPG (Ours)
RP-GLT (14.26%)
ICPG-GLT (40.13%)
Baseline

RP
ICPG (Ours)
RP-GLT (9.75%)
ICPG-GLT (51.23%)
Baseline

RP
ICPG (Ours)
RP-GLT (0.00%)
ICPG-GLT (43.12%)
Baseline

RP
ICPG (Ours)
RP-GLT (0.00%)
ICPG-GLT (14.26%)
Baseline

0.
00

5.
00

9.
75

14
.2
6

18
.5
5

26
.4
9

33
.6
6

40
.1
3

45
.9
6

51
.2
3

55
.9
9

64
.1
5

Graph Sparsity (%)

0.
00

5.
00

9.
75

14
.2
6

18
.5
5

26
.4
9

33
.6
6

40
.1
3

45
.9
6

51
.2
3

55
.9
9

64
.1
5

Graph Sparsity (%)

(b)(a)

0.
00

5.
00

9.
75

14
.2
6

18
.5
5

26
.4
9

33
.6
6

40
.1
3

45
.9
6

51
.2
3

55
.9
9

64
.1
5

Graph Sparsity (%)

0.
00

5.
00

9.
75

14
.2
6

18
.5
5

26
.4
9

33
.6
6

40
.1
3

45
.9
6

51
.2
3

55
.9
9

64
.1
5

Graph Sparsity (%)

(d)(c)

0.
00

5.
00

9.
75

14
.2
6

18
.5
5

26
.4
9

33
.6
6

40
.1
3

45
.9
6

51
.2
3

55
.9
9

64
.1
5

Graph Sparsity (%)

0.
00

5.
00

9.
75

14
.2
6

18
.5
5

26
.4
9

33
.6
6

40
.1
3

45
.9
6

51
.2
3

55
.9
9

64
.1
5

Graph Sparsity (%)

(f)(e)

0.
00

5.
00

9.
75

14
.2
6

18
.5
5

26
.4
9

33
.6
6

40
.1
3

45
.9
6

51
.2
3

55
.9
9

64
.1
5

Graph Sparsity (%)

0.
00

5.
00

9.
75

14
.2
6

18
.5
5

26
.4
9

33
.6
6

40
.1
3

45
.9
6

51
.2
3

55
.9
9

64
.1
5

Graph Sparsity (%)

(h)(g)

100

90

80

70

60

90

80

70

60

50

A
c
c
u
ra

c
y
 (

%
)

A
c
c
u
ra

c
y
 (

%
)

A
c
c
u
ra

c
y
 (

%
)

A
c
c
u
ra

c
y
 (

%
)

A
c
c
u
ra

c
y
 (

%
)

A
c
c
u
ra

c
y
 (

%
)

A
c
c
u
ra

c
y
 (

%
)

A
c
c
u
ra

c
y
 (

%
)

80

70

60

50

80

70

60

50

60

50

40

30

20

50

40

30

20

50

40

30

20

80

60

40

20

Fig.2. Graph classification performance across different graph sparsity-levels. (a) NCI1. (b) MUTAG. (c) COLLAB. (d) RED-B. (e)
RED-M5K. (f) RED-M12K. (g) MNIST. (h) CIFAR-10.

1230 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

so finds a similar phenomenon with us. It states that

the performance of these chemical and molecular

datasets could not be improved by data augmenta-

tion. In our work, we also experimentally demon-

strate the phenomenon that edges in datasets of bio-

chemical molecules, are more important than those of

social networks. For example, on the biochemical

molecule datasets, ICPG can achieve an average ex-

treme sparsity of 28.6%, while on the social network

datasets, ICPG can achieve an average extreme spar-

sity of 36.9%.

Observation 4. AutoMasker can well tackle larger-

size and larger-quantity graphs. Fig.3 demonstrates

the results on the challenging OGB datasets, which

consist of larger-size graphs (2 266.1 edges and 243.4

nodes on average per graph for ogbg-ppa) and larger-

quantity graphs (452 741 graphs for ogbg-code2). We

surprisingly find that the OGB datasets are so in-

tractable that RP can only locate 5% graph sparsity-

level of GLT on ogbg-ppa, and it is even impossible to

find any sparser GLTs on ogbg-code2. Despite this,

the proposed ICPG can locate the GLTs with 14.26%

and 18.55% graph sparsity, 48.80% and 59.40% GNN

sparsity on ogbg-ppa and ogbg-code2, respectively.

The superior performance further verifies the general-

ization ability and strong scalability.

5.3 GLTs in Node Classification Tasks

Since ICPG can achieve excellent performance on

diverse types and scales of graphs, we also want to

explore if it can also tackle node-level tasks. To an-

swer this question, we conduct experiments on Cora

and PPI, which are commonly used in transductive

and inductive node classification tasks. We also repro-

duce the recent work ADMM[19, 22] and UGS[7] for Co-

ra (cannot apply for inductive setting) for compari-

son. From the results in Fig.4, we give the following

observations.

↑ ↑

Observation 5. ICPG achieves excellent perfor-

mance in node classification tasks. Firstly, for Cora,

all pruning methods consistently outperform RP and

keep a large gap as the sparsity-level increases. UGS

just adopts simple trainable masks for edges without

considering the global topological structure of the en-

tire graph. ADMM only optimizes the adjacency ma-

trix without considering the GNN model. ICPG over-

comes these two issues, thereby predicting more high-

quality masks. Hence, ICPG can locate sparser GLTs

than ADMM (21.49%) and UGS (7.94%). Second-

ly, the performance of ICPG drops faster in the later

stage. These phenomena also exist in several other

datasets, such as ogbg-code2, RED-B, and RED-

M5K. From Algorithm 2, each round of ICPG will

preferentially prune the model weights and graph

edges with the lowest importance score, therefore

those unimportant weights and edges will be re-

moved at an early stage. Some recent studies[34–36]

have also demonstrated that there exist important

features in graph data, often called causal

subgraphs[35] or rationales[34, 36]. These features often

determine the intrinsic property of the graph data,

such as the functional groups in molecular data, or

some important edge collections in social networks[35].

Perturbing or pruning them may greatly affect perfor-

mance. Based on our results, ICPG tends to remove

the redundant parts of the data in the early stage,

and the remaining parts are basically the causal fea-

RP
ICPG (Ours)
RP-GLT (5.00%)
ICPG-GLT (14.26%)
Baseline

RP
ICPG (Ours)
RP-GLT (0.00%)
ICPG-GLT (18.55%)
Baseline

0.
00

5.
00

9.
75

14
.2
6

18
.5
5

26
.4
9

33
.6
6

40
.1
3

45
.9
6

51
.2
3

55
.9
9

64
.1
5

Graph Sparsity (%)

0.
00

5.
00

9.
75

14
.2
6

18
.5
5

26
.4
9

33
.6
6

40
.1
3

45
.9
6

51
.2
3

55
.9
9

64
.1
5

Graph Sparsity (%)

(b)(a)

A
c
c
u
ra

c
y
 (

%
)

60

40

20


1
 S

c
o
re

 (
%

)

14

12

10

8

6

Fig.3. Graph classification performance across different graph sparsity levels on large-scale datasets. (a) ogbg-ppa. (b) ogbg-code2.

Yong-Duo Sui et al.: Inductive Lottery Ticket Learning for Graph Neural Networks 1231

tures of the graph data. Intuitively, the visualization

results in Subsection 5.7 can also prove this point.

Hence, the performance of ICPG will drop significant-

ly in later stages.

5.4 Transferability of AutoMasker

We consider two perspectives to verify the trans-

ferability of AutoMasker: GNN-level transferability

and graph-level transferability. From GNNs view, we

transfer the sparse graphs pruned by AutoMasker to

the other two popular GNN models: GIN[9] and

GAT[2]. From graphs view, we first pre-train Au-

toMasker on the larger-scale social dataset RED-

M12K and then transfer the well-trained AutoMasker

to prune the other two smaller-scale social datasets:

RED-B and RED-M5K. We keep the GNN models

unpruned on transferred tasks. The performance of

graph classification over different sparsity-levels are

provided in Fig.5 and Table 4. The best results are

shown in bold. We make the following observations.

Observation 6. AutoMasker has both GNN-level

and graph-level transferability. For the GNN level, we

observe from Fig.5 that GIN and GAT achieve rang-

ing 9.75%–45.96% and 18.55%–22.62% sparsity on

NCI1 and RED-M12K, respectively, without sacrific-

ing performance. AutoMasker also outperforms RP

and keeps a large gap. These results demonstrate that

AutoMasker can effectively extract the model-agnos-

tic subgraphs. These subgraphs contain significant se-

mantic information and can be universally trans-

ferred to diverse GNN architectures without perfor-

mance degradation. As for the graph-level transfer-

ability in Table 4, the classification accuracy of ran-

dom pruning decreases as the sparsity level increases.

For RED-B and RED-M5K, when the sparsity level

increases from 0 to 55.99%, the accuracy decreases by

7.39% and 2.97%, respectively; while AutoMasker can

achieve consistent improvement within all sparsity

levels. Furthermore, the GNN model trained with

more sparse graphs even outperforms the GNN

trained with the original dense graphs, such as RED-

B at 9.75% and RED-M5K at 9.75%–45.96%. It

demonstrates that AutoMasker can well transfer the

knowledge from large-scale upstream tasks to small-

scale downstream tasks and achieve a double-win:

with lower computational cost and better perfor-

mance. In summary, AutoMasker can learn model-ag-

nostic, general, and significant sparse subgraph struc-

tures from the graphs, so that it has outstanding

GNN-level and graph-level transferability.

5.5 Performance and Inference

Multiply-Accumulate Operations

Performance Comparison. To demonstrate the

practicability of ICPG, we validate the performance

of the GLTs. We adopt GraphSAGE[21], DropEdge[18],

and NeuralSparse[17], which can achieve graph sparsi-

fication inductively. For a fair comparison, we adjust

the hyper-parameters in GraphSAGE (sampling rate)

and DropEdge (dropping rate) to achieve similar spar-

sity levels. In Table 5, we observe that our method

consistently outperforms other baselines at all sparsi-

ty levels. It demonstrates the superiority of ICPG.

Inference Multiply-Accumulate Operations. Fol-

lowing UGS[1], we translate the sparsity level to the

inference Multiply-Accumulate Operations (MACs)

RP

UGS

ICPG (Ours)

RP-GLT (9.75%)

UGS-GLT (18.55%)

ICPG-GLT (26.49%)

Baseline

RP

ICPG (Ours)

RP-GLT (0.00%)

ICPG-GLT (22.62%)

Baseline

0.
00

5.
00

9.
75

14
.2
6

18
.5
5

26
.4
9

33
.6
6

40
.1
3

45
.9
6

51
.2
3

55
.9
9

64
.1
5

Graph Sparsity (%)

0.
00

5.
00

9.
75

14
.2
6

18
.5
5

26
.4
9

33
.6
6

40
.1
3

45
.9
6

51
.2
3

55
.9
9

64
.1
5

Graph Sparsity (%)

(b)(a)

A
c
c
u
ra

c
y
 (

%
)

80

60

40

100

90

80

70

60

A
c
c
u
ra

c
y
 (

%
)

Fig.4. Transductive and inductive node classification performance across different graph sparsity levels. (a) Cora. (b) PPI.

1232 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

reduction for evaluating the computational cost. We

report the extreme inference MACs, which are the

minimal MACs without performance degradation.

The results are shown in Table 6. Compared with the

0.
00

5.
00

9.
75

14
.2
6

18
.5
5

26
.4
9

33
.6
6

40
.1
3

45
.9
6

51
.2
3

55
.9
9

64
.1
5

Graph Sparsity (%)

0.
00

5.
00

9.
75

14
.2
6

18
.5
5

26
.4
9

33
.6
6

40
.1
3

45
.9
6

51
.2
3

55
.9
9

64
.1
5

Graph Sparsity (%)

(b)(a)

0.
00

5.
00

9.
75

14
.2
6

18
.5
5

26
.4
9

33
.6
6

40
.1
3

45
.9
6

51
.2
3

55
.9
9

64
.1
5

Graph Sparsity (%)

0.
00

5.
00

9.
75

14
.2
6

18
.5
5

26
.4
9

33
.6
6

40
.1
3

45
.9
6

51
.2
3

55
.9
9

64
.1
5

Graph Sparsity (%)

(d)(c)

A
c
c
u
ra

c
y
 (

%
)

85

80

75

70

A
c
c
u
ra

c
y
 (

%
)

52

50

48

46

44

A
c
c
u
ra

c
y
 (

%
)

50

48

46

44

A
c
c
u
ra

c
y
 (

%
) 80

75

70

RP
AutoMasker (Ours)
Baseline

RP
AutoMasker (Ours)
Baseline

RP
AutoMasker (Ours)
Baseline

RP
AutoMasker (Ours)
Baseline

Fig.5. Performance of diverse GNNs on the sparse graphs pruned by AutoMasker. (a) NCI1 (GIN). (b) NCI1 (GAT). (c) RED-
M12K (GIN). (d) RED-M12K (GAT).

Table 4. Graph Classification Accuracy (%)

Dataset Method Graph Sparsity

0% (No Pruning) 9.75% 18.55% 33.66% 45.96% 55.99%

RED-B RP 92.15 90.60 89.75 86.75 85.15 85.34

AutoMasker 92.15 92.16 91.05 90.15 90.06 89.64

RED-M5K RP 56.63 56.33 55.85 54.81 54.19 54.95

AutoMasker 56.63 56.89 56.69 57.01 56.97 56.09

Table 5. Graph Classification Accuracy (%) on the NCI1, COLLAB, and RED-M5K Datasets Across Different Sparsity-Levels

Method NCI1 COLLAB RED-M5K

22.62% 33.66% 40.13% 22.62% 33.66% 40.13% 22.62% 33.66% 40.13%

GraphSAGE[16] 76.62 72.97 71.27 73.93 69.04 68.50 47.65 44.25 36.83

DropEdge[18] 82.24 81.40 80.14 82.16 81.96 81.52 50.37 46.85 45.35

NeuralSparse[33] 81.43 80.34 79.83 81.63 77.76 75.35 52.82 51.56 49.95

ICPG (ours) 82.82 81.63 80.34 83.34 82.90 82.44 57.69 57.07 56.63

Improvement (ours) ↑0.58% ↑0.23% ↑0.20% ↑1.18% ↑0.94% ↑0.92% ↑4.87% ↑5.51% ↑6.68%

Yong-Duo Sui et al.: Inductive Lottery Ticket Learning for Graph Neural Networks 1233

full baseline, our method can significantly reduce the

computational cost by about 51.86%–93.71% from

small-scale (e.g., MUTAG) to large-scale (e.g., ogbg-

code2) datasets, without sacrificing performance.

These results further verify the practicability of ICPG.

5.6 Ablation Study

Encoder Networks. AutoMasker is designed on a

GNN-based encoder, which leads to a global under-

standing of each edge from the entire graphs. There-

fore, we extensively investigate the impact of diverse

encoders, such as GNN-based or MLP-based encoders.

We can observe the results from Fig.6(a) that, for all

the GNN-based encoders, AutoMasker can achieve

good performance: 45.96% extreme sparsity for GCN

and 51.23% for GIN and GAT, while MLP-based en-

coder only achieves 33.66% extreme sparsity. It indi-

cates that the message-passing scheme of the GNN

encoder naturally considers the graph structure from

a global view, while the MLP-based encoder does not.

Co-Sparsification. To study the effectiveness of

each component in ICPG, we apply them to the

graphs and the model independently. We explore

mask-based pruning for graphs (PG), magnitude-

based pruning for model (PM), random pruning only

for graphs (RPG), only for models (RPM), both of all

(RP), random pruning for graphs with magnitude-

↑

based pruning for model (RPG-PM). The results are

summarized in Fig.6(b). We can find that: PG can al-

so find the matching subgraphs. PM can also locate

the matching subnetworks at 14.26% sparsity, which

is consistent with the LTH[8] in the computer vision

field. ICPG significantly outperforms RP and RPG-

PM, and the gap gradually widens as the sparsity in-

creases. We also observe that ICPG is even better

than PG (12.87%), and we make the following ex-

planations.

1) As for PG, with the sparsity level gradually in-

creasing, the graphs also become more simple. If we

still train the over-parameterized GNN model with

simple graphs, it may cause over-fitting.

2) Slightly pruning the over-parameterized GNN

through PM can be regarded as a kind of regulariza-

tion, which will improve the performance, and it is

consistent with LTH[8]. Further, the regularized GNN

can additionally provide AutoMasker with more pre-

cise supervision signals from the gradient in backprop-

agation to make wise decisions. In summary, these re-

sults suggest the significance of co-training Au-

toMasker and GNN, and co-sparsifying the input

graphs and model to achieve better performance.

5.7 Visualization

To visualize the sparsifed subgraphs in GLTs, we

Table 6. Inference MACs Comparisons

Method MUTAG NCI1 COLLAB RED-B RED-5K RED-12K ogbg-code2 ogbg-ppa

Baseline 23.53 M 834.97 M 3 445.43 M 4 723.60 M 13 661.66 M 24 366.16 M 1 397.95 G 5 680.79 G

ICPG (ours) 5.09 M 223.76 M 1 103.06 M 1 583.97 M 1 584.23 M 1 533.57 M 672.91 G 2 869.69 G

Reduction (ours) ↓ 78.36% ↓ 73.20% ↓ 67.98% ↓ 66.47% ↓ 88.40% ↓ 93.71% ↓ 51.86% ↓ 49.48%

RP
RPG-PM
RPG
RPM
ICPG
PG
PM
Baseline

GCN
GIN
GAT
MLP
RP
Baseline

0.
00

5.
00

9.
75

14
.2
6

18
.5
5

26
.4
9

33
.6
6

40
.1
3

45
.9
6

51
.2
3

55
.9
9

64
.1
5

Graph Sparsity (%)

0.
00

5.
00

9.
75

14
.2
6

18
.5
5

26
.4
9

33
.6
6

40
.1
3

45
.9
6

51
.2
3

55
.9
9

64
.1
5

Graph Sparsity (%)

(b)(a)

A
c
c
u
ra

c
y
 (

%
)

60

50

40

30

20

100

90

80

70

60

A
c
c
u
ra

c
y
 (

%
)

Fig.6. (a) Comparison of different encoders in AutoMasker on the RED-M5K dataset. (b) Comparison of each component in ICPG
on the PPI dataset.

1234 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

select graphs with 64.15% sparsity from the MNIST

and CIFAR-10 superpixel datasets. For better com-

parison, we also plot the original images, original

graphs, and random pruning (RP) graphs, which are

depicted in Fig.7. We have the following findings.

(b)(a) (c) (d)

Fig.7. Visualization of the subgraphs extracted by Au-
toMasker from MNIST and CIFAR-10 superpixel graphs. Origi-
nal images and original graphs are displayed on the first and
second columns. The sparsity of RP and ICPG is 64.15%. (a)
Original image. (b) Original graph. (c) RP graph. (d) ICPG
graph.

For MNIST and CIFAR-10, the edges between

nodes that locate on the digitals and object pixels

(the dark blue nodes) should be denser, which are

conducive to the graph classification tasks. RP even-

ly prunes the significant edges or structures without

considering any important reference, which makes the

core subgraphs destroyed and seriously deteriorates

the performance. ICPG utilizes AutoMasker to learn

the significance of each edge from a global view and

can precisely prune redundant edges. For the MNIST

ICPG graph, the pruned edges are mainly located on

non-digital pixels, such as the upper-left, lower-right

corners and the center part of the number 0 and the

lower-left corner of the number 8, while the remain-

ing edges or nodes are mainly located on digital pix-

els. These patterns further demonstrate the rationali-

ty and explainability of ICPG.

6 Conclusions

In this work, we endowed the graph lottery tick-

ets with inductive pruning capacity. We proposed a

simple but effective pruning framework ICPG, to co-

sparsify the input graphs and the GNN model. Our

core innovation, AutoMasker, leverages a global com-

prehension of edge significance based on the entire

graph's topological structure. This ensures the cre-

ation of superior graph masks, exhibiting a strong

generalization capability in inductive learning con-

texts. Through extensive experiments across various

graph types, scales, learning settings, and tasks, we

consistently showed that ICPG can effectively accom-

plish high sparsity within both graph data and GNN

models. This compelling evidence underscores ICPG's

potential to effectively optimize the efficiency of GNN

models.

In future work, we intend to refine ICPG's multi-

round iterative pruning paradigm, investigating meth-

ods to enhance pruning efficiency. This advancement

could significantly reduce computational costs during

training, paving the way for more resource-efficient

GNN models.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Kipf T N, Welling M. Semi-supervised classification with

graph convolutional networks. In Proc. the 5th Interna-

tional Conference on Learning Representations, Apr.

2017.

[1]

 Veličković P, Cucurull G, Casanova A, Romero A, Liò P,

Bengio Y. Graph attention networks. In Proc. the 6th In-

ternational Conference on Learning Representations, Apr.

2018.

[2]

 Zhou J, Cui G, Zhang Z, Yang C, Liu Z, Wang L, Li C,

Sun M. Graph neural networks: A review of methods and

applications. AI Open, 2020, 1: 57–81. DOI: 10.1016/j.

aiopen.2021.01.001.

[3]

 Li G, Xiong C, Thabet A, Ghanem B. DeeperGCN: All

you need to train deeper GCNs. arXiv: 2006.07739, 2020.

https://arxiv.org/abs/2006.07739, Nov. 2024.

[4]

 Li G, Müller M, Qian G, Delgadillo I C, Abualshour A,

Thabet A, Ghanem B. DeepGCNs: Making GCNs go as

deep as CNNs. IEEE Trans. Pattern Analysis and Ma-

chine Intelligence, 2023, 45(6): 6923–6939. DOI: 10.1109/

TPAMI.2021.3074057.

[5]

 Hu W, Fey M, Zitnik M, Dong Y, Ren H, Liu B, Catasta

M, Leskovec J. Open graph benchmark: Datasets for ma-

chine learning on graphs. In Proc. the 34th International

Conference on Neural Information Processing Systems,

Dec. 2020, pp.22118–22133.

[6]

 Chen T, Sui Y, Chen X, Zhang A, Wang Z. A unified lot-

tery ticket hypothesis for graph neural networks. In Proc.

the 38th International Conference on Machine Learning,

Jul. 2021, pp.1695–1706.

[7]

Yong-Duo Sui et al.: Inductive Lottery Ticket Learning for Graph Neural Networks 1235

https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001
https://arxiv.org/abs/2006.07739
https://doi.org/10.1109/TPAMI.2021.3074057
https://doi.org/10.1109/TPAMI.2021.3074057

 Frankle J, Carbin M. The lottery ticket hypothesis: Find-

ing sparse, trainable neural networks. In Proc. the 7th In-

ternational Conference on Learning Representations, May

2019.

[8]

 Xu K, Hu W, Leskovec J, Jegelka S. How powerful are

graph neural networks? In Proc. the 7th International

Conference on Learning Representations, May 2019.

[9]

 Ying Z, You J, Morris C, Ren X, Hamilton W L,

Leskovec J. Hierarchical graph representation learning

with differentiable pooling. In Proc. the 31st Internation-

al Conference on Neural Information Processing Systems,

Dec. 2018, pp.4805–4815.

[10]

 Chen T, Frankle J, Chang S, Liu S, Zhang Y, Carbin M.

The lottery tickets hypothesis for supervised and self-su-

pervised pre-training in computer vision models. In Proc.

the 2021 IEEE/CVF Conference on Computer Vision and

Pattern Recognition, Jun. 2021, pp.16306–16316.

[11]

 Jaiswal A K, Ma H, Chen T, Ding Y, Wang Z. Spending

your winning lottery better after drawing it. arXiv: 2101.

03255, 2021. https://arxiv.org/abs/2101.03255, Nov. 2024.

[12]

 Liu Z, Sun M, Zhou T, Huang G, Darrell T. Rethinking

the value of network pruning. In Proc. the 7th Interna-

tional Conference on Learning Representations, May

2019.

[13]

 Wang C, Zhang G, Grosse R B. Picking winning tickets

before training by preserving gradient flow. In Proc. the

8th International Conference on Learning Representa-

tions, Apr. 2020.

[14]

 Savarese P, Silva H, Maire M. Winning the lottery with

continuous sparsification. In Proc. the 34th International

Conference on Neural Information Processing Systems,

Dec. 2020, pp.11380–11390.

[15]

 Voudigari E, Salamanos N, Papageorgiou T, Yan-

nakoudakis E J. Rank degree: An efficient algorithm for

graph sampling. In Proc. the 2016 IEEE/ACM Interna-

tional Conference on Advances in Social Networks Analy-

sis and Mining, Aug. 2016, pp.120–129. DOI: 10.1109/

ASONAM.2016.7752223.

[16]

 Leskovec J, Faloutsos C. Sampling from large graphs. In

Proc. the 12th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, Aug. 2006,

pp.631–636, DOI: 10.1145/1150402.1150479.

[17]

 Zeng H, Zhou H, Srivastava A, Kannan R, Prasanna V K.

GraphSAINT: Graph sampling based inductive learning

method. In Proc. the 8th International Conference on

Learning Representations, Apr. 2020.

[18]

 Franceschi L, Niepert M, Pontil M, He X. Learning dis-

crete structures for graph neural networks. In Proc. the

36th International Conference on Machine Learning, Jun.

2019, pp.1972–1982.

[19]

 Ying R, Bourgeois D, You J, Zitnik M, Leskovec J. GN-

NExplainer: Generating explanations for graph neural

networks. In Proc. the 33rd International Conference on

Neural Information Processing Systems, Dec. 2019, Arti-

cle No. 829.

[20]

 Ye Y, Ji S. Sparse graph attention networks. IEEE Trans.

Knowledge and Data Engineering, 2023, 35(1): 905–916.
DOI: 10.1109/TKDE.2021.3072345.

[21]

 Zheng C, Zong B, Cheng W, Song D, Ni J, Yu W, Chen

H, Wang W. Robust graph representation learning via

neural sparsification. In Proc. the 37th International Con-

ference on Machine Learning, Jul. 2020, pp.11458–11468.

[22]

 Rong Y, Huang W, Xu T, Huang J. DropEdge: Towards

deep graph convolutional networks on node classification.

In Proc. the 8th International Conference on Learning

Representations, Apr. 2020.

[23]

 Li J, Zhang T, Tian H, Jin S, Fardad M, Zafarani R.

SGCN: A graph sparsifier based on graph convolutional

networks. In Proc. the 24th Pacific-Asia Conference on

Knowledge Discovery and Data Mining, May 2020,

pp.275–287. DOI: 10.1007/978-3-030-47426-3_22.

[24]

 Chen J, Ma T, Xiao C. FastGCN: Fast learning with

graph convolutional networks via importance sampling. In

Proc. the 6th International Conference on Learning Rep-

resentations, Apr. 30–May 3, 2018.

[25]

 Hamilton W L, Ying Z, Leskovec J. Inductive representa-

tion learning on large graphs. In Proc. the 31st Interna-

tional Conference on Neural Information Processing Sys-

tems, Dec. 2017, pp.1025–1035.

[26]

 You H, Lu Z, Zhou Z, Fu Y, Lin Y. Early-bird GCNs:

Graph-network co-optimization towards more efficient

GCN training and inference via drawing early-bird lot-

tery tickets. In Proc. the 36th the AAAI Conference on

Artificial Intelligence, Feb. 22–Mar. 1, 2022, pp.8910–

8918. DOI: 10.1609/aaai.v36i8.20873.

[27]

 Chen T, Bian S, Sun Y. Are powerful graph neural nets

necessary? A dissection on graph classification. arXiv:

1905.04579, 2020. https://arxiv.org/abs/1905.04579, Nov.

2024.

[28]

 Dwivedi V P, Joshi C K, Luu A T, Laurent T, Bengio Y,

Bresson X. Benchmarking graph neural networks. The

Journal of Machine Learning Research, 2023, 24(1): Arti-

cle No. 43.

[29]

 Morris C, Kriege N M, Bause F, Kersting K, Mutzel P,

Neumann M. TUDataset: A collection of benchmark

datasets for learning with graphs. arXiv: 2007.08663,

2020. https://arxiv.org/abs/2007.08663, Nov. 2024.

[30]

 Achanta R, Shaji A, Smith K, Lucchi A, Fua P,

Süsstrunk S. SLIC superpixels compared to state-of-the-

art superpixel methods. IEEE Trans. Pattern Analysis

and Machine Intelligence, 2012, 34(11): 2274–2282. DOI:

10.1109/TPAMI.2012.120.

[31]

 Knyazev B, Taylor G W, Amer M R. Understanding at-

tention and generalization in graph neural networks. In

Proc. the 32nd International Conference on Neural Infor-

mation Processing Systems, Dec. 2019, pp.4204–4214.

[32]

 You Y, Chen T, Sui Y, Chen T, Wang Z, Shen Y. Graph

contrastive learning with augmentations. In Proc. the

34th International Conference on Neural Information Pro-

cessing Systems, Dec. 2020, Article No. 488.

[33]

 Wu Y, Wang X, Zhang A, He X, Chua T S. Discovering

invariant rationales for graph neural networks. In Proc.

the 10th International Conference on Learning Represen-

tations, Apr. 2022.

[34]

 Sui Y, Wang X, Wu J, Lin M, He X, Chua T S. Causal[35]

1236 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

https://arxiv.org/abs/2101.03255
https://doi.org/10.1109/ASONAM.2016.7752223
https://doi.org/10.1109/ASONAM.2016.7752223
https://doi.org/10.1145/1150402.1150479
https://doi.org/10.1109/TKDE.2021.3072345
https://doi.org/10.1007/978-3-030-47426-3_22
https://doi.org/10.1007/978-3-030-47426-3_22
https://doi.org/10.1007/978-3-030-47426-3_22
https://doi.org/10.1007/978-3-030-47426-3_22
https://doi.org/10.1007/978-3-030-47426-3_22
https://doi.org/10.1007/978-3-030-47426-3_22
https://doi.org/10.1007/978-3-030-47426-3_22
https://doi.org/10.1007/978-3-030-47426-3_22
https://doi.org/10.1007/978-3-030-47426-3_22
https://doi.org/10.1007/978-3-030-47426-3_22
https://doi.org/10.1007/978-3-030-47426-3_22
https://doi.org/10.1609/aaai.v36i8.20873
https://arxiv.org/abs/1905.04579
https://arxiv.org/abs/2007.08663
https://doi.org/10.1109/TPAMI.2012.120

attention for interpretable and generalizable graph classi-

fication. In Proc. the 28th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining, Aug. 2022,

pp.1696–1705. DOI: 10.1145/3534678.3539366.

 Liu G, Zhao T, Xu J, Luo T, Jiang M. Graph rationaliza-

tion with environment-based augmentations. In Proc. the

28th ACM SIGKDD Conference on Knowledge Discovery

and Data Mining, Aug. 2022, pp.1069–1078. DOI: 10.

1145/3534678.3539347.

[36]

Yong-Duo Sui is currently pursu-

ing his Ph.D. degree in computer sci-

ence from the University of Science

and Technology of China (USTC),

Hefei. His research interests include

graph learning, out-of-distribution

generalization, and sparse neural net-

works.

Xiang Wang received his Ph.D. de-

gree from the National University of

Singapore, Singapore, in 2019. He is

currently a professor with the Univer-

sity of Science and Technology of Chi-

na, Hefei. His research interests in-

clude recommender systems, graph

learning, and explainable deep learning techniques.

Tianlong Chen is a Ph.D. candi-

date in electrical and computer engi-

neering at The University of Texas at

Austin, Austin. He received his B.S.

degree from the University of Science

and Technology of China, Hefei, in

2017. He has also interned at IBM Re-

search, Facebook AI, Microsoft Research and Walmart

Technology Lab. His research focuses sparse neural net-

works, AutoML, adversarial robustness, self-supervised

learning, and graph learning.

Meng Wang received his B.E. and

Ph.D. degrees from the Special Class

for the Gifted Young, Department of

Electronic Engineering and Informa-

tion Science, University of Science and

Technology of China, Hefei, in 2003

and 2008, respectively. He worked as

an associate researcher at Microsoft Research Asia, Bei-

jing, and a senior research fellow at the National Univer-

sity of Singapore, Singapore. He is a professor at the

Hefei University of Technology, Hefei. His current re-

search interests include multimedia content analysis,

computer vision, and pattern recognition.

Xiang-Nan He received his Ph.D.

degree in computer science from the

National University of Singapore, Sin-

gapore, in 2016. He is now a professor

with the University of Science and

Technology of China, Hefei. His re-

search interests include information re-

trieval, data mining, and multi-media analytics.

Tat-Seng Chua received his Ph.D.

degree from the University of Leeds,

Leeds. He is the KITHCT chair pro-

fessor with the School of Computing,

National University of Singapore. He

was the acting and founding dean of

the school during 1998–2000. His main

research interests include multimedia information re-

trieval and social media analytics. In particular, his re-

search focuses on the extraction, retrieval and question-

answering (QA) of text and rich media arising from the

Web and multiple social networks.

Yong-Duo Sui et al.: Inductive Lottery Ticket Learning for Graph Neural Networks 1237

https://doi.org/10.1145/3534678.3539366
https://doi.org/10.1145/3534678.3539347
https://doi.org/10.1145/3534678.3539347

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Inductive Graph Learning
	3.2 Inductive Graph Lottery Ticket

	4 Methodology
	4.1 AutoMasker
	4.2 Inductive Co-Pruning Strategy

	5 Experiments
	5.1 Experimental Settings
	5.2 GLTs in Graph Classification Tasks
	5.3 GLTs in Node Classification Tasks
	5.4 Transferability of AutoMasker
	5.5 Performance and Inference Multiply-Accumulate Operations
	5.6 Ablation Study
	5.7 Visualization

	6 Conclusions
	Conflict of Interest
	References

