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Abstract    An abundance of data have been generated from various embedded devices, applications, and systems, and

require cost-efficient storage services. Data deduplication removes duplicate chunks and becomes an important technique

for storage systems to improve space efficiency. However, stored unique chunks are heavily fragmented, decreasing restore

performance and incurs high overheads for garbage collection. Existing schemes fail to achieve an efficient trade-off among

deduplication, restore and garbage collection performance, due to failing to explore and exploit the physical locality of dif-

ferent chunks. In this paper, we trace the storage patterns of the fragmented chunks in backup systems, and propose a

high-performance deduplication system, called HiDeStore. The main insight is to enhance the physical-locality for the new

backup  versions  during  the  deduplication  phase,  which  identifies  and  stores  hot  chunks  in  the  active  containers.  The

chunks not appearing in new backups become cold and are gathered together in the archival containers. Moreover, we re-

move the expired data with an isolated container deletion scheme, avoiding the high overheads for expired data detection.

Compared with state-of-the-art schemes, HiDeStore improves the deduplication and restore performance by up to 1.4x and

1.6x, respectively, without decreasing the deduplication ratios and incurring high garbage collection overheads.
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1    Introduction

Widely used applications, such as IoT (Internet of

Things)  embeddings,  AI,  and  cloud  computing[1–3],

generate  a  large  amount  of  data  and  require  large-

scale  storage  systems.  Backup  systems[4–6] store  vari-

ous  versions  of  data  for  software  compatibility  and

rollback,  e.g.,  different  versions  of  Linux  kernels  and

system  snapshots.  However,  the  data  contain  much

redundancy  due  to  the  similarity  among  different

backup versions. Data deduplication becomes an effi-

cient  technique  for  different  storage  systems[7–11] to

eliminate duplicate data and save space[12, 13].

Deduplication  systems  improve  storage  efficiency

via  eliminating  duplicate  data,  following  the  work-

flow  of  chunking,  fingerprinting,  indexing,  and  fur-

ther  storage  managements[12–14].  To  detect  duplicate

data, we divide data streams into 4 KB–8 KB chunks

and leverage  a  cryptographic  hash function to  calcu-

late  fingerprints  for  the  chunks,  e.g.,  SHA-1  (Secure

Hash  Algorithm)[12] and  MD5 (Message  Digest  Algo-

rithm 5).  It  has been proved that a hash collision of

the used cryptographic hash function is much smaller

than that of a hardware error[12]; hence unique chunks

have  different  fingerprints,  and  are  stored  in  typical

4  MB containers  on  the  persistent  storage  mediums,

such  as  HDD  (hard  disk  drive)  or  SSD  (solid  state

drive).  The  chunk  references  of  the  original  data

streams are stored in the recipes for data restoring.

However, the deduplication systems deliver low re-

store  performance  after  multiple  data  versions  are
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stored,  due  to  the  severe  chunk  fragmentation  prob-

lem[15–17].  Specifically,  the  identified  duplicate  chunks

are  pointed  to  existing  containers,  while  unique

chunks are stored in new containers. As a result, the

chunks  of  a  data  stream are  stored  in  different  con-

tainers, incurring lots of expensive I/Os to read data

in the persistent  storage to restore  the original  data.

The  data  chunks  are  severely  scattered  when  more

versions are stored. Moreover, it becomes hard to re-

move the expired versions, since the chunks of differ-

ent  versions  are  physically  scattered  and  interleaved

together,  which  results  in  expensive  efforts  to  detect

the expired chunks and conduct garbage collection.

To  improve  the  restore  performance,  some  de-

signs  leverage  caching-based  schemes  to  reduce  the

amount  of  container  reading,  e.g.,  some  chunks[17–19]

and containers[15, 16, 20] are cached in the memory for

future  reading.  The  main  insight  is  to  exploit  the

cache-friendly locality  of  the backup stream, i.e.,  the

chunks are stored in the same order as they first ap-

pear  in  the  stream.  Therefore,  the  obtained  contain-

ers have a high probability to contain the subsequent

chunks  of  the  same  data  stream.  However,  caching-

based  schemes  become  inefficient  when  a  large  num-

ber  of  backup  versions  are  stored,  since  the  chunks

are scattered into more different containers and show

poor  locality  for  caching.  Unlike  the  caching-based

schemes,  some  schemes  rewrite  the  duplicate  chunks

to  enhance  the  physical  locality  of  the  data  stre

am[15, 16, 21, 22], i.e., these schemes rewrite some chunks

into the same containers. In this way, fewer contain-

ers are read to restore the original data. Although the

chunk fragmentation problem is alleviated, the dedu-

plication ratio decreases due to the existence of dupli-

cate chunks. Even if the deduplication ratio decreases

by  1%,  40  GB  extra  space  is  consumed  for  4  TB

unique data to store the rewritten data, which signifi-

cantly decreases the storage efficiency.

To  remove  expired  data,  existing  schemes  lever-

age  the  reference  management  approaches  to  detect

the expired chunks, and such schemes need to careful-

ly  maintain  the  reference  counters  to  prevent  errors,

e.g.,  the removed chunks are referred by the non-ex-

pired  backup versions.  Moreover,  the  sparse  contain-

ers  occur  after  the  expired  backups  are  removed,  in-

curring expensive overheads for garbage collection.

Unlike  existing  schemes,  we  propose  to  enhance

the physical locality of the backups for better dedupli-

cation,  restore,  and  expired  data  deletion  perfor-

mance.  We  explore  and  exploit  the  behaviors  of  the

fragmented chunks  via  a  heuristic  experiment,  which

traces the storage path and reference patterns of dif-

ferent chunks among various backup versions. We ob-

serve  that  high  redundancy  arises  between  adjacent

backup versions, and the chunks not appearing in cur-

rent backup version have a low probability to appear

in the subsequent backup versions. Moreover, in back-

up systems, newer backup versions are more likely to

be restored than older versions[20, 22, 23], which implies

that  the  high  restore  performance  of  newer  backup

versions is more important than that of older ones.

Based  on  the  observations,  we  propose  an  effi-

cient  deduplication  scheme  with  high  restore  perfor-

mance  and  deduplication  ratios,  called  HiDeStore①.

The  main  insight  is  to  classify  the  hot  and  cold

chunks during the deduplication phase, and store hot

and cold chunks in active and archival containers re-

spectively  to  enhance  the  physical  locality.  The  hot

chunks  are  referred  by  subsequent  backup  versions,

while  the  cold  chunks  have  a  low  probability  to  ap-

pear  in  the  new backup  versions.  Based  on  the  high

physical locality of different chunks, HiDeStore reads

hot chunks to restore the new backups, while directly

removing cold chunks for expired version deletions.

Specifically, the workflow of HiDeStore consists of

three steps. 1) Hot and cold chunks are classified via

the double-hash based fingerprint cache.  2) The con-

tents of different chunks are filtered and stored in ac-

tive  and  archival  containers,  respectively.  3)  The

recipes  are  updated  for  restoring  the  original  data.

We construct a recipe chain to reduce updating over-

heads,  and  further  optimize  the  process  of  recipe

searching  by  periodically  eliminating  the  dependency

among recipes.  Compared with  state-of-the-art  dedu-

plication  schemes,  HiDeStore  reduces  the  index

lookup  overheads  by  38%  and  improves  the  restore

performance by up to 1.6x.  By leveraging the Isolat-

ed Container  Deletion Algorithm (ICDA),  HiDeStore

becomes  efficient  to  remove  expired  versions  without

expensive garbage collection efforts, since the expired

chunks are gathered together in archival containers.

This  paper  has  made  significant  improvements

over the preliminary version[24] as the follows.

● Tracing  Storage  Patterns  of  Different  Chunks.
We  conduct  heuristic  experiments  on  multiple  work-

loads  to  analyze  the  storage  patterns  of  chunks  in
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backup systems.  The  obtained  observations  motivate

us to construct the efficient deduplication system via

enhancing the physical locality for different chunks.

● High Deduplication Performance with High Ded-
uplication Ratios. We explore the workload character-

istics in backup systems and only cache fingerprints of

hot  chunks  for  index  searching,  which  avoids  fre-

quently  accessing  disks  and  achieves  high  deduplica-

tion performance.

● High Restore Performance for New Backup Ver-
sions. Our proposed HiDeStore filters and stores cold

and hot chunks in different containers to enhance the

physical  locality,  which  achieves  high  restore  perfor-

mance for new backup versions, since HiDeStore reads

fewer containers than existing schemes.

● Low Overheads to Remove Expired Backups. We

analyze the processes of removing expired data in ex-

isting  schemes  and  observe  that  the  schemes  incur

high overheads in expired data detection and garbage

collection.  Therefore,  we  present  an  isolated  contain-

er  deletion  algorithm  to  enable  HiDeStore  to  detect

and remove expired containers with low overheads.

● Confirm  Observations  with  Widely  Used  Data-
sets.  We  add  a  widely  used  dataset,  Boost[4, 15, 18],

to  confirm  our  observations  in  the  backup  systems,

and obtain the same observation with other datasets,

i.e., the adjacent versions are the most similar. Based

on  the  observations,  HiDeStore  efficiently  identifies

and stores different chunks for high physical locality.

● Comprehensive Evaluations.  We conduct evalu-

ations  on  five  widely  used  datasets  to  show  the

strengths of HiDeStore over existing schemes in terms

of redundant data deduplication, original data restor-

ing, and expired data deletion. 

2    Background
 

2.1    Workflow of a Deduplication System

Chunk-based  deduplication  becomes  an  efficient

technique  for  backup  systems  to  improve  the  space

utilization  efficiency[7–11].  In  this  paper,  we  focus  on

the in-line deduplication[13–16, 18, 20, 25–26], i.e., the data

is deduplicated once it is stored.

The workflow of a deduplication system is shown

in Fig.1.  1)  The  coming  data  stream  is  divided  into

multiple chunks (e.g.,  on average 4 KB–8 KB[13]) via

various chunking algorithms, such as TTTD (the Two

Thresholds,  Two  Divisors  Algorithm)  chunking[27],

Rabin-based CDC (Content-Defined Chunking)[9], and

FastCDC[28]. 2) 20-byte fingerprints are calculated for

the obtained chunks via a secure hash function,  e.g.,

SHA-1[12]. It is worth noting that the probability of a

hash  collision  is  much  smaller  than  that  of  a  hard-

ware  error[12].  3)  The  chunks  with  identical  finger-

prints  are  duplicate.  Some  fingerprints  are  main-

tained in the fingerprint cache to accelerate the index

searching[13, 14, 29, 30]. 4) When the coming fingerprints

miss  in  the  cache,  the  fingerprints  are  further

searched  in  the  whole  fingerprint  table  on  disks  to

achieve  high  deduplication  ratios.  5)  The  unique

chunks are  stored into typical  4  MB containers.  The

references (i.e., the fingerprints, chunk sizes, and con-

tainer  IDs)  of  all  chunks  are  recorded  in  a  recipe[13]

for the data recovery. The data are restored from sys-

tem  crashes  or  version  rollbacks[16, 17].  6)  To  restore

the  original  data,  we  read  the  recipe  and  obtain  the

recorded chunk references. 7) Chunks are read accord-

ing to the recipe and the original data are assembled

in a chunk-by-chunk manner. 

2.2    Fingerprint Access Bottleneck

In the deduplication phase, we search existing fin-

gerprints  to  identify  whether  the  coming  chunks  are

duplicate.  However,  the  number  of  fingerprints  pro-

portionally increases with the stored data and the fin-

gerprint table possibly overflows the limited memory,

e.g.,  indexing  4  TB  unique  chunks  requires  at  least

20 GB to store the fingerprints. Therefore, the finger-
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Fig.1.  Workflow of a deduplication system.
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print  access  bottleneck  occurs  when  the  fingerprint

table  on  disks  is  frequently  accessed,  which  signifi-

cantly  decreases  the  deduplication  performance[13, 14].

Existing  deduplication  systems  leverage  various

approaches to improve the hit ratio of the fingerprint

cache  and  avoid  expensive  I/Os  on  the  disk.  Some

schemes[13, 14, 25, 26] make full use of the locality char-

acteristic,  i.e.,  the  chunks  among  different  backup

streams appear in approximately the same order with

a  high  probability.  Thus,  the  chunks  following  the

searched  chunks  are  prefetched  into  the  fingerprint

cache  during  one  disk  access,  which  significantly  im-

proves  the  hit  ratio.  Moreover,  only  partial  indexes

are  stored  according  to  the  sampling  approaches  to

reduce the memory consumption[14, 31].  For the work-

loads  that  have  little  or  no  locality,  similarity-based

approaches were proposed[29, 30] for better prefetching.

However, we have to make a trade-off between dedu-

plication ratios and throughput, since the efficiency of

existing schemes depends on the locality and similari-

ty  of  the  workloads.  Moreover,  these  schemes  over-

look the chunk storage management during the dedu-

plication phase, and incur the severe chunk fragmen-

tation problem over time, as shown in Subsection 2.3. 

2.3    Chunk Fragmentation Problem

The  restore  phase  reads  chunks  from  different

containers according to the recipe, and assembles the

original  data  chunk  by  chunk.  However,  the  restore

performance  suffers  from  the  chunk  fragmentation

problem[6, 15–18, 21],  i.e.,  the  chunks  of  the  same  data

stream  are  scattered  into  various  containers,  incur-

ring frequent disk accesses during the recovery phase.

The  main  reason  is  that  the  identified  duplicate

chunks  are  not  stored  together  with  unique  chunks

when a data stream is processed.

Fig.2 illustrates  how  the  chunk  fragmentation

A, C, D, E, F,

G, and H

I, J, K, and L

problem  arises  with  the  assumption  that  each  con-

tainer  contains  at  most  three  chunks.  During  the

deduplication phase,  the unique chunks are stored in

containers  when  the  chunks  arrive.  The  chunks  be-

longing to the first data stream are stored in contain-

ers 1, 2, and 3. For the second data stream, the iden-

tified  duplicate  chunks  (e.g.,  chunks 

)  are  not  stored,  while  the  unique  chunks

(e.g.,  chunks )  are  stored  in  contain-

ers  4 and 5.  As a result,  we need to access  five con-

tainers  to  restore  the  second  backup  stream.  The

same deduplication mechanism is applied to the third

data stream, and we need to access six different con-

tainers  to  restore  the  third data stream.  Such chunk

fragmentation problem is exacerbated over time when

more backup versions are stored.

A C

C

Some  schemes  are  motivated  from  the  observa-

tion that the order to read chunks is the same as that

to  store  the  chunks,  and  they  propose  caching-based

schemes  to  improve  the  restore  performance.  Hence,

we  cache  a  sequence  of  chunks  in  one  disk  access  to

speed up the chunk reading. For example, if contain-

er 1 is cached when chunk  is read, chunk  will hit

the  cache  since  chunk  has  already been contained

in  container  1,  avoiding  re-accessing  the  disk.  More-

over,  some  schemes  propose  a  look-ahead  window to

assemble  the  chunks  belonging  to  the  same  contain-

er[17, 18],  which  avoids  the  frequent  accesses  to  the

same  container.  However,  the  chunk  fragmentation

problem  is  exacerbated  when  more  backup  versions

are stored, since the chunks are scattered into a large

number of containers and exhibit poor physical locality.

A  more  promising  way  to  improverestore  perfor-

mance is to enhance the physical locality of the back-

up  streams  by  rewriting  some  duplicate  chunks.  For

example,  we  only  need  to  read  four  containers  when

the chunks of the third backup stream are stored to-

gether,  rather  than  reading  six  containers  in Fig.2.
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Various  rewriting  schemes  leverage  different  ap-

proaches to determine which chunks to rewrite,  such

as  the  Content-Based  Rewriting  algorithm (CBR)[16],

Chunk  Fragmentation  Level  (CFL)[22],  and  capping-

based  schemes[17, 21].  Moreover,  Fu et  al.[15] exploited

the  historic  information  to  rewrite  the  chunks.  How-

ever,  these rewriting schemes decrease the deduplica-

tion  ratios  due  to  the  existence  of  duplicate  chunks,

and  the  duplicate  chunks  consume  much  available

space.  For  example,  40  GB  of  extra  space  is  con-

sumed for 4 TB of unique data to store the rewritten

data even if the deduplication ratio decreases by 1%. 

2.4    Garbage Collection

B

D

B D

B

D

Physical  fragmented  chunks  often  result  in  high

overheads  for  garbage  collection  when  expired  ver-

sions  are  removed,  due  to  the  time-consuming  phase

of identifying the chunks that are only referred by the

expired  backups.  Moreover,  the  chunks  of  different

versions  are  interleaved  together,  requiring  many

garbage collection efforts to reclaim the space for the

deleted  chunks.  As  shown  in Fig.2,  only  chunks 

and  are  removed  when  backup  version  1  is  re-

moved,  since  only  chunks  and  are  not  referred

by other versions. However, identifying chunks  and

 becomes a bottleneck due to the complicated refer-

ence  management  for  chunks.  Moreover,  removing

fragmented  chunks  results  in  sparse  containers,  such

as containers 1' and 2' in Fig.2, and these sparse con-

tainers waste much storage space.

In  order  to  remove  expired  backups,  existing  ap-

proaches  leverage  offline  and  inline  algorithms  for

backup  deletions[15, 32, 33].  For  example,  all  finger-

prints  of  chunks  are  traversed  when  the  system  is

idle,  and  additional  metadata  for  the  chunk  refer-

ences  is  maintained  during  the  deduplication  phase.

However, these approaches incur high time and space

overheads, due to the needs of managing the metada-

ta of chunk references. Furthermore, extra efforts are

consumed on merging the sparse containers  after  the

expired backups are removed. 

3    Observations on Fragmented Chunks

To  gain  more  insights  about  the  fragmented

chunks,  we  conduct  a  heuristic  experiment  on  five

widely  used  datasets,  including  Linux  Kernel[4],

GCC[15], Fslhomes[18], MacOS[21], and Boost. More de-

tails about the used workloads are shown in Section 5.

The heuristic experiments aim to obtain the patterns

of  chunk references  among different  backup versions,

where  the  chunk  reference  points  to  the  container

that contains the corresponding chunk.

We  conduct  a  heuristic  experiment  based  on  a

widely  used  deduplication  platform,  called  Destor[4].

Specifically,  we  assign  an  infinite  buffer  to  store  the

metadata  of  chunks,  including  fingerprints,  chunk

size,  and  a  version  tag,  where  the  version  tag  indi-

cates  the  most  recent  backup  version  containing  the

chunk. For example, the version tags of all chunks are

set to V1 when the first backup version is deduplicat-

ed.  When  the  chunks  of  the  second  backup  version

have  matches  within  the  buffer,  we  modify  the  ver-

sion tags of these chunks to V2 to indicate that these

chunks are contained in the backup version 2. At the

same  time,  the  unique  chunks  in  the  second  backup

version  are  stored  in  the  buffer  with  the  version  tag

V2. The remaining chunks (i.e., not appearing in the

second backup version) in the buffer keep the version

tag V1, indicating that these chunks are contained in

the  backup  version  1.  The  heuristic  experiment  pro-

cesses all data in the same way. After all backup ver-

sions  are  processed,  the  version  tags  indicate  the

newest backup versions containing the chunks.

To  figure  out  the  reference  patterns  of  different

backup  versions,  we  count  the  numbers  of  various

version  tags  after  each  backup  version  is  processed,

and  the  results  are  shown  in Fig.3.  As  shown  in

Fig.3(a),  there  are 1 557 V1  chunks  after  the  first

backup  version  is  deduplicated.  The  number  of  V1

chunks decreases to 734 after the second backup ver-

sion  is  processed  and  almost  no  longer  decreases  in

subsequent  backup  versions.  Such  results  indicate

that these 734 chunks are not contained in the subse-

quent  backup  versions,  which  incurs  chunk  fragmen-

tation issues over time, since 823 V2 chunks are inter-

leaved  together  with  734  V1  chunks.  We  have  the

same observations on other chunks and workloads, as

shown in Fig.3(b), Fig.3(c),  and Fig.3(e).  The obser-

vation  on  MacOS  is  a  little  different,  as  shown  in

Fig.3(d).  For  example,  the  V1  chunks  not  only  de-

crease  in  the  second  backup  version,  but  also  de-

crease  in  the  third  backup  version.  However,  V1

chunks  hardly  decrease  after  these  subsequent  two

backup versions are processed.

From  the  experimental  results  in Fig.3,  we  have

two important observations. First, the adjacent back-

up versions are the most similar.  Second, the chunks

not  appearing  in  the  current  backup  version  have  a

low probability  to  appear  in  subsequent  backup  ver-
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sions[24].  The  real-world  applications  also  offer  in-

sights to prove these observations[20, 22, 23], e.g., a new

version of software is upgraded from the old versions.

The  new  version  contains  most  contents  of  the  old

versions for software compatibility, and develops some

new functions for better usage. Moreover, the system

snapshots  are  generated  along  with  time,  and  a  new

snapshot is generated from the old ones.

The  obtained  observations  motivate  us  to  store

the chunks of new backup versions closely to enhance

the  physical  locality  for  high  restore  performance,

e.g.,  all  the  V8 chunks  are  stored closely  to  improve

the  physical  locality  of  version  8.  Although  the  re-

store  performance  of  the  old  version  decreases,  such

design is feasible since existing studies[20, 22, 23] demon-

strate that the newer backup versions are more likely

to be restored from the system crashes or version roll-

backs than the older backup versions. It is worth not-

ing  that  all  the  observations  come  from backup  sys-

tems,  e.g.,  the systems store different versions of  the

software (such as GCC, Linux Kernel) and the snap-

shots. We have the same observations on other work-

loads, e.g., Gdb and Cmake[4, 15, 30]. 

4    Design of HiDeStore

Unlike existing schemes, we propose HiDeStore to

efficiently store chunks with high physical locality for

high  deduplication  and  restore  performance.  The

workflow  of  our  design  is  viewed  as  a  reverse  inline

deduplication  system.  One  of  the  key  insights  is  to

classify the hot and cold chunks during the deduplica-

tion  phase.  The  chunks  having  a  high  probability  to

appear in new backup versions are hot chunks, while

the  other  chunks  become  cold  chunks.  Another  in-

sight is to store the hot and cold chunks into the ac-

tive  and  archival  containers  to  enhance  the  physical

locality, respectively. By grouping the chunks of new

backup  versions  closely,  the  chunk  fragmentation

problem  is  alleviated  and  the  restore  performance  is

improved.  Moreover,  we  directly  remove  the  expired

containers without expensive garbage collection.

The  system  overview  of  HiDeStore  is  shown  in

Fig.4.  The differences  with existing schemes are  that

HiDeStore  identifies  hot  and cold chunks in the pro-

posed fingerprint cache with double hashes, and stores

chunks via a filter to gather different chunks in differ-

ent containers. Specifically, the fingerprint cache iden-

tifies  duplicate  chunks  when  the  coming  chunks  are

matched within the fingerprint cache. The chunks not

appearing in the current backup version become cold

and are removed from the fingerprint cache after cur-

rent  backup  version  is  processed.  To  improve  the

physical  locality,  HiDeStore  temporarily  stores  the

coming  hot  chunks  in  active  containers  and  moves

cold  chunks  to  archival  containers.  In  the  context  of

our  paper,  the  active  and  archival  containers  are

stored  in  different  locations  to  enhance  the  physical

locality  for  hot  and  cold  chunks,  respectively.  After

the  cold  chunks  are  kicked  out  from  the  active  con-

tainers,  HiDeStore  merges  the  sparse  active  contain-
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Fig.3.  Chunk distributions of different workloads. (a) Linux Kernel. (b) GCC. (c) Fslhomes. (d) MacOS. (e) Boost.
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ers to improve the storage efficiency, and such design

incurs acceptable overheads since the step of merging

space  containers  is  carried  out  offline.  More  details

are shown in Subsections 4.1 and 4.2.

Moreover,  the  recipe  records  the  locations  of

chunks  when  coming  chunks  are  stored  in  different

active  containers,  and  it  needs  to  be  updated  when

some  chunks  are  moved  into  archival  containers.

However, some chunks appear in multiple backup ver-

sions,  incurring  high  overheads  to  update  all  the  in-

volved  recipes.  Instead  of  updating  all  recipes,

HiDeStore  proposes  a  recipe  chain  updating  algo-

rithm  to  only  update  the  recipe  of  the  previous  one

backup  version,  and  a  recipe  chain  is  generated

among multiple backup versions. To reduce the over-

heads of reading recipes, HiDeStore periodically elimi-

nates the dependency of the recipe chain by pointing

chunk references to the archival containers, as shown

in Subsection 4.3.  The  original  data  streams  are  re-

stored  by  reading  chunks  according  to  the  recipes,

and the workflow of restoring is shown in Subsection

4.4.  Moreover,  it  becomes  easy  for  HiDeStore  to  re-

move  expired  backups  via  the  proposed  ICDA,  since

the  corresponding cold  chunks  are  stored together  in

archival containers, as shown in Subsection 4.5. 

4.1    Fingerprint Cache with Double Hash

The  traditional  fingerprint  cache  becomes  ineffi-

cient to exploit the observations from Fig.3, since the

cache fails to identify the hot and cold chunks during

the deduplication phase. Moreover, the traditional fin-

gerprint cache prefetches chunks according to the log-

ical  locality,  and becomes inefficient to provide suffi-

cient  space  for  hot  chunks  since  the  cold  chunks  are

also prefetched in the cache.

The  observations  from Fig.3 indicate  that  cold

chunks have a negligible probability to appear in sub-

sequent backup versions. Hence, we only need to store

hot  chunks  in  the  fingerprint  cache.  Unlike  existing

schemes,  we  propose  a  fingerprint  cache  with  two

hash tables to classify the hot and cold chunks. In the

deduplication  phase,  HiDeStore  only  searches  hot

chunks  in  the  fingerprint  cache  and  overlooks  cold

chunks to avoid the expensive disk accesses. The two

hash tables are represented as T1 and T2, respective-

ly,  each  of  which  contains  fingerprints  as  keys  and

metadata  of  chunks  as  values,  where  the  metadata

consists  of  the chunk size and the IDs of  active con-

tainers  being  stored  (abbreviated  as  CIDs).  Before

current  backup  version  (represented  as  CV)  is  pro-

cessed, T1 caches the hot chunks (i.e.,  the chunks of

the  previous  backup version)  and T2 is  empty.  Dur-

ing  the  deduplication  phase,  the  identified  unique

chunks are directly inserted into T2, while the chunks

hitting T1 are removed from T1 and inserted into T2.

After  CV  is  processed,  the  chunks  remaining  in  T1

become cold chunks since these chunks do not appear

in  CV,  while  the  chunks  in  T2  are  hot  chunks  and

used to deduplicate subsequent backup versions.

A

A

A

B

B

B

B

B

C

C

The workflow of the proposed double-hash finger-

print  cache  is  illustrated  in Fig.5,  which  totally  con-

tains  three  kinds  of  cases  to  process  the  coming

chunks.  In  the  first  case,  chunk  is  identified  as  a

unique chunk due to not hitting both T1 and T2. We

insert  the  fingerprints  of  chunk  into  T2 and store

the  content  of  chunk  into  an  active  container,  as

shown in Subsection 4.2. In the second case, chunk 

is  identified  as  a  duplicate  chunk  due  to  hitting  T1.

Chunk  is also classified as a hot chunk due to hav-

ing a high probability to appear in subsequent back-

up versions. In this case, we move the fingerprints of

chunk  from  T1  to  T2  to  process  the  subsequent

backup  versions.  It  is  worth  noting  that  the  content

of  chunk  has  been  stored  in  an  active  container,

since chunk  is a duplicate chunk. In the third case,

chunk  is also identified as a duplicate chunk due to

hitting  T2.  The  metadata  and  content  of  chunk 

have been correctly stored in T2 and active contain-

ers. After CV is processed, the chunks in T1 become

cold  and  their  contents  are  moved  from  active  con-

tainers to archival containers, as shown in Subsection
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Fig.4.  System overview of HiDeStore.
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4.2.  Finally,  HiDeStore  leverages  the  hot  chunks  to

deduplicate the subsequent backup versions, which is

simply implemented by changing T2 to T1.

×

We add  another  hash  table  to  process  the  work-

load  of  MacOS,  which  is  similar  to  the  double-hash

fingerprint cache to identify and classify hot and cold

chunks.  Since  we  use  the  fingerprints  calculated  via

SHA-1 as keys in the hash table, the probability of a

hash  collision  is  much  smaller  than  that  of  a  hard-

ware error[13].  It  is  worth noting that the sizes of  T1

and T2 are bounded to the metadata size  of  one (or

two) backup version(s), and hardly overflow the limit-

ed  memory.  Take  the  data  in  MacOS  (a  very  large

workload)  as  an  example,  i.e.,  one  version  contains

about  5  million  chunks  and  the  total  size  of  T2  is

about  100  MB  (5 000 000 28  byte),  where  28-byte

metadata  consists  of  20-byte  fingerprints,  a  4-byte

CID, and a 4-byte chunk size, as shown in Fig.5.

Compared with traditional deduplication schemes,

HiDeStore  significantly  improves  the  deduplication

throughput due to avoiding the expensive disk access-

es.  Moreover,  HiDeStore  achieves  high  deduplication

ratios  as  shown  in Subsection 5.2,  since  only  hot

chunks have a high probability to appear in the sub-

sequent backup versions and searching hot chunks in

the  fingerprint  cache  is  efficient  for  high  deduplica-

tion ratios. 

4.2    Chunk Filter to Separate Chunks

The  traditional  deduplication  systems  directly

write the incoming unique chunks into containers for

the  archival  purpose,  which  however  incurs  the  se-

vere chunk fragmentation problem as shown in Fig.2.

Unlike existing schemes, HiDeStore changes the stor-

age paths for the coming chunks, and stores hot and

cold  chunks  into  active  and  archival  containers,  re-

spectively. The structures of active and archival con-

tainers  are the same,  as  shown in Fig.6.  A container

contains the metadata and real data of chunks, where

the  metadata  consists  of  the  container  ID,  the  total

data  size,  and  the  hash  table  for  the  contained

chunks. Each container has the same size with tradi-

tional containers (i.e., 4 MB) to achieve high storage

efficiency.

E

F

Specifically, the incoming unique chunks are tem-

porarily  stored  in  active  containers  during  the  dedu-

plication phase, served as hot chunks. After one back-

up version is deduplicated, the cold chunks are identi-

fied  by  the  fingerprint  cache  and  moved  from active

containers  to  archival  containers.  The  process  of

chunk  moving  works  like  a  filter,  as  shown in Fig.4.

However,  some active  containers  become sparse  after

the  cold  chunks  are  removed,  and  we  need  to  com-

pact  the  sparse  containers  to  improve  the  space  uti-

lization. We cannot directly reuse the space of the re-

moved  chunks  due  to  the  unequal  sizes.  Specifically,

the deduplication systems generally use content-based

chunking  algorithms  to  avoid  the  boundary-shift

problem[9, 34], which generates variable-length chunks.

For example, 7.3 KB space in total is released in con-

tainer  1  after  the  chunks  of  3.6  KB and 3.7  KB are

removed,  as  shown in Fig.6.  However,  we cannot  in-

sert chunk  with 4.2 KB into container 1 due to the

discontinuous space. Although chunk  with 3.1 KB
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can  be  inserted  into  container  1,  a  large  amount  of

fragmented space is generated and wasted.

Instead,  HiDeStore  merges  and  compacts  the

sparse containers to reuse the fragmented space in ac-

tive  containers.  Specifically,  HiDeStore  calculates  the

space  utilization  for  the  active  containers  after  the

cold chunks are removed, where the space utilization

is  defined  as  the  used  size  divided  by  the  total  size.

The  container  with  a  low  space  utilization  is  identi-

fied  as  a  sparse  container,  requiring  to  be  merged.

The  process  of  compacting  sparse  containers  is  illus-

trated  in Fig.6,  which  writes  the  chunks  of  two  (or

more) sparse containers into the same container with-

out  considering  the  order,  since  all  these  chunks  are

hot  chunks  and prefetched together  during  the  read-

ing phase. The merged container is stored on disk by

overwriting  the  sparse  container  whose  CID  is  the

smallest to improve the space utilization.

To  avoid  the  overheads  of  moving  cold  chunks

from  active  containers  to  archival  containers,

HiDeStore  implements  the  chunk  moving  phase  in  a

pipeline manner with high parallelism. The deduplica-

tion system continues to process the next backup ver-

sion without waiting for moving chunks, since the hot

and cold chunks have been identified in the proposed

double-hash fingerprint cache and the cold chunks are

moved  to  archival  containers  offline.  By  separately

storing  different  chunks  in  active  and  archival  con-

tainers,  HiDeStore  improves  the  physical  locality  of

new  backup  versions.  HiDeStore  achieves  higher  re-

store  performance  due  to  incurring  fewer  expensive

disk accesses compared with existing schemes[15–18]. 

4.3    Recipes Updating

The deduplication systems record all chunk refer-

ences of the original data stream in the recipes for fu-

ture restoring, where a chunk reference consists of the

fingerprints, the chunk size, and the ID of the corre-

sponding  container  (represented  as  CID).  In

HiDeStore,  the  chunks  are  temporarily  stored  in  ac-

tive  containers  and  moved  to  archival  containers

when the chunks become cold. To exactly record the

locations  for  chunks,  the  recipes  need  to  be  updated

when  the  chunks  are  moved  to  different  containers.

However,  we  have  to  check  all  recipes  to  determine

which  one  needs  to  be  updated,  which  incurs  high

overheads due to the expensive disk accesses.
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R3 V3
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V4 −4
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4

We propose a recipe chain updating algorithm to

reduce the overheads of updating recipes, which only

updates the previous one recipe, rather than checking

all recipes. For the case of MacOS, we update the pre-

vious  two  recipes.  The  recipe  chain  updating  algo-

rithm is  illustrated  in Fig.7,  which  shows the  results

after  backup version  is  processed.  Since  is  the

newest backup version and all chunks are hot chunks,

the recipe  of  records CIDs of  all  chunks as ,

indicating that all chunks are stored in active contain-

ers. HiDeStore obtains the specific active container by

checking the fingerprint cache. At the same time, we

update  since some chunks of  become cold and

are moved to archival containers, which is implement-

ed  by modifying  CIDs of  these  chunks  to  the  IDs  of

the  corresponding  archival  containers.  The  CIDs  of

remaining chunks in  are modified to the negative

ID of , e.g., the CID  indicates that we need to

further  check  to  find  the  final  chunk  locations,

while the CID  indicates that the chunk is stored in

the archival container .

N

n

RN−1

RN

RN−1

T

As a  result,  all  recipes  form a  chain  as  shown in

Fig.7.  However,  determining  the  locations  of  chunks

incurs  high  overheads  due  to  the  needs  of  checking

multiple recipes in the recipe chain. To eliminate the

dependency among recipes, HiDeStore periodically up-

dates the chunk references via Algorithm 1, which up-

dates recipes from back to front. We use  to repre-

sent the newest backup version, while using  to rep-

resent  the  previous  backup  version. Algorithm 1 up-

dates  the  recipes  from ,  since  the  newest  recipe

 stores all chunks in the active containers and does

not  need  to  read  another  recipe  to  determine  the

chunk  locations.  Specifically,  HiDeStore  reads  the

recipe  and  inserts  all  positive  CIDs  into  the

hash  table  (lines  1–6),  indicating  that  the  corre-

sponding  chunks  are  stored  in  archival  containers.

 

Recipe of Version 1

Active Containers

Archival Containers

StoreRecipe of Version 2

Recipe of Version 3

Recipe of Version 4

Fig.7.  Recipes updating. The blue and red chunks are stored in archival and active containers, respectively.
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Hash  table  is  used  to  update  the  previous  recipe

, which modifies the negative CID of a chunk in

 to the positive CID in  when the chunk has a

match  in  (lines  11  and  12).  The  remaining  nega-

tive CIDs are modified to  (lines 13 and 14),

indicating  that  the  chunk  references  are  obtained

from the next recipe. At the same time, HiDeStore in-

serts  the  positive  CIDs of  into  a  new hash ta-

ble  (lines  17–19)  to  update  the  previous  recipe

 (line 22). Finally, all recipes point to  to ob-

tain  the  locations  of  chunks.  It  is  worth  noting  that

 in the recipe indicates that the chunks are stored

in  active  containers.  Moreover,  HiDeStore  updates

recipes  from  next  time,  rather  than  reading  all

the recipes to eliminate the recipe chain.

Algorithm 1. Recipes Updating[24]

R[N ] TInput: recipe , hash table 

R[N ]Output: updated recipe 

n = N − 1 n1: int ; //  is the previous backup version

c R[n]2: for all chunk  in  do

c.CID > 03:　　if  then

c T4:　　　insert chunk  into hash table 

5:　　end if
6: end for

n− −7: ; // update the recipes of older backup versions

R[n]8: while recipe  exist do

c R[n]9:　　for all chunk  in  do

c.CID < 010:　　　if  then

c p T11:　　　　if chunk  matches chunk  in  then

c.CID = p.CID12:　　　　　

13:　　　　else

c.CID = −(n+ 1)14:　　　　　

15:　　　　end if

16:　　　end if

c.CID > 017:　　　if  then

c T ′18:　　　　insert chunk  into a new Hash Table 

19:　　　end if

20:　　end for

HashTableDestroy(T ) T = T ′21:　　  and ;

n− −22:　　 ; // update the recipes of older backup versions
23: end while

Updating  recipes  incurs  negligible  overheads  due

to the small sizes of the recipe files. The recipes only

record  the  metadata  of  chunks,  as  shown  in Subsec-

tion 5.4. Moreover, HiDeStore updates the recipes of-

fline to avoid blocking the deduplication system. 

4.4    Restore Phase

Original data are restored according to the chunk

references in recipes. In traditional deduplication sys-

tems, all CIDs in recipes are positive numbers and in-

dicate  the  referred  containers.  However,  HiDeStore

contains three types of CIDs in recipes, including pos-

itive  CIDs,  0,  and negative CIDs.  The positive  CIDs

and  negative  CIDs  indicate  the  archival  containers

and  the  backup  versions,  respectively;  while  0  indi-

cates  the  active  containers.  In  this  case,  we  update

recipes  according  to Algorithm 1 to  obtain  the  loca-

tions  for  all  chunks,  and  then  read  the  contents  of

chunks from the active and archival containers.

The  obtained  chunks  assemble  the  original  data

stream in  the  restore  cache  via  the  chunk- and  con-

tainer-based approaches[15–18, 20]. Compared with exist-

ing  schemes,  HiDeStore  enhances  the  physical  locali-

ty for the new backup versions and delivers higher re-

store  throughput,  since  fewer  disk  accesses  are  in-

curred for chunk reading. 

4.5    Removing of Expired Versions

In deduplication systems,  expired versions are re-

moved for saving space[15, 23]. However, we cannot di-

rectly  remove  all  the  chunks  of  the  expired  version,

since  some  chunks  may  also  belong  to  other  backup

versions. We need to detect the chunks that only be-

long to the expired version before the chunks are re-

moved,  which  however  incurs  high  overheads  due  to

the  needs  of  checking  all  backup versions.  Moreover,

the  chunks  of  different  versions  are  interleaved  to-

gether, as shown in Fig.2, requiring some garbage col-

lection  efforts  to  reclaim  the  space  for  the  deleted

chunks.  The  challenge  is  to  remove  the  chunks  that

are only referred by expired versions while not incur-

ring  a  large  number  of  efforts  for  garbage  collection.

In practice, HiDeStore is efficient to carry out chunk

detection and garbage collection,  since  the  chunks  of

different  backup  versions  are  stored  in  different  con-

tainers. Unlike existing schemes that count the refer-

ences  of  chunks,  HiDeStore  leverages  the  Isolated

Container Deletion Algorithm (ICDA) to remove the

containers only referred by expired backup versions.

The methodology of ICDA is based on the classifi-

cation  of  hot  and  cold  chunks.  The  different  chunks

are  identified  via  the  proposed  fingerprint  cache  and

stored in active and archival,  containers respectively.

The cold chunks of  the previous backup versions are

not  referred  by  the  subsequent  backup  versions  ac-

cording  to  the  observation  from Fig.3.  Instead,  the

cold  chunks  are  physically  gathered  in  the  same

archival containers. As shown in Fig.8, we temporari-

ly  store  hot  chunks  in  active  containers  when  differ-

ent backup versions are processed.  At the beginning,
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all  chunks  of  backup  version  1  are  stored  in  active

containers,  since  these  chunks have a high probabili-

ty to appear in subsequent backup versions. When we

process the backup versions 2 and 3, some hot chunks

become  cold,  e.g.,  chunks ,  and .  In  this

case, we move these cold chunks from active contain-

ers  to  the  archival  containers.  Obviously,  the  cold

chunks  (e.g.,  chunks ,  and )  are  not  re-

ferred by version 3.  We directly  remove the  archival

containers 5 and 6 when the expired versions 1 and 2

are  deleted,  avoiding  the  expensive  expired  data  de-

tection and garbage collection, due to the high physi-

cally locality of the expired data.

BID BID

However,  in  the case  where only the backup ver-

sion  1  is  deleted,  we  cannot  directly  remove  the

archival  container  5,  since  the  chunk E is  also  re-

ferred  by  the  non-expired  backup  version  2.  To  effi-

ciently detect the archival containers that are only re-

ferred  by  the  expired  backup  versions,  ICDA  main-

tains  extra  8  B  metadata  in  the  container  to  record

the  ID of  the  newest  backup  version  (represented  as

). The container whose  is not larger than that

of the expired version is the expired container. We di-

rectly  remove  these  expired  containers  without  the

needs for expensive chunk detection and garbage col-

lection, since these containers are not referred by the

non-expired backup versions.

Unlike existing schemes that detect expired back-

up  versions  chunk  by  chunk,  ICDA removes  the  ex-

pired data in the granularity of containers. By physi-

cally  grouping  the  expired  chunks  together  in  the

archival  containers,  ICDA  becomes  efficient  to  re-

move  the  expired  data  and  reclaim  continuous  stor-

age space for further usage. 

5    Performance Evaluation

We compare HiDeStore with state-of-the-art sche-

mes in terms of deduplication and restore performance. 

5.1    Experimental Setup

The prototype of HiDeStore is implemented based

on  a  widely  used  deduplication  framework,  called

Destor[4], which processes data in a pipeline with high

parallelism. Unlike traditional  deduplication schemes,

HiDeStore modifies the indexing, rewriting, and stor-

ing  phases  to  identify  and  classify  the  hot  and  cold

chunks.  To facilitate fair  comparisons,  HiDeStore us-

es  a  TTTD  (Two-Threshold  Two-Divisor)  chunking

algorithm[27] and  SHA-1  hash  functions  like  other

schemes in the chunking and hashing phases to gener-

ate  fingerprints  for  further  deduplicaiton.  Moreover,

HiDeStore  stores  the  fingerprints  in  the  hash  tables

for low hash collisions[12].

To  show  the  efficiency  of  HiDeStore  in  terms  of

deduplication  performance,  we  select  state-of-the-art

locality- and  similarity-based  schemes  for  compar-

isons, including DDFS (Data Domain File System)[13],

Sparse Index[14], and SiLo[30]. DDFS removes all dupli-

cate  chunks  by  searching  the  whole  fingerprint  table

to achieve the highest deduplication ratio. Sparse In-

dex  samples  parts  of  fingerprints  for  caching  to  re-

duce the overheads of searching the whole fingerprint

table,  which  significantly  reduces  the  memory  con-

sumption for the fingerprint cache. By exploiting the

similarity of chunk streams, SiLo further improves the

throughput  for  deduplication.  Moreover,  to  show the

efficiency  of  HiDeStore  in  terms  of  restore  perfor-

mance,  we  compare  state-of-the-art  caching- and

rewriting-based  schemes,  including  Capping[17],

ALACC  (Adaptive  Look-Ahead  Chunk  Caching)[18],

and  LBW  (Low-Back  Window)[21].  We  directly  run

the source codes of ALACC for evaluations, while re-

implementing FBW according to the original work[21]

due to the lack of the open source codes. We config-
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ure all schemes with the reported parameters from the

original work to achieve the best results.

We  conduct  experimental  evaluations  on  five

widely  used  datasets[4, 15, 18, 21, 30],  and  the  details  of

these  datasets  are  shown in Table 1.  We conduct  all

experiments  on  a  Linux  server  with  kernel  version

v4.4.114.  The  server  is  equipped  with  two  8-core  In-

tel® Xeon® E5-2620  v4  @2.10  GHz CPUs  (each  core

with  32  KB  L1  instruction  cache,  32  KB  L1  data

cache, and 256 KB L2 cache), 20 MB last level cache

and 24 GB DRAM.
 
 

Table  1.    Details of Datasets

Dataset Total Size Total Versions Dedup_Ratio (%)

Linux Kernel② 64.0 GB 158 91.53

GCC③ 105.0 GB 175 78.75

Boost④ 61.0 GB 38 83.42

Fslhomes⑤ 920.0 GB 102 92.17

MacOS⑤ 1.2 TB 25 89.56
 

5.2    Performance in Deduplication Phase

In  general,  the  deduplication  system  needs  to  be

examined in three performance metrics, including the

deduplication  ratio,  the  deduplication  throughput,

and the memory consumption for the index table. 

5.2.1    Deduplication Ratio

The  deduplication  ratio  examines  the  amount  of

data  reduced  by  the  deduplication  system,  which  is

calculated via dividing the size of eliminated data by

the total data size. The deduplication ratios of differ-

ent  deduplication  schemes  are  shown  in Fig.9.  From

the results, we observe that the deduplication ratio of

DDFS is the highest, since DDFS removes all identi-

fied duplicate data by searching the whole fingerprint

table.  Unlike  DDFS,  Sparse  Index  and  SiLo  only

search  the  cached  fingerprints  in  memory  to  reduce

the overheads of  frequent disk accessing,  which how-

ever  decreases  some  deduplication  ratios  since  some

duplicate  chunks  are  overlooked.  Specifically,  Sparse

Index and SiLo group multiple chunks into segments

and sample partial chunks as features. Two segments

sharing the same features are identified as similar seg-

ments. Sparse Index and SiLo only search the similar

segments  to  identify  the  duplicate  chunks.  However,

some duplicate  chunks  in  the  segments  are  not  sam-

pled  as  features.  As  a  result,  these  duplicate  chunks

are  not  searched during  the  deduplication  phase  and

result in low deduplication ratios. Although configur-

ing a large sampling ratio achieves a high deduplica-

tion  ratio,  more  memory  is  consumed  for  fingerprint

caching  and  longer  latency  is  incurred  for  features

searching.  Moreover,  we  observe  that  the  deduplica-

tion ratio of HiDeStore is almost the same with that

of DDFS, since HiDeStore caches the chunks that have

high  probabilities  to  be  deduplicated.  These  chunks

are  identified  via  our  proposed  double-hash  finger-

print cache, which fully exploits the observations from

Fig.3,  i.e.,  only  the  hot  chunks  appear  in  the  subse-

quent backup versions.  By searching the hot chunks,

HiDeStore efficiently identifies the duplicate chunks.

Moreover,  we  also  evaluate  the  deduplication  ra-

tios  for  the  rewriting  schemes,  and  the  results  are

shown in Fig.9. We observe that the deduplication ra-

tios of the rewriting schemes are lower than those of

the  other  schemes,  since  the  stored  duplicate  chunks

occupy  the  available  storage  space  and  decrease  the

storage  efficiency.  Moreover,  the  rewriting  schemes

further  decrease  the  deduplication  ratios  when  more

data are processed due to the existence of more dupli-

cate chunks. 

5.2.2    Deduplication Throughput

The  experimental  platform,  i.e.,  Destor[4],  evalu-

ates the number of the lookup requests to the disk to

show  the  overheads  of  the  deduplication  phase.

Specifically,  Destor  maintains  the  whole  fingerprint

table  on disk  for  fingerprint  searching,  while  caching

parts of fingerprints in memory to accelerate the fin-

gerprint  searching  phase.  Hence,  a  large  number  of
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the  lookup  requests  for  the  whole  fingerprint  table

represent  the  high  overhead  of  accessing  disk,  which

delivers  low deduplication throughput due to the ex-

pensive  disk  I/Os.  We  evaluate  the  lookup  requests

per  GB  like  Destor  to  show  the  deduplication

throughput of different schemes, where the lookup re-

quests  per  GB  are  defined  as  the  number  of  lookup

requests  for  the  whole  fingerprint  table  when  1  GB

data  are  processed.  Unlike  conventional  schemes,

HiDeStore  identifies  and  classifies  the  hot  and  cold

chunks  during  the  deduplication  phase.  All  the  hot

chunks are prefetched in the fingerprint cache before

the  deduplication  phase  begins,  and  HiDeStore  only

searches  the  cached  hot  chunks  to  avoid  the  high

overheads of frequent disk accessing. We calculate the

lookup requests of HiDeStore with the same unit size

as the conventional schemes to facilitate fair compar-

isons, and the results are shown in Fig.10.

From the  results,  we  observe  that  the  lookup re-

quests of HiDeStore are the lowest among all schemes.

Specifically,  HiDeStore  reduces  the  lookup  overheads

by up to 140%, 50%, and 24% than DDFS, Sparse In-

dex,  and  SiLo,  respectively.  That  is  because  HiDe-

Store only searches the hot chunks in the fingerprint

cache, and the duplicate chunks have a high probabil-

ity to match with these hot chunks according to the

observations  from Fig.3.  By  avoiding  frequently  ac-

cessing the whole fingerprint table on disk, HiDeStore

reduces  the  overheads  of  fingerprint  searching  and

achieves high deduplication throughput.

From  the  results  in Fig.10(d),  we  observe  that

HiDeStore  incurs  higher  lookup  overhead  than  SiLo

on MacOS,  because  HiDeStore  prefetches  the  chunks

of  the  last  two  backup  versions  in  the  fingerprint

cache.  However,  it  is  worth  noting  that  the  hot

chunks of the last two versions are prefetched in the

fingerprint  cache  before  the  next  backup  version  is

processed.  The lookup overheads on MacOS incurred

by  HiDeStore  are  negligible,  since  the  prefetching  of

HiDeStore  does  not  block  the  deduplication  phase.

Moreover,  HiDeStore  sequentially  prefetches  finger-

prints from the recipe, and is more efficient than tra-

ditional deduplication schemes due to the efficient se-

quential read performance. 

5.2.3    Space Consumption for Fingerprint Table

The  deduplication  system  stores  the  fingerprints

in a hash table for further deduplication, which iden-

tifies  and removes  duplicate  chunks when the finger-

print table has a match with the coming chunk. The

traditional  deduplication  schemes  maintain  all  or

sample  parts  of  fingerprints  in  the  fingerprint  table,

depending  on  the  sampling  ratios.  Unlike  the  tradi-

tional  deduplication  schemes,  HiDeStore  directly

reads  hot  chunks  from  the  recipe  of  the  previous

backup version, avoiding constructing an extra finger-

print table to store the metadata, and hence showing

significant  strengths  over  existing  schemes.  We  use

the  same  metric  as  existing  schemes[4, 30],  i.e.,  space

overhead  per  MB/B[30],  to  evaluate  the  space  con-

sumption  for  the  fingerprint  table,  where  the  space

overhead per MB is defined as the required space for
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the indexes to deduplicate 1 MB data.

128 : 1

We evaluate the space overhead per MB/B for the

fingerprint  tables  of  all  schemes,  and  the  results  are

shown in Fig.11. DDFS incurs the highest space con-

sumption for the fingerprint table, since DDFS stores

all  fingerprints of unique chunks for exact deduplica-

tion.  The  space  consumption  is  high  when  a  large

number  of  small  files  exist  in  the  processed  dataset,

since a large number of chunks are generated. To re-

duce  the  space  consumption  of  the  fingerprint  table,

Sparse Index and SiLo leverage different sampling ap-

proaches  and  ratios  to  maintain  parts  of  the  finger-

prints  for  near-exact  deduplication,  and  outperform

DDFS by  up  to  two  orders-of-magnitude.  For  exam-

ple,  Sparse  Index  achieves  about  128x  space  savings

when  the  sample  ratio  is  set  to .  SiLo  further

reduces the space consumption for the fingerprint ta-

ble,  since  SiLo  samples  less  fingerprints  from  a  seg-

ments than Sparse Index.
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Fig.11.  Index table overheads.
 

Unlike  the  traditional  schemes,  HiDeStore  does

not require extra space to store the fingerprint table,

due to identifying and maintaining the fingerprints of

hot chunks during the deduplication phase. Specifical-

ly, the hot fingerprints have been stored in the recipe

of  the  previous  backup  version.  The  hot  fingerprints

are directly prefetched in the fingerprint cache before

the  next  backup  version  is  processed.  Therefore,

HiDeStore  has  significant  strengths  over  existing

deduplication schemes in terms of the space consump-

tion.  Moreover,  HiDeStore  saves  more  storage  space

than existing schemes when more backup versions are

processed, since HiDeStore does not need extra space

for  the  fingerprint  table  while  existing  schemes  pro-

portionally  consume a  large  amount  of  storage  space

to store the fingerprint tables. 

5.3    Performance in Restore Phase

The restore phase assembles the original data in a

chunk-by-chunk  manner,  requiring  to  read  chunks

from  various  containers  on  disks  according  to  the

recipe. The speed of restoring data is significantly in-

fluenced by the performance of reading chunks. Exist-

ing schemes deliver low restore performance due to in-

curring a large number of disk I/Os to read the physi-

cally  scattered  chunks.  The  restore  performance  de-

creases when the backup system stores multiple back-

up  versions  due  to  the  severe  chunk  fragmentation

problem. Unlike existing schemes,  HiDeStore aims to

achieve  high  restore  performance  by  enhancing  the

physical locality of the data. We use the same metric

with  existing  schemes[15–18, 21] to  evaluate  the  restore

performance, i.e., a speed factor (MB/container-read)

which  is  defined  as  the  mean  data  size  that  is  re-

stored  per  container[17, 21].  The  biggest  advantage  of

the speed factor is to avoid the speed variances of dif-

ferent  data  servers.  The  low  speed  factor  indicates

that  the  chunks  are  physically  scattered  into  differ-

ent  containers,  which  delivers  low  restore  perfor-

mance  due  to  the  chunk fragmentation  problem.  We

set the sizes of all containers to 4 MB to facilitate fair

comparisons. The scheme without the rewriting phase

is  set  to  be  the  baseline.  Moreover,  we also  compare

HiDeStore  with  state-of-the-art  rewriting  schemes  to

show  the  efficiency  of  HiDeStore  over  existing

schemes.

Fig.12 shows  the  restore  performance  of  different

schemes.  We  observe  that  existing  schemes  deliver

high restore performance on the old backup versions,

while  delivering  low  restore  performance  on  the  new

backup  versions,  because  the  chunk  fragmentation

problem is exacerbated over time, as shown in Fig.2.

Unlike  existing  schemes,  HiDeStore  significantly  im-

proves  the  restore  performance  for  the  new  backup

versions, e.g., the restore performance of HiDeStore is

about 2.6x higher than that of LBW+ALACC on the

new  backup  versions.  The  main  reason  is  that  the

physical  locality  of  the  new  backup  versions  is  en-

hanced  by  the  proposed  active  and  archival  contain-

ers. Specifically, HiDeStore temporarily maintains hot

chunks  in  active  containers.  When  some  hot  chunks

become  cold  in  processing  the  subsequent  versions,

HiDeStore moves these chunks to archival containers.

Through this way, the hot chunks of new backup ver-

sions are stored closely to avoid the chunk fragmenta-

tion problem, and the restore performance of the new

backup  version  is  significantly  improved.  It  is  worth

noting  that  the  new backup  versions  are  more  likely

to  be  restored  than  the  old  backup  versions[20, 22, 23]

for  version  rollbacks,  and  HiDeStore  is  efficient  to
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meet  the  demands  of  restoring  the  new  backup  ver-

sions  with  high  performance.  Moreover,  compared

with  the  rewriting  schemes,  we  observe  that

HiDeStore  not  only  delivers  higher  restore  perfor-

mance  on  the  new backup version,  but  also  achieves

higher  deduplication  ratios,  as  shown  in Fig.9 and

Fig.12. The main reason is that HiDeStore physically

stores the hot chunks together in the same containers,

rather  than  rewriting  multiple  duplicate  chunks  to

consume a large amount of storage space. 

5.4    Overheads Incurred by HiDeStore

O(N)

N

We  evaluate  the  overheads  incurred  by  HiDeSt-

ore, including the time overheads of updating recipes

and  moving  chunks.  Specifically,  HiDeStore  records

the  locations  for  the  stored  hot  chunks  during  the

deduplication  phase.  When  some  hot  chunks  become

cold after one backup version is processed, HiDeStore

moves these chunks from active containers to archival

containers, and updates the recipe according to Algo-

rithm 1 for future restoring. Algorithm 1 incurs 

complexity,  where  is  the  number  of  recipes.  We

evaluate the latency of updating a recipe on different

datasets, and the results are shown in Fig.13. We ob-

serve that the updating latency is related to the size

of a dataset, e.g., HiDeStore spends 21 ms on updat-

ing  a  recipe  for  the  dataset  of  Linux  Kernel.  More-

over,  it  is  worth  noting  that  HiDeStore  updates  the

recipes after a backup version is processed, which does

not block the deduplication system.

The overheads of moving chunks from active con-

tainers to archival containers are higher than those of

the recipe updating phase,  as  shown in Fig.13.  How-

ever,  the  chunk  moving  phase  is  implemented  in  a

pipeline  manner  with  high  parallelism  based  on

Destor,  avoiding  blocking  the  deduplication  system

for  a  long  time.  Moreover,  HiDeStore  moves  chunks

and merges sparse containers offline to avoid the long

latency  penalty,  and  hence  the  overheads  of  moving

chunks are acceptable in HiDeStore. 

5.5    Expired Backup Deletion

The expired backup versions are removed to save

space[15, 23], which needs to detect the expired chunks,

i.e., the chunks are only referred by the expired back-

up versions. We evaluate the metadata overheads for

different  inline  reference  management  schemes,  in-

cluding  Reference  Counter  (RC)[32],  Grouped  Mark-
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and-Sweep  (GMS)[33],  the  Container-Marker  Algo-

rithm (CMA)[15],  and our proposed Isolated Contain-

er  Deletion  Algorithm  (ICDA).  We  use  one  byte  to

maintain  the  reference  counter  in  different  schemes

for  fair  comparisons,  and  the  results  are  shown  in

Fig.14. RC causes the highest metadata overhead due

to  recording  references  for  all  unique  chunks.  GMS

maintains  a  bitmap  in  the  container  for  references,

and  incurs  high  metadata  overhead  since  each  con-

tainer stores a large number of chunks. CMA and IC-

DA record references for containers, and each contain-

er only consumes one byte for the counter. Therefore,

CMA and ICDA achieve about three orders of magni-

tude space savings than previous schemes.  Moreover,

ICDA saves more space than CMA, since ICDA does

not record references for active containers.
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Garbage collection needs to merge sparse contain-

ers after the chunks are removed. Compared with RC

and  GMS,  CMA  and  ICDA  generate  fewer  sparse

containers and significantly reduce the garbage collec-

tion  overheads,  since  CMA  and  ICDA  directly  re-

move  the  expired  containers  rather  than  the  scat-

tered  chunks.  We  examine  the  number  of  non-ex-

pired  containers  after  the  expired  backups  are  re-

moved  to  exhibit  the  actual  storage  cost,  i.e.,  using

the  same  metric  with  CMA[15] to  facilitate  fair  com-

parisons.  Apart  from the  basic  deduplication  process

(represented as the baseline), we also evaluate the im-

pact  of  rewriting  algorithms,  and  the  results  are

shown in Fig.15. We observe that ICDA shows large

advantages over other schemes, and reduces the num-

bers of containers by up to 1.8x, 2.0x, and 1.5x than

the baseline, Capping, and CMA schemes, respective-

ly. The main reason is that the cold chunks of a back-

up version are gathered together in the same archival

containers,  and  these  archival  containers  are  directly

removed during the expired backup deletions. Howev-

er,  other  schemes  store  the  cold  chunks  in  multiple

containers and fail to fully utilize the containers after

the  expired  chunks  are  removed.  Moreover,  the

rewriting  algorithm  consumes  more  space  than  the

other schemes even after the expired backups are re-

moved, since multiple chunks for the new backup ver-

sions are rewritten. 

6    Related Work

Deduplication  Schemes  for  Fingerprint  Access
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Bottleneck. The  deduplication  system  stores  finger-

prints of all chunks on disk[13, 14]. However, the dedu-

plication  throughput  significantly  decreases  when  a

large number of chunks are stored due to the expen-

sive disk I/Os. Zhu et al.[13] observed that the chunk

sequences appear in the same order in multiple back-

up streams. By exploiting such logical  locality of  the

chunk  sequence,  DDFS[13] proposes  to  prefetch  the

chunk  sequences  for  caching  and  construct  an  in-

memory  bloom  filter  to  deliver  high  deduplication

throughput.  To  reduce  the  memory  consumption  of

the  cached chunks,  Sparse  Index[14] proposes  to  sam-

ple  parts  of  chunks  for  near-exact  deduplication.

Block  Locality  Cache  (BLC)[26] proposes  to  update

the locality information according to the stored data,

which  avoids  using  the  outdated  locality.

ChunkStash[25] stores the fingerprint table on SSD to

avoid  the  penalty  of  the  random  disk  I/O.  Extreme

Binning[29] and SiLo[30, 35] explore and exploit the simi-

larity  of  segments  to  achieve  high  deduplication  ra-

tios.

Restore  Schemes  for  Chunk  Fragmentation  Prob-
lem. Existing  deduplication  systems  propose  two

kinds of approaches to alleviate the chunk fragmenta-

tion  problem,  including  optimizing  the  restore  cache

and rewriting some duplicate chunks. Specifically, the

stored chunk sequences have a high probability to be

read for assembling the original data[17, 18]. Therefore,

many schemes propose to cache the chunks and con-

tainers[15, 16, 20] to  reduce  the  number  of  disk  I/Os.

ALACC[18] proposes to construct a cache for the slid-

ing window to deliver higher restore performance. Un-

like the caching-based schemes, many schemes rewrite

chunks  according  to  different  standards,  such  as  the

Content-Based Rewriting algorithm (CBR)[16], Chunk

Fragmentation  Level  (CFL)[22],  and  Capping[17].  Cao

et  al.[21] dynamically  set  the  threshold  for  capping-

based schemes on different workloads to enhance the

physical locality of data streams.

Expired  Data  Deletion. The  backup  systems  re-

move  the  expired  data  to  save  space.  However,  the

expired chunks are physically scattered into different

containers and become hard to be removed due to the

high overheads  of  expired chunk detection and garb-

age  collection.  Reference  Counter  (RC)[32] counts  the

reference number of chunks, and removes the chunks

which are not referred by any backup version. To re-

duce  the  space  overheads  of  referencing,  Grouped

Mark-and-Sweep (GMS)[33] uses a bitmap in each con-

tainer,  while  the  Container-Marker  Algorithm

(CMA)[15] marks the containers rather than chunks. 

7    Conclusions

Based  on  the  observation  that  the  adjacent  ver-

sions  are  the  most  similar,  our  proposed  HiDeStore

leverages the double-hash fingerprint cache to identi-

fy hot and cold chunks, and stores different chunks in

active  and  archival  containers  respectively  to  en-

hance the physical locality. Our experimental evalua-

tion results show that HiDeStore achieves higher per-

formance in terms of deduplication, restore, and data

deletion  than  state-of-the-art  schemes.  We  have  re-

leased  the  open  source  code  of  HiDeStore  for  public

use  in  GitHub⑥.  Moreover,  apart  from  the  backup

storage systems, the database systems and cloud stor-

age systems contain a large amount of redundant da-

ta  and  require  efficient  deduplication  techniques  to

save  space.  However,  we  cannot  directly  deploy

HiDeStore  in  databases  and  cloud  storage  systems,

since  the  data  in  these  two  systems  exhibit  different

patterns.  We  will  further  optimize  HiDeStore  by  ex-

ploring and exploiting the data patterns in other stor-

age systems for better performance. 
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