

An Enhanced Physical-Locality Deduplication System for Space
Efficiency

Peng-Fei Li (李鹏飞), Yu Hua* (华　宇), Distinguished Member, CCF, Senior Member, ACM, IEEE
and Qin Cao (曹　钦)

Wuhan National Laboratory for Optoelectronics, School of Computer Science and Technology, Huazhong University of
Science and Technology, Wuhan 430074, China

E-mail: cspfli@hust.edu.cn; csyhua@hust.edu.cn; qincao@hust.edu.cn

Received July 27, 2022; accepted January 29, 2023.

Abstract An abundance of data have been generated from various embedded devices, applications, and systems, and

require cost-efficient storage services. Data deduplication removes duplicate chunks and becomes an important technique

for storage systems to improve space efficiency. However, stored unique chunks are heavily fragmented, decreasing restore

performance and incurs high overheads for garbage collection. Existing schemes fail to achieve an efficient trade-off among

deduplication, restore and garbage collection performance, due to failing to explore and exploit the physical locality of dif-

ferent chunks. In this paper, we trace the storage patterns of the fragmented chunks in backup systems, and propose a

high-performance deduplication system, called HiDeStore. The main insight is to enhance the physical-locality for the new

backup versions during the deduplication phase, which identifies and stores hot chunks in the active containers. The

chunks not appearing in new backups become cold and are gathered together in the archival containers. Moreover, we re-

move the expired data with an isolated container deletion scheme, avoiding the high overheads for expired data detection.

Compared with state-of-the-art schemes, HiDeStore improves the deduplication and restore performance by up to 1.4x and

1.6x, respectively, without decreasing the deduplication ratios and incurring high garbage collection overheads.

Keywords deduplication system, data reduction, space efficiency, physical-locality

1 Introduction

Widely used applications, such as IoT (Internet of

Things) embeddings, AI, and cloud computing[1–3],

generate a large amount of data and require large-

scale storage systems. Backup systems[4–6] store vari-

ous versions of data for software compatibility and

rollback, e.g., different versions of Linux kernels and

system snapshots. However, the data contain much

redundancy due to the similarity among different

backup versions. Data deduplication becomes an effi-

cient technique for different storage systems[7–11] to

eliminate duplicate data and save space[12, 13].

Deduplication systems improve storage efficiency

via eliminating duplicate data, following the work-

flow of chunking, fingerprinting, indexing, and fur-

ther storage managements[12–14]. To detect duplicate

data, we divide data streams into 4 KB–8 KB chunks

and leverage a cryptographic hash function to calcu-

late fingerprints for the chunks, e.g., SHA-1 (Secure

Hash Algorithm)[12] and MD5 (Message Digest Algo-

rithm 5). It has been proved that a hash collision of

the used cryptographic hash function is much smaller

than that of a hardware error[12]; hence unique chunks

have different fingerprints, and are stored in typical

4 MB containers on the persistent storage mediums,

such as HDD (hard disk drive) or SSD (solid state

drive). The chunk references of the original data

streams are stored in the recipes for data restoring.

However, the deduplication systems deliver low re-

store performance after multiple data versions are

Regular Paper

A preliminary version of the paper was published in the Proceedings of ACM/IFIP Middleware 2020.

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 62125202 and
U22B2022.

*Corresponding Author

Li PF, Hua Y, Cao Q. An enhanced physical-locality deduplication system for space efficiency. JOURNAL OF COM-

PUTER SCIENCE AND TECHNOLOGY 39(6): 1361−1379 Nov. 2024. DOI: 10.1007/s11390-023-2646-7

©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-023-2646-7
https://doi.org/10.1007/s11390-023-2646-7
https://doi.org/10.1007/s11390-023-2646-7
https://doi.org/10.1007/s11390-023-2646-7
https://doi.org/10.1007/s11390-023-2646-7
https://doi.org/10.1007/s11390-023-2646-7
https://doi.org/10.1007/s11390-023-2646-7

stored, due to the severe chunk fragmentation prob-

lem[15–17]. Specifically, the identified duplicate chunks

are pointed to existing containers, while unique

chunks are stored in new containers. As a result, the

chunks of a data stream are stored in different con-

tainers, incurring lots of expensive I/Os to read data

in the persistent storage to restore the original data.

The data chunks are severely scattered when more

versions are stored. Moreover, it becomes hard to re-

move the expired versions, since the chunks of differ-

ent versions are physically scattered and interleaved

together, which results in expensive efforts to detect

the expired chunks and conduct garbage collection.

To improve the restore performance, some de-

signs leverage caching-based schemes to reduce the

amount of container reading, e.g., some chunks[17–19]

and containers[15, 16, 20] are cached in the memory for

future reading. The main insight is to exploit the

cache-friendly locality of the backup stream, i.e., the

chunks are stored in the same order as they first ap-

pear in the stream. Therefore, the obtained contain-

ers have a high probability to contain the subsequent

chunks of the same data stream. However, caching-

based schemes become inefficient when a large num-

ber of backup versions are stored, since the chunks

are scattered into more different containers and show

poor locality for caching. Unlike the caching-based

schemes, some schemes rewrite the duplicate chunks

to enhance the physical locality of the data stre

am[15, 16, 21, 22], i.e., these schemes rewrite some chunks

into the same containers. In this way, fewer contain-

ers are read to restore the original data. Although the

chunk fragmentation problem is alleviated, the dedu-

plication ratio decreases due to the existence of dupli-

cate chunks. Even if the deduplication ratio decreases

by 1%, 40 GB extra space is consumed for 4 TB

unique data to store the rewritten data, which signifi-

cantly decreases the storage efficiency.

To remove expired data, existing schemes lever-

age the reference management approaches to detect

the expired chunks, and such schemes need to careful-

ly maintain the reference counters to prevent errors,

e.g., the removed chunks are referred by the non-ex-

pired backup versions. Moreover, the sparse contain-

ers occur after the expired backups are removed, in-

curring expensive overheads for garbage collection.

Unlike existing schemes, we propose to enhance

the physical locality of the backups for better dedupli-

cation, restore, and expired data deletion perfor-

mance. We explore and exploit the behaviors of the

fragmented chunks via a heuristic experiment, which

traces the storage path and reference patterns of dif-

ferent chunks among various backup versions. We ob-

serve that high redundancy arises between adjacent

backup versions, and the chunks not appearing in cur-

rent backup version have a low probability to appear

in the subsequent backup versions. Moreover, in back-

up systems, newer backup versions are more likely to

be restored than older versions[20, 22, 23], which implies

that the high restore performance of newer backup

versions is more important than that of older ones.

Based on the observations, we propose an effi-

cient deduplication scheme with high restore perfor-

mance and deduplication ratios, called HiDeStore①.

The main insight is to classify the hot and cold

chunks during the deduplication phase, and store hot

and cold chunks in active and archival containers re-

spectively to enhance the physical locality. The hot

chunks are referred by subsequent backup versions,

while the cold chunks have a low probability to ap-

pear in the new backup versions. Based on the high

physical locality of different chunks, HiDeStore reads

hot chunks to restore the new backups, while directly

removing cold chunks for expired version deletions.

Specifically, the workflow of HiDeStore consists of

three steps. 1) Hot and cold chunks are classified via

the double-hash based fingerprint cache. 2) The con-

tents of different chunks are filtered and stored in ac-

tive and archival containers, respectively. 3) The

recipes are updated for restoring the original data.

We construct a recipe chain to reduce updating over-

heads, and further optimize the process of recipe

searching by periodically eliminating the dependency

among recipes. Compared with state-of-the-art dedu-

plication schemes, HiDeStore reduces the index

lookup overheads by 38% and improves the restore

performance by up to 1.6x. By leveraging the Isolat-

ed Container Deletion Algorithm (ICDA), HiDeStore

becomes efficient to remove expired versions without

expensive garbage collection efforts, since the expired

chunks are gathered together in archival containers.

This paper has made significant improvements

over the preliminary version[24] as the follows.

● Tracing Storage Patterns of Different Chunks.
We conduct heuristic experiments on multiple work-

loads to analyze the storage patterns of chunks in

1362 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

①The source code of HiDeStore is available at https://github.com/iotlpf/HiDeStore, Nov. 2024.

https://github.com/iotlpf/HiDeStore

backup systems. The obtained observations motivate

us to construct the efficient deduplication system via

enhancing the physical locality for different chunks.

● High Deduplication Performance with High Ded-
uplication Ratios. We explore the workload character-

istics in backup systems and only cache fingerprints of

hot chunks for index searching, which avoids fre-

quently accessing disks and achieves high deduplica-

tion performance.

● High Restore Performance for New Backup Ver-
sions. Our proposed HiDeStore filters and stores cold

and hot chunks in different containers to enhance the

physical locality, which achieves high restore perfor-

mance for new backup versions, since HiDeStore reads

fewer containers than existing schemes.

● Low Overheads to Remove Expired Backups. We

analyze the processes of removing expired data in ex-

isting schemes and observe that the schemes incur

high overheads in expired data detection and garbage

collection. Therefore, we present an isolated contain-

er deletion algorithm to enable HiDeStore to detect

and remove expired containers with low overheads.

● Confirm Observations with Widely Used Data-
sets. We add a widely used dataset, Boost[4, 15, 18],

to confirm our observations in the backup systems,

and obtain the same observation with other datasets,

i.e., the adjacent versions are the most similar. Based

on the observations, HiDeStore efficiently identifies

and stores different chunks for high physical locality.

● Comprehensive Evaluations. We conduct evalu-

ations on five widely used datasets to show the

strengths of HiDeStore over existing schemes in terms

of redundant data deduplication, original data restor-

ing, and expired data deletion.

2 Background

2.1 Workflow of a Deduplication System

Chunk-based deduplication becomes an efficient

technique for backup systems to improve the space

utilization efficiency[7–11]. In this paper, we focus on

the in-line deduplication[13–16, 18, 20, 25–26], i.e., the data

is deduplicated once it is stored.

The workflow of a deduplication system is shown

in Fig.1. 1) The coming data stream is divided into

multiple chunks (e.g., on average 4 KB–8 KB[13]) via

various chunking algorithms, such as TTTD (the Two

Thresholds, Two Divisors Algorithm) chunking[27],

Rabin-based CDC (Content-Defined Chunking)[9], and

FastCDC[28]. 2) 20-byte fingerprints are calculated for

the obtained chunks via a secure hash function, e.g.,

SHA-1[12]. It is worth noting that the probability of a

hash collision is much smaller than that of a hard-

ware error[12]. 3) The chunks with identical finger-

prints are duplicate. Some fingerprints are main-

tained in the fingerprint cache to accelerate the index

searching[13, 14, 29, 30]. 4) When the coming fingerprints

miss in the cache, the fingerprints are further

searched in the whole fingerprint table on disks to

achieve high deduplication ratios. 5) The unique

chunks are stored into typical 4 MB containers. The

references (i.e., the fingerprints, chunk sizes, and con-

tainer IDs) of all chunks are recorded in a recipe[13]

for the data recovery. The data are restored from sys-

tem crashes or version rollbacks[16, 17]. 6) To restore

the original data, we read the recipe and obtain the

recorded chunk references. 7) Chunks are read accord-

ing to the recipe and the original data are assembled

in a chunk-by-chunk manner.

2.2 Fingerprint Access Bottleneck

In the deduplication phase, we search existing fin-

gerprints to identify whether the coming chunks are

duplicate. However, the number of fingerprints pro-

portionally increases with the stored data and the fin-

gerprint table possibly overflows the limited memory,

e.g., indexing 4 TB unique chunks requires at least

20 GB to store the fingerprints. Therefore, the finger-

Containers

Store

Update

Prefetch

Read

DRAM HDD

Chunks

Search

Step 1

Step 2

Step 3

Step 4

Step 7

Step 6

Step 5

Data Streams

Fingerprint

Cache

Restore

Cache

Recipes

Hash

Engine

Fingerprint

Index Table

Fig.1. Workflow of a deduplication system.

Peng-Fei Li et al.: An Enhanced Physical-Locality Deduplication System for Space Efficiency 1363

print access bottleneck occurs when the fingerprint

table on disks is frequently accessed, which signifi-

cantly decreases the deduplication performance[13, 14].

Existing deduplication systems leverage various

approaches to improve the hit ratio of the fingerprint

cache and avoid expensive I/Os on the disk. Some

schemes[13, 14, 25, 26] make full use of the locality char-

acteristic, i.e., the chunks among different backup

streams appear in approximately the same order with

a high probability. Thus, the chunks following the

searched chunks are prefetched into the fingerprint

cache during one disk access, which significantly im-

proves the hit ratio. Moreover, only partial indexes

are stored according to the sampling approaches to

reduce the memory consumption[14, 31]. For the work-

loads that have little or no locality, similarity-based

approaches were proposed[29, 30] for better prefetching.

However, we have to make a trade-off between dedu-

plication ratios and throughput, since the efficiency of

existing schemes depends on the locality and similari-

ty of the workloads. Moreover, these schemes over-

look the chunk storage management during the dedu-

plication phase, and incur the severe chunk fragmen-

tation problem over time, as shown in Subsection 2.3.

2.3 Chunk Fragmentation Problem

The restore phase reads chunks from different

containers according to the recipe, and assembles the

original data chunk by chunk. However, the restore

performance suffers from the chunk fragmentation

problem[6, 15–18, 21], i.e., the chunks of the same data

stream are scattered into various containers, incur-

ring frequent disk accesses during the recovery phase.

The main reason is that the identified duplicate

chunks are not stored together with unique chunks

when a data stream is processed.

Fig.2 illustrates how the chunk fragmentation

A, C, D, E, F,

G, and H

I, J, K, and L

problem arises with the assumption that each con-

tainer contains at most three chunks. During the

deduplication phase, the unique chunks are stored in

containers when the chunks arrive. The chunks be-

longing to the first data stream are stored in contain-

ers 1, 2, and 3. For the second data stream, the iden-

tified duplicate chunks (e.g., chunks

) are not stored, while the unique chunks

(e.g., chunks) are stored in contain-

ers 4 and 5. As a result, we need to access five con-

tainers to restore the second backup stream. The

same deduplication mechanism is applied to the third

data stream, and we need to access six different con-

tainers to restore the third data stream. Such chunk

fragmentation problem is exacerbated over time when

more backup versions are stored.

A C

C

Some schemes are motivated from the observa-

tion that the order to read chunks is the same as that

to store the chunks, and they propose caching-based

schemes to improve the restore performance. Hence,

we cache a sequence of chunks in one disk access to

speed up the chunk reading. For example, if contain-

er 1 is cached when chunk is read, chunk will hit

the cache since chunk has already been contained

in container 1, avoiding re-accessing the disk. More-

over, some schemes propose a look-ahead window to

assemble the chunks belonging to the same contain-

er[17, 18], which avoids the frequent accesses to the

same container. However, the chunk fragmentation

problem is exacerbated when more backup versions

are stored, since the chunks are scattered into a large

number of containers and exhibit poor physical locality.

A more promising way to improverestore perfor-

mance is to enhance the physical locality of the back-

up streams by rewriting some duplicate chunks. For

example, we only need to read four containers when

the chunks of the third backup stream are stored to-

gether, rather than reading six containers in Fig.2.

6

Version 1

Version 2

Version 3

54321 1'













 

























 

























       

       













 







Sparse Containers

Remove Version 1

Containers

2'

Fig.2. Chunk fragmentation problem[24]. The order of versions is determined by the generation time.

1364 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

Various rewriting schemes leverage different ap-

proaches to determine which chunks to rewrite, such

as the Content-Based Rewriting algorithm (CBR)[16],

Chunk Fragmentation Level (CFL)[22], and capping-

based schemes[17, 21]. Moreover, Fu et al.[15] exploited

the historic information to rewrite the chunks. How-

ever, these rewriting schemes decrease the deduplica-

tion ratios due to the existence of duplicate chunks,

and the duplicate chunks consume much available

space. For example, 40 GB of extra space is con-

sumed for 4 TB of unique data to store the rewritten

data even if the deduplication ratio decreases by 1%.

2.4 Garbage Collection

B

D

B D

B

D

Physical fragmented chunks often result in high

overheads for garbage collection when expired ver-

sions are removed, due to the time-consuming phase

of identifying the chunks that are only referred by the

expired backups. Moreover, the chunks of different

versions are interleaved together, requiring many

garbage collection efforts to reclaim the space for the

deleted chunks. As shown in Fig.2, only chunks

and are removed when backup version 1 is re-

moved, since only chunks and are not referred

by other versions. However, identifying chunks and

 becomes a bottleneck due to the complicated refer-

ence management for chunks. Moreover, removing

fragmented chunks results in sparse containers, such

as containers 1' and 2' in Fig.2, and these sparse con-

tainers waste much storage space.

In order to remove expired backups, existing ap-

proaches leverage offline and inline algorithms for

backup deletions[15, 32, 33]. For example, all finger-

prints of chunks are traversed when the system is

idle, and additional metadata for the chunk refer-

ences is maintained during the deduplication phase.

However, these approaches incur high time and space

overheads, due to the needs of managing the metada-

ta of chunk references. Furthermore, extra efforts are

consumed on merging the sparse containers after the

expired backups are removed.

3 Observations on Fragmented Chunks

To gain more insights about the fragmented

chunks, we conduct a heuristic experiment on five

widely used datasets, including Linux Kernel[4],

GCC[15], Fslhomes[18], MacOS[21], and Boost. More de-

tails about the used workloads are shown in Section 5.

The heuristic experiments aim to obtain the patterns

of chunk references among different backup versions,

where the chunk reference points to the container

that contains the corresponding chunk.

We conduct a heuristic experiment based on a

widely used deduplication platform, called Destor[4].

Specifically, we assign an infinite buffer to store the

metadata of chunks, including fingerprints, chunk

size, and a version tag, where the version tag indi-

cates the most recent backup version containing the

chunk. For example, the version tags of all chunks are

set to V1 when the first backup version is deduplicat-

ed. When the chunks of the second backup version

have matches within the buffer, we modify the ver-

sion tags of these chunks to V2 to indicate that these

chunks are contained in the backup version 2. At the

same time, the unique chunks in the second backup

version are stored in the buffer with the version tag

V2. The remaining chunks (i.e., not appearing in the

second backup version) in the buffer keep the version

tag V1, indicating that these chunks are contained in

the backup version 1. The heuristic experiment pro-

cesses all data in the same way. After all backup ver-

sions are processed, the version tags indicate the

newest backup versions containing the chunks.

To figure out the reference patterns of different

backup versions, we count the numbers of various

version tags after each backup version is processed,

and the results are shown in Fig.3. As shown in

Fig.3(a), there are 1 557 V1 chunks after the first

backup version is deduplicated. The number of V1

chunks decreases to 734 after the second backup ver-

sion is processed and almost no longer decreases in

subsequent backup versions. Such results indicate

that these 734 chunks are not contained in the subse-

quent backup versions, which incurs chunk fragmen-

tation issues over time, since 823 V2 chunks are inter-

leaved together with 734 V1 chunks. We have the

same observations on other chunks and workloads, as

shown in Fig.3(b), Fig.3(c), and Fig.3(e). The obser-

vation on MacOS is a little different, as shown in

Fig.3(d). For example, the V1 chunks not only de-

crease in the second backup version, but also de-

crease in the third backup version. However, V1

chunks hardly decrease after these subsequent two

backup versions are processed.

From the experimental results in Fig.3, we have

two important observations. First, the adjacent back-

up versions are the most similar. Second, the chunks

not appearing in the current backup version have a

low probability to appear in subsequent backup ver-

Peng-Fei Li et al.: An Enhanced Physical-Locality Deduplication System for Space Efficiency 1365

sions[24]. The real-world applications also offer in-

sights to prove these observations[20, 22, 23], e.g., a new

version of software is upgraded from the old versions.

The new version contains most contents of the old

versions for software compatibility, and develops some

new functions for better usage. Moreover, the system

snapshots are generated along with time, and a new

snapshot is generated from the old ones.

The obtained observations motivate us to store

the chunks of new backup versions closely to enhance

the physical locality for high restore performance,

e.g., all the V8 chunks are stored closely to improve

the physical locality of version 8. Although the re-

store performance of the old version decreases, such

design is feasible since existing studies[20, 22, 23] demon-

strate that the newer backup versions are more likely

to be restored from the system crashes or version roll-

backs than the older backup versions. It is worth not-

ing that all the observations come from backup sys-

tems, e.g., the systems store different versions of the

software (such as GCC, Linux Kernel) and the snap-

shots. We have the same observations on other work-

loads, e.g., Gdb and Cmake[4, 15, 30].

4 Design of HiDeStore

Unlike existing schemes, we propose HiDeStore to

efficiently store chunks with high physical locality for

high deduplication and restore performance. The

workflow of our design is viewed as a reverse inline

deduplication system. One of the key insights is to

classify the hot and cold chunks during the deduplica-

tion phase. The chunks having a high probability to

appear in new backup versions are hot chunks, while

the other chunks become cold chunks. Another in-

sight is to store the hot and cold chunks into the ac-

tive and archival containers to enhance the physical

locality, respectively. By grouping the chunks of new

backup versions closely, the chunk fragmentation

problem is alleviated and the restore performance is

improved. Moreover, we directly remove the expired

containers without expensive garbage collection.

The system overview of HiDeStore is shown in

Fig.4. The differences with existing schemes are that

HiDeStore identifies hot and cold chunks in the pro-

posed fingerprint cache with double hashes, and stores

chunks via a filter to gather different chunks in differ-

ent containers. Specifically, the fingerprint cache iden-

tifies duplicate chunks when the coming chunks are

matched within the fingerprint cache. The chunks not

appearing in the current backup version become cold

and are removed from the fingerprint cache after cur-

rent backup version is processed. To improve the

physical locality, HiDeStore temporarily stores the

coming hot chunks in active containers and moves

cold chunks to archival containers. In the context of

our paper, the active and archival containers are

stored in different locations to enhance the physical

locality for hot and cold chunks, respectively. After

the cold chunks are kicked out from the active con-

tainers, HiDeStore merges the sparse active contain-

0

350

700

1 050

1 400

1 750

2 100

0

2

4

6

8

105

104

103

102

107

106

105

104

103

107

106

105

104

103

104

(a)

1 2 3 4 5 6 7 8 9 10

Backup Version

(b)

1 2 3 4 5 6 7 8 9 10

Backup Version

(c)

1 2 3 4 5 6 7 8 9 10

Backup Version

(d)

1 2 3 4 5 6 7 8 9 10

Backup Version

(e)

1 2 3 4 5 6 7 8 9 10

Backup Version

N
u
m

b
e
r

o
f
C

h
u
n
k
s

N
u
m

b
e
r

o
f

C
h
u
n
k
s

(l
o
g


)

N
u
m

b
e
r

o
f

C
h
u
n
k
s

(l
o
g


)

N
u
m

b
e
r

o
f

C
h
u
n
k
s

(l
o
g


)

N
u
m

b
e
r

o
f

C
h
u
n
k
s

(l
o
g


)

V1
V5

V2
V6

V3
V7

V4
V8

V1
V5

V2
V6

V3
V7

V4
V8

V1
V5

V2
V6

V3
V7

V4
V8

V1
V5

V2
V6

V3
V7

V4
V8

V1
V5

V2
V6

V3
V7

V4
V8

Fig.3. Chunk distributions of different workloads. (a) Linux Kernel. (b) GCC. (c) Fslhomes. (d) MacOS. (e) Boost.

1366 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

ers to improve the storage efficiency, and such design

incurs acceptable overheads since the step of merging

space containers is carried out offline. More details

are shown in Subsections 4.1 and 4.2.

Moreover, the recipe records the locations of

chunks when coming chunks are stored in different

active containers, and it needs to be updated when

some chunks are moved into archival containers.

However, some chunks appear in multiple backup ver-

sions, incurring high overheads to update all the in-

volved recipes. Instead of updating all recipes,

HiDeStore proposes a recipe chain updating algo-

rithm to only update the recipe of the previous one

backup version, and a recipe chain is generated

among multiple backup versions. To reduce the over-

heads of reading recipes, HiDeStore periodically elimi-

nates the dependency of the recipe chain by pointing

chunk references to the archival containers, as shown

in Subsection 4.3. The original data streams are re-

stored by reading chunks according to the recipes,

and the workflow of restoring is shown in Subsection

4.4. Moreover, it becomes easy for HiDeStore to re-

move expired backups via the proposed ICDA, since

the corresponding cold chunks are stored together in

archival containers, as shown in Subsection 4.5.

4.1 Fingerprint Cache with Double Hash

The traditional fingerprint cache becomes ineffi-

cient to exploit the observations from Fig.3, since the

cache fails to identify the hot and cold chunks during

the deduplication phase. Moreover, the traditional fin-

gerprint cache prefetches chunks according to the log-

ical locality, and becomes inefficient to provide suffi-

cient space for hot chunks since the cold chunks are

also prefetched in the cache.

The observations from Fig.3 indicate that cold

chunks have a negligible probability to appear in sub-

sequent backup versions. Hence, we only need to store

hot chunks in the fingerprint cache. Unlike existing

schemes, we propose a fingerprint cache with two

hash tables to classify the hot and cold chunks. In the

deduplication phase, HiDeStore only searches hot

chunks in the fingerprint cache and overlooks cold

chunks to avoid the expensive disk accesses. The two

hash tables are represented as T1 and T2, respective-

ly, each of which contains fingerprints as keys and

metadata of chunks as values, where the metadata

consists of the chunk size and the IDs of active con-

tainers being stored (abbreviated as CIDs). Before

current backup version (represented as CV) is pro-

cessed, T1 caches the hot chunks (i.e., the chunks of

the previous backup version) and T2 is empty. Dur-

ing the deduplication phase, the identified unique

chunks are directly inserted into T2, while the chunks

hitting T1 are removed from T1 and inserted into T2.

After CV is processed, the chunks remaining in T1

become cold chunks since these chunks do not appear

in CV, while the chunks in T2 are hot chunks and

used to deduplicate subsequent backup versions.

A

A

A

B

B

B

B

B

C

C

The workflow of the proposed double-hash finger-

print cache is illustrated in Fig.5, which totally con-

tains three kinds of cases to process the coming

chunks. In the first case, chunk is identified as a

unique chunk due to not hitting both T1 and T2. We

insert the fingerprints of chunk into T2 and store

the content of chunk into an active container, as

shown in Subsection 4.2. In the second case, chunk

is identified as a duplicate chunk due to hitting T1.

Chunk is also classified as a hot chunk due to hav-

ing a high probability to appear in subsequent back-

up versions. In this case, we move the fingerprints of

chunk from T1 to T2 to process the subsequent

backup versions. It is worth noting that the content

of chunk has been stored in an active container,

since chunk is a duplicate chunk. In the third case,

chunk is also identified as a duplicate chunk due to

hitting T2. The metadata and content of chunk

have been correctly stored in T2 and active contain-

ers. After CV is processed, the chunks in T1 become

cold and their contents are moved from active con-

tainers to archival containers, as shown in Subsection

Update
Prefetch

Update

HDDSearch Active Containers
(Hot Chunks)

Archival Containers
(Cold Chunks)

Filter

Read

Read

Data Streams

Hash Engine

Fingerprint Cache

Restore Cache

DRAM

ChunksStep 1

Step 2 Step 3

Step 9

Step 4 Step 5

Step 6

Step 7

Step 8

Recipes

Fig.4. System overview of HiDeStore.

Peng-Fei Li et al.: An Enhanced Physical-Locality Deduplication System for Space Efficiency 1367

4.2. Finally, HiDeStore leverages the hot chunks to

deduplicate the subsequent backup versions, which is

simply implemented by changing T2 to T1.

×

We add another hash table to process the work-

load of MacOS, which is similar to the double-hash

fingerprint cache to identify and classify hot and cold

chunks. Since we use the fingerprints calculated via

SHA-1 as keys in the hash table, the probability of a

hash collision is much smaller than that of a hard-

ware error[13]. It is worth noting that the sizes of T1

and T2 are bounded to the metadata size of one (or

two) backup version(s), and hardly overflow the limit-

ed memory. Take the data in MacOS (a very large

workload) as an example, i.e., one version contains

about 5 million chunks and the total size of T2 is

about 100 MB (5 000 000 28 byte), where 28-byte

metadata consists of 20-byte fingerprints, a 4-byte

CID, and a 4-byte chunk size, as shown in Fig.5.

Compared with traditional deduplication schemes,

HiDeStore significantly improves the deduplication

throughput due to avoiding the expensive disk access-

es. Moreover, HiDeStore achieves high deduplication

ratios as shown in Subsection 5.2, since only hot

chunks have a high probability to appear in the sub-

sequent backup versions and searching hot chunks in

the fingerprint cache is efficient for high deduplica-

tion ratios.

4.2 Chunk Filter to Separate Chunks

The traditional deduplication systems directly

write the incoming unique chunks into containers for

the archival purpose, which however incurs the se-

vere chunk fragmentation problem as shown in Fig.2.

Unlike existing schemes, HiDeStore changes the stor-

age paths for the coming chunks, and stores hot and

cold chunks into active and archival containers, re-

spectively. The structures of active and archival con-

tainers are the same, as shown in Fig.6. A container

contains the metadata and real data of chunks, where

the metadata consists of the container ID, the total

data size, and the hash table for the contained

chunks. Each container has the same size with tradi-

tional containers (i.e., 4 MB) to achieve high storage

efficiency.

E

F

Specifically, the incoming unique chunks are tem-

porarily stored in active containers during the dedu-

plication phase, served as hot chunks. After one back-

up version is deduplicated, the cold chunks are identi-

fied by the fingerprint cache and moved from active

containers to archival containers. The process of

chunk moving works like a filter, as shown in Fig.4.

However, some active containers become sparse after

the cold chunks are removed, and we need to com-

pact the sparse containers to improve the space uti-

lization. We cannot directly reuse the space of the re-

moved chunks due to the unequal sizes. Specifically,

the deduplication systems generally use content-based

chunking algorithms to avoid the boundary-shift

problem[9, 34], which generates variable-length chunks.

For example, 7.3 KB space in total is released in con-

tainer 1 after the chunks of 3.6 KB and 3.7 KB are

removed, as shown in Fig.6. However, we cannot in-

sert chunk with 4.2 KB into container 1 due to the

discontinuous space. Although chunk with 3.1 KB

3n7sdg Real Data

4d5lg6 Real Data

6nu0mr Real Data

Fingerprint CID Size

4d5lg6 1 4.2KB

6fykh8 1 3.8 KB

5shop3 5 4.3 KB

Fingerprints CID Size

4d5lg6 1 4.2 KB

6numr 1 3.9 KB

3n7sdg 3 4.4 KB

ggggggggg44d4d4d4d4dd5d5d5d5d55l5l5llglglglglgggg6666666 1111 4444.4.4.4.222222K2K2K2KKKKKKKKBBKBBBBBB44d4d4d4d4d5d5d5d5d5l5l5llglglglglggg66666666 11111 4444444422222K2K2K2K2KKKKKKBBBKBKBBBB

Fingerprint CacheChunk 

Chunk 

Chunk 

Hash Table T Hash Table T

Remove

and

Insert

..

.
..
.

..

.
..
.

..

.
..
.

4d5lg6 1 4.2 KB

Fig.5. Structure of the fingerprint cache[24].

1 Metadata 3.6 KB 4.2 KB 3.7 KB 4.1 KB ···

2 Metadata 3.8 KB 3.6 KB 3.5 KB 4.0 KB ···

3 Metadata 4.2 KB 4.1 KB 3.6 KB ···

4.2 KB 3.1 KBChunk  Chunk 

CID

Sparse Containers

Compact

Fig.6. Compaction of sparse containers.

1368 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

can be inserted into container 1, a large amount of

fragmented space is generated and wasted.

Instead, HiDeStore merges and compacts the

sparse containers to reuse the fragmented space in ac-

tive containers. Specifically, HiDeStore calculates the

space utilization for the active containers after the

cold chunks are removed, where the space utilization

is defined as the used size divided by the total size.

The container with a low space utilization is identi-

fied as a sparse container, requiring to be merged.

The process of compacting sparse containers is illus-

trated in Fig.6, which writes the chunks of two (or

more) sparse containers into the same container with-

out considering the order, since all these chunks are

hot chunks and prefetched together during the read-

ing phase. The merged container is stored on disk by

overwriting the sparse container whose CID is the

smallest to improve the space utilization.

To avoid the overheads of moving cold chunks

from active containers to archival containers,

HiDeStore implements the chunk moving phase in a

pipeline manner with high parallelism. The deduplica-

tion system continues to process the next backup ver-

sion without waiting for moving chunks, since the hot

and cold chunks have been identified in the proposed

double-hash fingerprint cache and the cold chunks are

moved to archival containers offline. By separately

storing different chunks in active and archival con-

tainers, HiDeStore improves the physical locality of

new backup versions. HiDeStore achieves higher re-

store performance due to incurring fewer expensive

disk accesses compared with existing schemes[15–18].

4.3 Recipes Updating

The deduplication systems record all chunk refer-

ences of the original data stream in the recipes for fu-

ture restoring, where a chunk reference consists of the

fingerprints, the chunk size, and the ID of the corre-

sponding container (represented as CID). In

HiDeStore, the chunks are temporarily stored in ac-

tive containers and moved to archival containers

when the chunks become cold. To exactly record the

locations for chunks, the recipes need to be updated

when the chunks are moved to different containers.

However, we have to check all recipes to determine

which one needs to be updated, which incurs high

overheads due to the expensive disk accesses.

V4 V4

R4 V4 0

R3 V3

R3

V4 −4

R4

4

4

We propose a recipe chain updating algorithm to

reduce the overheads of updating recipes, which only

updates the previous one recipe, rather than checking

all recipes. For the case of MacOS, we update the pre-

vious two recipes. The recipe chain updating algo-

rithm is illustrated in Fig.7, which shows the results

after backup version is processed. Since is the

newest backup version and all chunks are hot chunks,

the recipe of records CIDs of all chunks as ,

indicating that all chunks are stored in active contain-

ers. HiDeStore obtains the specific active container by

checking the fingerprint cache. At the same time, we

update since some chunks of become cold and

are moved to archival containers, which is implement-

ed by modifying CIDs of these chunks to the IDs of

the corresponding archival containers. The CIDs of

remaining chunks in are modified to the negative

ID of , e.g., the CID indicates that we need to

further check to find the final chunk locations,

while the CID indicates that the chunk is stored in

the archival container .

N

n

RN−1

RN

RN−1

T

As a result, all recipes form a chain as shown in

Fig.7. However, determining the locations of chunks

incurs high overheads due to the needs of checking

multiple recipes in the recipe chain. To eliminate the

dependency among recipes, HiDeStore periodically up-

dates the chunk references via Algorithm 1, which up-

dates recipes from back to front. We use to repre-

sent the newest backup version, while using to rep-

resent the previous backup version. Algorithm 1 up-

dates the recipes from , since the newest recipe

 stores all chunks in the active containers and does

not need to read another recipe to determine the

chunk locations. Specifically, HiDeStore reads the

recipe and inserts all positive CIDs into the

hash table (lines 1–6), indicating that the corre-

sponding chunks are stored in archival containers.

Recipe of Version 1

Active Containers

Archival Containers

StoreRecipe of Version 2

Recipe of Version 3

Recipe of Version 4

Fig.7. Recipes updating. The blue and red chunks are stored in archival and active containers, respectively.

Peng-Fei Li et al.: An Enhanced Physical-Locality Deduplication System for Space Efficiency 1369

T

RN−2

RN−2 T

T

−(n+ 1)

RN−2

T ′

RN−3 RN

−N

RN

Hash table is used to update the previous recipe

, which modifies the negative CID of a chunk in

 to the positive CID in when the chunk has a

match in (lines 11 and 12). The remaining nega-

tive CIDs are modified to (lines 13 and 14),

indicating that the chunk references are obtained

from the next recipe. At the same time, HiDeStore in-

serts the positive CIDs of into a new hash ta-

ble (lines 17–19) to update the previous recipe

 (line 22). Finally, all recipes point to to ob-

tain the locations of chunks. It is worth noting that

 in the recipe indicates that the chunks are stored

in active containers. Moreover, HiDeStore updates

recipes from next time, rather than reading all

the recipes to eliminate the recipe chain.

Algorithm 1. Recipes Updating[24]

R[N] TInput: recipe , hash table

R[N]Output: updated recipe

n = N − 1 n1: int ; // is the previous backup version

c R[n]2: for all chunk in do

c.CID > 03:　　if then

c T4:　　　insert chunk into hash table

5:　　end if
6: end for

n− −7: ; // update the recipes of older backup versions

R[n]8: while recipe exist do

c R[n]9:　　for all chunk in do

c.CID < 010:　　　if then

c p T11:　　　　if chunk matches chunk in then

c.CID = p.CID12:　　　　　

13:　　　　else

c.CID = −(n+ 1)14:　　　　　

15:　　　　end if

16:　　　end if

c.CID > 017:　　　if then

c T ′18:　　　　insert chunk into a new Hash Table

19:　　　end if

20:　　end for

HashTableDestroy(T) T = T ′21:　　 and ;

n− −22:　　 ; // update the recipes of older backup versions
23: end while

Updating recipes incurs negligible overheads due

to the small sizes of the recipe files. The recipes only

record the metadata of chunks, as shown in Subsec-

tion 5.4. Moreover, HiDeStore updates the recipes of-

fline to avoid blocking the deduplication system.

4.4 Restore Phase

Original data are restored according to the chunk

references in recipes. In traditional deduplication sys-

tems, all CIDs in recipes are positive numbers and in-

dicate the referred containers. However, HiDeStore

contains three types of CIDs in recipes, including pos-

itive CIDs, 0, and negative CIDs. The positive CIDs

and negative CIDs indicate the archival containers

and the backup versions, respectively; while 0 indi-

cates the active containers. In this case, we update

recipes according to Algorithm 1 to obtain the loca-

tions for all chunks, and then read the contents of

chunks from the active and archival containers.

The obtained chunks assemble the original data

stream in the restore cache via the chunk- and con-

tainer-based approaches[15–18, 20]. Compared with exist-

ing schemes, HiDeStore enhances the physical locali-

ty for the new backup versions and delivers higher re-

store throughput, since fewer disk accesses are in-

curred for chunk reading.

4.5 Removing of Expired Versions

In deduplication systems, expired versions are re-

moved for saving space[15, 23]. However, we cannot di-

rectly remove all the chunks of the expired version,

since some chunks may also belong to other backup

versions. We need to detect the chunks that only be-

long to the expired version before the chunks are re-

moved, which however incurs high overheads due to

the needs of checking all backup versions. Moreover,

the chunks of different versions are interleaved to-

gether, as shown in Fig.2, requiring some garbage col-

lection efforts to reclaim the space for the deleted

chunks. The challenge is to remove the chunks that

are only referred by expired versions while not incur-

ring a large number of efforts for garbage collection.

In practice, HiDeStore is efficient to carry out chunk

detection and garbage collection, since the chunks of

different backup versions are stored in different con-

tainers. Unlike existing schemes that count the refer-

ences of chunks, HiDeStore leverages the Isolated

Container Deletion Algorithm (ICDA) to remove the

containers only referred by expired backup versions.

The methodology of ICDA is based on the classifi-

cation of hot and cold chunks. The different chunks

are identified via the proposed fingerprint cache and

stored in active and archival, containers respectively.

The cold chunks of the previous backup versions are

not referred by the subsequent backup versions ac-

cording to the observation from Fig.3. Instead, the

cold chunks are physically gathered in the same

archival containers. As shown in Fig.8, we temporari-

ly store hot chunks in active containers when differ-

ent backup versions are processed. At the beginning,

1370 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

B,D,E H

B,D,E H

all chunks of backup version 1 are stored in active

containers, since these chunks have a high probabili-

ty to appear in subsequent backup versions. When we

process the backup versions 2 and 3, some hot chunks

become cold, e.g., chunks , and . In this

case, we move these cold chunks from active contain-

ers to the archival containers. Obviously, the cold

chunks (e.g., chunks , and) are not re-

ferred by version 3. We directly remove the archival

containers 5 and 6 when the expired versions 1 and 2

are deleted, avoiding the expensive expired data de-

tection and garbage collection, due to the high physi-

cally locality of the expired data.

BID BID

However, in the case where only the backup ver-

sion 1 is deleted, we cannot directly remove the

archival container 5, since the chunk E is also re-

ferred by the non-expired backup version 2. To effi-

ciently detect the archival containers that are only re-

ferred by the expired backup versions, ICDA main-

tains extra 8 B metadata in the container to record

the ID of the newest backup version (represented as

). The container whose is not larger than that

of the expired version is the expired container. We di-

rectly remove these expired containers without the

needs for expensive chunk detection and garbage col-

lection, since these containers are not referred by the

non-expired backup versions.

Unlike existing schemes that detect expired back-

up versions chunk by chunk, ICDA removes the ex-

pired data in the granularity of containers. By physi-

cally grouping the expired chunks together in the

archival containers, ICDA becomes efficient to re-

move the expired data and reclaim continuous stor-

age space for further usage.

5 Performance Evaluation

We compare HiDeStore with state-of-the-art sche-

mes in terms of deduplication and restore performance.

5.1 Experimental Setup

The prototype of HiDeStore is implemented based

on a widely used deduplication framework, called

Destor[4], which processes data in a pipeline with high

parallelism. Unlike traditional deduplication schemes,

HiDeStore modifies the indexing, rewriting, and stor-

ing phases to identify and classify the hot and cold

chunks. To facilitate fair comparisons, HiDeStore us-

es a TTTD (Two-Threshold Two-Divisor) chunking

algorithm[27] and SHA-1 hash functions like other

schemes in the chunking and hashing phases to gener-

ate fingerprints for further deduplicaiton. Moreover,

HiDeStore stores the fingerprints in the hash tables

for low hash collisions[12].

To show the efficiency of HiDeStore in terms of

deduplication performance, we select state-of-the-art

locality- and similarity-based schemes for compar-

isons, including DDFS (Data Domain File System)[13],

Sparse Index[14], and SiLo[30]. DDFS removes all dupli-

cate chunks by searching the whole fingerprint table

to achieve the highest deduplication ratio. Sparse In-

dex samples parts of fingerprints for caching to re-

duce the overheads of searching the whole fingerprint

table, which significantly reduces the memory con-

sumption for the fingerprint cache. By exploiting the

similarity of chunk streams, SiLo further improves the

throughput for deduplication. Moreover, to show the

efficiency of HiDeStore in terms of restore perfor-

mance, we compare state-of-the-art caching- and

rewriting-based schemes, including Capping[17],

ALACC (Adaptive Look-Ahead Chunk Caching)[18],

and LBW (Low-Back Window)[21]. We directly run

the source codes of ALACC for evaluations, while re-

implementing FBW according to the original work[21]

due to the lack of the open source codes. We config-

6

Version 1

Version 2

Version 3

54321























































Active Containers Archival Containers

       

       

       

Fig.8. Removing of expired data.

Peng-Fei Li et al.: An Enhanced Physical-Locality Deduplication System for Space Efficiency 1371

ure all schemes with the reported parameters from the

original work to achieve the best results.

We conduct experimental evaluations on five

widely used datasets[4, 15, 18, 21, 30], and the details of

these datasets are shown in Table 1. We conduct all

experiments on a Linux server with kernel version

v4.4.114. The server is equipped with two 8-core In-

tel® Xeon® E5-2620 v4 @2.10 GHz CPUs (each core

with 32 KB L1 instruction cache, 32 KB L1 data

cache, and 256 KB L2 cache), 20 MB last level cache

and 24 GB DRAM.

Table 1. Details of Datasets

Dataset Total Size Total Versions Dedup_Ratio (%)

Linux Kernel② 64.0 GB 158 91.53

GCC③ 105.0 GB 175 78.75

Boost④ 61.0 GB 38 83.42

Fslhomes⑤ 920.0 GB 102 92.17

MacOS⑤ 1.2 TB 25 89.56

5.2 Performance in Deduplication Phase

In general, the deduplication system needs to be

examined in three performance metrics, including the

deduplication ratio, the deduplication throughput,

and the memory consumption for the index table.

5.2.1 Deduplication Ratio

The deduplication ratio examines the amount of

data reduced by the deduplication system, which is

calculated via dividing the size of eliminated data by

the total data size. The deduplication ratios of differ-

ent deduplication schemes are shown in Fig.9. From

the results, we observe that the deduplication ratio of

DDFS is the highest, since DDFS removes all identi-

fied duplicate data by searching the whole fingerprint

table. Unlike DDFS, Sparse Index and SiLo only

search the cached fingerprints in memory to reduce

the overheads of frequent disk accessing, which how-

ever decreases some deduplication ratios since some

duplicate chunks are overlooked. Specifically, Sparse

Index and SiLo group multiple chunks into segments

and sample partial chunks as features. Two segments

sharing the same features are identified as similar seg-

ments. Sparse Index and SiLo only search the similar

segments to identify the duplicate chunks. However,

some duplicate chunks in the segments are not sam-

pled as features. As a result, these duplicate chunks

are not searched during the deduplication phase and

result in low deduplication ratios. Although configur-

ing a large sampling ratio achieves a high deduplica-

tion ratio, more memory is consumed for fingerprint

caching and longer latency is incurred for features

searching. Moreover, we observe that the deduplica-

tion ratio of HiDeStore is almost the same with that

of DDFS, since HiDeStore caches the chunks that have

high probabilities to be deduplicated. These chunks

are identified via our proposed double-hash finger-

print cache, which fully exploits the observations from

Fig.3, i.e., only the hot chunks appear in the subse-

quent backup versions. By searching the hot chunks,

HiDeStore efficiently identifies the duplicate chunks.

Moreover, we also evaluate the deduplication ra-

tios for the rewriting schemes, and the results are

shown in Fig.9. We observe that the deduplication ra-

tios of the rewriting schemes are lower than those of

the other schemes, since the stored duplicate chunks

occupy the available storage space and decrease the

storage efficiency. Moreover, the rewriting schemes

further decrease the deduplication ratios when more

data are processed due to the existence of more dupli-

cate chunks.

5.2.2 Deduplication Throughput

The experimental platform, i.e., Destor[4], evalu-

ates the number of the lookup requests to the disk to

show the overheads of the deduplication phase.

Specifically, Destor maintains the whole fingerprint

table on disk for fingerprint searching, while caching

parts of fingerprints in memory to accelerate the fin-

gerprint searching phase. Hence, a large number of

Linux
Kernel

GCC

DDFS
Capping

Sparse Index
ALACC

SiLo
HiDeStore

100

90

80

70

60

50

D
e
d
u
p
li
c
a
ti
o
n

R
a
ti
o
 (

%
)

Fslhomes MacOS Boost

Fig.9. Deduplication ratios.

1372 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

②Linux Kernel, https://www.kernel.org, Nov. 2024.

③GCC, https://ftp.gnu.org/gnu/gcc, Nov. 2024.

④Boost, https://www.boost.org, Nov. 2024.

⑤Snapshots, https://tracer.filesystems.org, Nov. 2024.

https://www.kernel.org
https://ftp.gnu.org/gnu/gcc
https://www.boost.org
https://tracer.filesystems.org

the lookup requests for the whole fingerprint table

represent the high overhead of accessing disk, which

delivers low deduplication throughput due to the ex-

pensive disk I/Os. We evaluate the lookup requests

per GB like Destor to show the deduplication

throughput of different schemes, where the lookup re-

quests per GB are defined as the number of lookup

requests for the whole fingerprint table when 1 GB

data are processed. Unlike conventional schemes,

HiDeStore identifies and classifies the hot and cold

chunks during the deduplication phase. All the hot

chunks are prefetched in the fingerprint cache before

the deduplication phase begins, and HiDeStore only

searches the cached hot chunks to avoid the high

overheads of frequent disk accessing. We calculate the

lookup requests of HiDeStore with the same unit size

as the conventional schemes to facilitate fair compar-

isons, and the results are shown in Fig.10.

From the results, we observe that the lookup re-

quests of HiDeStore are the lowest among all schemes.

Specifically, HiDeStore reduces the lookup overheads

by up to 140%, 50%, and 24% than DDFS, Sparse In-

dex, and SiLo, respectively. That is because HiDe-

Store only searches the hot chunks in the fingerprint

cache, and the duplicate chunks have a high probabil-

ity to match with these hot chunks according to the

observations from Fig.3. By avoiding frequently ac-

cessing the whole fingerprint table on disk, HiDeStore

reduces the overheads of fingerprint searching and

achieves high deduplication throughput.

From the results in Fig.10(d), we observe that

HiDeStore incurs higher lookup overhead than SiLo

on MacOS, because HiDeStore prefetches the chunks

of the last two backup versions in the fingerprint

cache. However, it is worth noting that the hot

chunks of the last two versions are prefetched in the

fingerprint cache before the next backup version is

processed. The lookup overheads on MacOS incurred

by HiDeStore are negligible, since the prefetching of

HiDeStore does not block the deduplication phase.

Moreover, HiDeStore sequentially prefetches finger-

prints from the recipe, and is more efficient than tra-

ditional deduplication schemes due to the efficient se-

quential read performance.

5.2.3 Space Consumption for Fingerprint Table

The deduplication system stores the fingerprints

in a hash table for further deduplication, which iden-

tifies and removes duplicate chunks when the finger-

print table has a match with the coming chunk. The

traditional deduplication schemes maintain all or

sample parts of fingerprints in the fingerprint table,

depending on the sampling ratios. Unlike the tradi-

tional deduplication schemes, HiDeStore directly

reads hot chunks from the recipe of the previous

backup version, avoiding constructing an extra finger-

print table to store the metadata, and hence showing

significant strengths over existing schemes. We use

the same metric as existing schemes[4, 30], i.e., space

overhead per MB/B[30], to evaluate the space con-

sumption for the fingerprint table, where the space

overhead per MB is defined as the required space for

0

200

400

600

800

1 000

L
o
o
k
u
p
 R

e
q
u
e
st

s
p
e
r

G
B

L
o
o
k
u
p
 R

e
q
u
e
st

s
p
e
r

G
B

L
o
o
k
u
p
 R

e
q
u
e
st

s
p
e
r

G
B

L
o
o
k
u
p
 R

e
q
u
e
st

s
p
e
r

G
B

L
o
o
k
u
p
 R

e
q
u
e
st

s
p
e
r

G
B

DDFS Sparse Index
SiLo HiDeStore

0

150

300

450

600

0

75

150

225

300

375

0

300

600

900

1 200

0

300

600

900

1 200

DDFS Sparse Index
SiLo HiDeStore

DDFS Sparse Index
SiLo HiDeStore

DDFS Sparse Index
SiLo HiDeStore

DDFS Sparse Index
SiLo HiDeStore

(a)

1 2 3 4 5 6 7 8 9 10

Backup Version

(b)

1 2 3 4 5 6 7 8 9 10

Backup Version

(c)

1 2 3 4 5 6 7 8 9 10

Backup Version

(d)

1 2 3 4 5 6 7 8 9 10

Backup Version

(e)

1 2 3 4 5 6 7 8 9 10

Backup Version

Fig.10. Lookup overheads on different workloads. (a) Linux Kernel. (b) GCC. (c) Fslhomes. (d) MacOS. (e) Boost.

Peng-Fei Li et al.: An Enhanced Physical-Locality Deduplication System for Space Efficiency 1373

the indexes to deduplicate 1 MB data.

128 : 1

We evaluate the space overhead per MB/B for the

fingerprint tables of all schemes, and the results are

shown in Fig.11. DDFS incurs the highest space con-

sumption for the fingerprint table, since DDFS stores

all fingerprints of unique chunks for exact deduplica-

tion. The space consumption is high when a large

number of small files exist in the processed dataset,

since a large number of chunks are generated. To re-

duce the space consumption of the fingerprint table,

Sparse Index and SiLo leverage different sampling ap-

proaches and ratios to maintain parts of the finger-

prints for near-exact deduplication, and outperform

DDFS by up to two orders-of-magnitude. For exam-

ple, Sparse Index achieves about 128x space savings

when the sample ratio is set to . SiLo further

reduces the space consumption for the fingerprint ta-

ble, since SiLo samples less fingerprints from a seg-

ments than Sparse Index.

Linux
Kernel

DDFS Sparse Index SiLo

3 389 7 236 4 074 3 445 2 735
100

80

60

40

20

0

S
p
a
c
e
 O

v
e
rh

e
a
d

p
e
r

M
B

/
B

Fslhomes MacOS BoostGCC

Fig.11. Index table overheads.

Unlike the traditional schemes, HiDeStore does

not require extra space to store the fingerprint table,

due to identifying and maintaining the fingerprints of

hot chunks during the deduplication phase. Specifical-

ly, the hot fingerprints have been stored in the recipe

of the previous backup version. The hot fingerprints

are directly prefetched in the fingerprint cache before

the next backup version is processed. Therefore,

HiDeStore has significant strengths over existing

deduplication schemes in terms of the space consump-

tion. Moreover, HiDeStore saves more storage space

than existing schemes when more backup versions are

processed, since HiDeStore does not need extra space

for the fingerprint table while existing schemes pro-

portionally consume a large amount of storage space

to store the fingerprint tables.

5.3 Performance in Restore Phase

The restore phase assembles the original data in a

chunk-by-chunk manner, requiring to read chunks

from various containers on disks according to the

recipe. The speed of restoring data is significantly in-

fluenced by the performance of reading chunks. Exist-

ing schemes deliver low restore performance due to in-

curring a large number of disk I/Os to read the physi-

cally scattered chunks. The restore performance de-

creases when the backup system stores multiple back-

up versions due to the severe chunk fragmentation

problem. Unlike existing schemes, HiDeStore aims to

achieve high restore performance by enhancing the

physical locality of the data. We use the same metric

with existing schemes[15–18, 21] to evaluate the restore

performance, i.e., a speed factor (MB/container-read)

which is defined as the mean data size that is re-

stored per container[17, 21]. The biggest advantage of

the speed factor is to avoid the speed variances of dif-

ferent data servers. The low speed factor indicates

that the chunks are physically scattered into differ-

ent containers, which delivers low restore perfor-

mance due to the chunk fragmentation problem. We

set the sizes of all containers to 4 MB to facilitate fair

comparisons. The scheme without the rewriting phase

is set to be the baseline. Moreover, we also compare

HiDeStore with state-of-the-art rewriting schemes to

show the efficiency of HiDeStore over existing

schemes.

Fig.12 shows the restore performance of different

schemes. We observe that existing schemes deliver

high restore performance on the old backup versions,

while delivering low restore performance on the new

backup versions, because the chunk fragmentation

problem is exacerbated over time, as shown in Fig.2.

Unlike existing schemes, HiDeStore significantly im-

proves the restore performance for the new backup

versions, e.g., the restore performance of HiDeStore is

about 2.6x higher than that of LBW+ALACC on the

new backup versions. The main reason is that the

physical locality of the new backup versions is en-

hanced by the proposed active and archival contain-

ers. Specifically, HiDeStore temporarily maintains hot

chunks in active containers. When some hot chunks

become cold in processing the subsequent versions,

HiDeStore moves these chunks to archival containers.

Through this way, the hot chunks of new backup ver-

sions are stored closely to avoid the chunk fragmenta-

tion problem, and the restore performance of the new

backup version is significantly improved. It is worth

noting that the new backup versions are more likely

to be restored than the old backup versions[20, 22, 23]

for version rollbacks, and HiDeStore is efficient to

1374 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

meet the demands of restoring the new backup ver-

sions with high performance. Moreover, compared

with the rewriting schemes, we observe that

HiDeStore not only delivers higher restore perfor-

mance on the new backup version, but also achieves

higher deduplication ratios, as shown in Fig.9 and

Fig.12. The main reason is that HiDeStore physically

stores the hot chunks together in the same containers,

rather than rewriting multiple duplicate chunks to

consume a large amount of storage space.

5.4 Overheads Incurred by HiDeStore

O(N)

N

We evaluate the overheads incurred by HiDeSt-

ore, including the time overheads of updating recipes

and moving chunks. Specifically, HiDeStore records

the locations for the stored hot chunks during the

deduplication phase. When some hot chunks become

cold after one backup version is processed, HiDeStore

moves these chunks from active containers to archival

containers, and updates the recipe according to Algo-

rithm 1 for future restoring. Algorithm 1 incurs

complexity, where is the number of recipes. We

evaluate the latency of updating a recipe on different

datasets, and the results are shown in Fig.13. We ob-

serve that the updating latency is related to the size

of a dataset, e.g., HiDeStore spends 21 ms on updat-

ing a recipe for the dataset of Linux Kernel. More-

over, it is worth noting that HiDeStore updates the

recipes after a backup version is processed, which does

not block the deduplication system.

The overheads of moving chunks from active con-

tainers to archival containers are higher than those of

the recipe updating phase, as shown in Fig.13. How-

ever, the chunk moving phase is implemented in a

pipeline manner with high parallelism based on

Destor, avoiding blocking the deduplication system

for a long time. Moreover, HiDeStore moves chunks

and merges sparse containers offline to avoid the long

latency penalty, and hence the overheads of moving

chunks are acceptable in HiDeStore.

5.5 Expired Backup Deletion

The expired backup versions are removed to save

space[15, 23], which needs to detect the expired chunks,

i.e., the chunks are only referred by the expired back-

up versions. We evaluate the metadata overheads for

different inline reference management schemes, in-

cluding Reference Counter (RC)[32], Grouped Mark-

0

1

2

3

4

S
p
e
e
d
 F

a
c
to

r

Baseline Capping
LBW+ALACC HiDeStore

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

S
p
e
e
d
 F

a
c
to

r

Baseline Capping
LBW+ALACC HiDeStore

3.5

4.0

4.5

5.0

5.5

S
p
e
e
d
 F

a
c
to

r

Baseline Capping
LBW+ALACC HiDeStore

2

3

4

5

6

S
p
e
e
d
 F

a
c
to

r

Baseline Capping
LBW+ALACC HiDeStore

0

2

4

6

8

10

S
p
e
e
d
 F

a
c
to

r

Baseline Capping
LBW+ALACC HiDeStore

(a)

1 2 3 4 5 6 7 8 9 10

Backup Version

(b)

1 2 3 4 5 6 7 8 9 10

Backup Version

(c)

1 2 3 4 5 6 7 8 9 10

Backup Version

(d)

1 2 3 4 5 6 7 8 9 10

Backup Version

(e)

1 2 3 4 5 6 7 8 9 10

Backup Version

Fig.12. Restore performance on different workloads. (a) Linux Kernel. (b) GCC. (c) Fslhomes. (d) MacOS. (e) Boost.

Linux
Kernel

Fslhomes MacOS BoostGCC

0.021 0.047

8.9 14.3 10.8
Update_Recipe Remove_Cold_Chunks

3.0
2.5
2.0
1.5
1.0
0.5
0.0

L
a
te

n
c
y
 p

e
r

V
e
rs

io
n
 (

s)

Fig.13. Overheads incurred by HiDeStore, including the over-
heads of moving cold chunks and updating recipes.

Peng-Fei Li et al.: An Enhanced Physical-Locality Deduplication System for Space Efficiency 1375

and-Sweep (GMS)[33], the Container-Marker Algo-

rithm (CMA)[15], and our proposed Isolated Contain-

er Deletion Algorithm (ICDA). We use one byte to

maintain the reference counter in different schemes

for fair comparisons, and the results are shown in

Fig.14. RC causes the highest metadata overhead due

to recording references for all unique chunks. GMS

maintains a bitmap in the container for references,

and incurs high metadata overhead since each con-

tainer stores a large number of chunks. CMA and IC-

DA record references for containers, and each contain-

er only consumes one byte for the counter. Therefore,

CMA and ICDA achieve about three orders of magni-

tude space savings than previous schemes. Moreover,

ICDA saves more space than CMA, since ICDA does

not record references for active containers.

Linux
Kernel

Fslhomes MacOS BoostGCC

RC CMA ICDAGMS

M
e
ta

d
a
ta

 (
lo

g
1
0
 K

B
)

105

104

103

102

101

100

Fig.14. Reference metadata overheads of different schemes.

Garbage collection needs to merge sparse contain-

ers after the chunks are removed. Compared with RC

and GMS, CMA and ICDA generate fewer sparse

containers and significantly reduce the garbage collec-

tion overheads, since CMA and ICDA directly re-

move the expired containers rather than the scat-

tered chunks. We examine the number of non-ex-

pired containers after the expired backups are re-

moved to exhibit the actual storage cost, i.e., using

the same metric with CMA[15] to facilitate fair com-

parisons. Apart from the basic deduplication process

(represented as the baseline), we also evaluate the im-

pact of rewriting algorithms, and the results are

shown in Fig.15. We observe that ICDA shows large

advantages over other schemes, and reduces the num-

bers of containers by up to 1.8x, 2.0x, and 1.5x than

the baseline, Capping, and CMA schemes, respective-

ly. The main reason is that the cold chunks of a back-

up version are gathered together in the same archival

containers, and these archival containers are directly

removed during the expired backup deletions. Howev-

er, other schemes store the cold chunks in multiple

containers and fail to fully utilize the containers after

the expired chunks are removed. Moreover, the

rewriting algorithm consumes more space than the

other schemes even after the expired backups are re-

moved, since multiple chunks for the new backup ver-

sions are rewritten.

6 Related Work

Deduplication Schemes for Fingerprint Access

0

50

100

150

200

250

N
u
m

b
e
r

o
f
C

o
n
ta

in
e
rs

Baseline Capping CMA ICDA Baseline Capping CMA ICDA

Baseline Capping CMA ICDA Baseline Capping CMA ICDA

Baseline Capping CMA ICDA

100

150

200

250

300

350

N
u
m

b
e
r

o
f
C

o
n
ta

in
e
rs

1 200

1 500

1 800

2 100

2 400

N
u
m

b
e
r

o
f
C

o
n
ta

in
e
rs

1.8

2.1

2.4

2.7

3.0

3.3

N
u
m

b
e
r

o
f
C

o
n
ta

in
e
rs

100

150

200

250

300

N
u
m

b
e
r

o
f
C

o
n
ta

in
e
rs

(a)

1 2 3 4 5 6 7 8 9 10

Backup Version

(b)

1 2 3 4 5 6 7 8 9 10

Backup Version

(c)

1 2 3 4 5 6 7 8 9 10

Backup Version

(d)

1 2 3 4 5 6 7 8 9 10

Backup Version

(e)

1 2 3 4 5 6 7 8 9 10

Backup Version

(104)

Fig.15. Number of non-expired containers after the expired backup versions are removed. (a) Linux Kernel. (b) GCC. (c) Fslhomes.
(d) MacOS. (e) Boost.

1376 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

Bottleneck. The deduplication system stores finger-

prints of all chunks on disk[13, 14]. However, the dedu-

plication throughput significantly decreases when a

large number of chunks are stored due to the expen-

sive disk I/Os. Zhu et al.[13] observed that the chunk

sequences appear in the same order in multiple back-

up streams. By exploiting such logical locality of the

chunk sequence, DDFS[13] proposes to prefetch the

chunk sequences for caching and construct an in-

memory bloom filter to deliver high deduplication

throughput. To reduce the memory consumption of

the cached chunks, Sparse Index[14] proposes to sam-

ple parts of chunks for near-exact deduplication.

Block Locality Cache (BLC)[26] proposes to update

the locality information according to the stored data,

which avoids using the outdated locality.

ChunkStash[25] stores the fingerprint table on SSD to

avoid the penalty of the random disk I/O. Extreme

Binning[29] and SiLo[30, 35] explore and exploit the simi-

larity of segments to achieve high deduplication ra-

tios.

Restore Schemes for Chunk Fragmentation Prob-
lem. Existing deduplication systems propose two

kinds of approaches to alleviate the chunk fragmenta-

tion problem, including optimizing the restore cache

and rewriting some duplicate chunks. Specifically, the

stored chunk sequences have a high probability to be

read for assembling the original data[17, 18]. Therefore,

many schemes propose to cache the chunks and con-

tainers[15, 16, 20] to reduce the number of disk I/Os.

ALACC[18] proposes to construct a cache for the slid-

ing window to deliver higher restore performance. Un-

like the caching-based schemes, many schemes rewrite

chunks according to different standards, such as the

Content-Based Rewriting algorithm (CBR)[16], Chunk

Fragmentation Level (CFL)[22], and Capping[17]. Cao

et al.[21] dynamically set the threshold for capping-

based schemes on different workloads to enhance the

physical locality of data streams.

Expired Data Deletion. The backup systems re-

move the expired data to save space. However, the

expired chunks are physically scattered into different

containers and become hard to be removed due to the

high overheads of expired chunk detection and garb-

age collection. Reference Counter (RC)[32] counts the

reference number of chunks, and removes the chunks

which are not referred by any backup version. To re-

duce the space overheads of referencing, Grouped

Mark-and-Sweep (GMS)[33] uses a bitmap in each con-

tainer, while the Container-Marker Algorithm

(CMA)[15] marks the containers rather than chunks.

7 Conclusions

Based on the observation that the adjacent ver-

sions are the most similar, our proposed HiDeStore

leverages the double-hash fingerprint cache to identi-

fy hot and cold chunks, and stores different chunks in

active and archival containers respectively to en-

hance the physical locality. Our experimental evalua-

tion results show that HiDeStore achieves higher per-

formance in terms of deduplication, restore, and data

deletion than state-of-the-art schemes. We have re-

leased the open source code of HiDeStore for public

use in GitHub⑥. Moreover, apart from the backup

storage systems, the database systems and cloud stor-

age systems contain a large amount of redundant da-

ta and require efficient deduplication techniques to

save space. However, we cannot directly deploy

HiDeStore in databases and cloud storage systems,

since the data in these two systems exhibit different

patterns. We will further optimize HiDeStore by ex-

ploring and exploiting the data patterns in other stor-

age systems for better performance.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Khorasani S O, Rellermeyer J S, Epema D. Self-adaptive

executors for big data processing. In Proc. the 20th Inter-

national Middleware Conference, Dec. 2019, pp.176–188.

DOI: 10.1145/3361525.3361545.

[1]

 Birke R, Rocha I, Perez J, Schiavoni V, Felber P, Chen L

Y. Differential approximation and sprinting for multi-pri-

ority big data engines. In Proc. the 20th International

Middleware Conference, Dec. 2019, pp.202–214. DOI: 10.

1145/3361525.3361547.

[2]

 Akbari A, Martinez J, Jafari R. Facilitating human activ-

ity data annotation via context-aware change detection

on smartwatches. ACM Trans. Embedded Computing

Systems, 2021, 20(2): 15. DOI: 10.1145/3431503.

[3]

 Fu M, Feng D, Hua Y, He X, Chen Z, Xia W, Zhang Y,

Tan Y. Design tradeoffs for data deduplication perfor-

mance in backup workloads. In Proc. the 13th USENIX

Conference on File and Storage Technologies, Feb. 2015,

pp.331–344.

[4]

 Li Y K, Xu M, Ng C H, Lee P P C. Efficient hybrid in-[5]

Peng-Fei Li et al.: An Enhanced Physical-Locality Deduplication System for Space Efficiency 1377

⑥The source code of HiDeStore is available at https://github.com/iotlpf/HiDeStore, Nov. 2024.

https://doi.org/10.1145/3361525.3361545
https://doi.org/10.1145/3361525.3361547
https://doi.org/10.1145/3361525.3361547
https://doi.org/10.1145/3431503
https://github.com/iotlpf/HiDeStore

line and out-of-line deduplication for backup storage.

ACM Trans. Storage, 2015, 11(1): Article No. 2. DOI: 10.

1145/2641572.

 Park D, Fan Z, Nam Y J, Du D H C. A lookahead read

cache: Improving read performance for deduplication

backup storage. Journal of Computer Science and Tech-

nology, 2017, 32(1): 26–40. DOI: 10.1007/s11390-017-

1680-8.

[6]

 Duggal A, Jenkins F, Shilane P, Chinthekindi R, Shah R,

Kamat M. Data domain cloud tier: Backup here, backup

there, deduplicated everywhere! In Proc. the 2019

USENIX Annual Technical Conference, Jul. 2019,

pp.647–660.

[7]

 Meyer D T, Bolosky W J. A study of practical deduplica-

tion. ACM Trans. Storage, 2012, 7(4): Article No. 14.

DOI: 10.1145/2078861.2078864.

[8]

 Muthitacharoen A, Chen B, Mazières D. A low-band-

width network file system. In Proc. the 18th ACM Sym-

posium on Operating Systems Principles, Oct. 2001,

pp.174–187. DOI: 10.1145/502034.502052.

[9]

 Wallace G, Douglis F, Qian H, Shilane P, Smaldone S,

Chamness M, Hsu W. Characteristics of backup work-

loads in production systems. In Proc. the 10th USENIX

Conference on File and Storage Technologies, Feb. 2012,

p.4.

[10]

 Yang Q, Jin R, Zhao M. SmartDedup: Optimizing dedu-

plication for resource-constrained devices. In Proc. the

2019 USENIX Annual Technical Conference, Jul. 2019,

pp.633–646.

[11]

 Quinlan S, Dorward S. Venti: A new approach to archival

storage. In Proc. the FAST 2002 Conference on File and

Storage Technologies, Jan. 2002, pp.89–101.

[12]

 Zhu B, Li K, Patterson R H. Avoiding the disk bottle-

neck in the data domain deduplication file system. In

Proc. the 6th USENIX Conference on File and Storage

Technologies, Feb. 2008, pp.269–282.

[13]

 Lillibridge M, Eshghi K, Bhagwat D, Deolalikar V, Trezis

G, Camble P. Sparse indexing: Large scale, inline dedupli-

cation using sampling and locality. In Proc. the 7th

USENIX Conference on File and Storage Technologies,

Feb. 2009, pp.111–123.

[14]

 Fu M, Feng D, Hua Y, He X, Chen Z, Xia W, Huang F,

Liu Q. Accelerating restore and garbage collection in

deduplication-based backup systems via exploiting histori-

cal information. In Proc. the 2014 USENIX Annual Tech-

nical Conference, Jun. 2014, pp.181–192.

[15]

 Kaczmarczyk M, Barczynski M, Kilian W, Dubnicki C.

Reducing impact of data fragmentation caused by in-line

deduplication. In Proc. the 5th Annual International Sys-

tems and Storage Conference, Jun. 2012, Article No. 15.

DOI: 10.1145/2367589.2367600.

[16]

 Lillibridge M, Eshghi K, Bhagwat D. Improving restore

speed for backup systems that use inline chunk-based

deduplication. In Proc. the 11th USENIX conference on

File and Storage Technologies, Feb. 2013, pp.183–198.

[17]

 Cao Z, Wen H, Wu F, Du D H C. ALACC: Accelerating

restore performance of data deduplication systems using

[18]

adaptive look-ahead window assisted chunk caching. In

Proc. the 16th USENIX Conference on File and Storage

Technologies, Feb. 2018, pp.309–324.

 Mao B, Jiang H, Wu S, Fu Y, Tian L. SAR: SSD assist-

ed restore optimization for deduplication-based storage

systems in the cloud. In Proc. the 7th IEEE Internation-

al Conference on Networking, Architecture, Jun. 2012,

pp.328–337. DOI: 10.1109/NAS.2012.48.

[19]

 Nam Y J, Park D, Du D H C. Assuring demanded read

performance of data deduplication storage with backup

datasets. In Proc. the 20th IEEE International Sympo-

sium on Modeling, Analysis and Simulation of Computer

and Telecommunication Systems, Aug. 2012, pp.201–208.

DOI: 10.1109/MASCOTS.2012.32.

[20]

 Cao Z, Liu S, Wu F, Wang G, Li B, Du D H C. Sliding

look-back window assisted data chunk rewriting for im-

proving deduplication restore performance. In Proc. the

17th USENIX Conference on File and Storage Technolo-

gies, Feb. 2019, pp.129–142.

[21]

 Nam Y, Lu G, Park N, Xiao W, Du D H C. Chunk frag-

mentation level: An effective indicator for read perfor-

mance degradation in deduplication storage. In Proc. the

13th IEEE International Conference on High Perfor-

mance Computing and Communications, Sept. 2011,

pp.581–586. DOI: 10.1109/HPCC.2011.82.

[22]

 Ng C H, Lee P P C. RevDedup: A reverse deduplication

storage system optimized for reads to latest backups. In

Proc. the 4th Asia-Pacific Workshop on Systems, Jul.

2013, Article No. 15. DOI: 10.1145/2500727.2500731.

[23]

 Li P, Hua Y, Cao Q, Zhang M. Improving the restore per-

formance via physical-locality middleware for backup sys-

tems. In Proc. the 21st International Middleware Confer-

ence, Dec. 2020, pp.341–355. DOI: 10.1145/3423211.

3425691.

[24]

 Debnath B K, Sengupta S, Li J. ChunkStash: Speeding

up inline storage deduplication using flash memory. In

Proc. the 2010 USENIX Annual Technical Conference,

Jun. 2010, Article No. 16.

[25]

 Meister D, Kaiser J, Brinkmann A. Block locality caching

for data deduplication. In Proc. the 6th International Sys-

tems and Storage Conference, Jul. 2013, Article No. 15.

DOI: 10.1145/2485732.2485748.

[26]

 Eshghi K, Tang H K. A framework for analyzing and im-

proving content-based chunking algorithms. Technical Re-

port, HP Laboratory, 2005. http://shiftleft.com/mirrors/

www.hpl.hp.com/techreports/2005/HPL-2005-30R1.pdf.

Oct. 2024.

[27]

 Xia W, Zhou Y, Jiang H, Feng D, Hua Y, Hu Y, Liu Q,

Zhang Y. Fastcdc: A fast and efficient content-defined

chunking approach for data deduplication. In Proc. the

2016 USENIX Annual Technical Conference, Jun. 2016,

pp.101–114.

[28]

 Bhagwat D, Eshghi K, Long D D E, Lillibridge M. Ex-

treme binning: Scalable, parallel deduplication for chunk-

based file backup. In Proc. the 17th IEEE International

Symposium on Modeling, Analysis & Simulation of Com-

puter and Telecommunication Systems, Sept. 2009. DOI:

[29]

1378 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

https://doi.org/10.1145/2641572
https://doi.org/10.1145/2641572
https://doi.org/10.1007/s11390-017-1680-8
https://doi.org/10.1007/s11390-017-1680-8
https://doi.org/10.1007/s11390-017-1680-8
https://doi.org/10.1007/s11390-017-1680-8
https://doi.org/10.1007/s11390-017-1680-8
https://doi.org/10.1007/s11390-017-1680-8
https://doi.org/10.1007/s11390-017-1680-8
https://doi.org/10.1145/2078861.2078864
https://doi.org/10.1145/502034.502052
https://doi.org/10.1145/2367589.2367600
https://doi.org/10.1109/NAS.2012.48
https://doi.org/10.1109/MASCOTS.2012.32
https://doi.org/10.1109/HPCC.2011.82
https://doi.org/10.1145/2500727.2500731
https://doi.org/10.1145/3423211.3425691
https://doi.org/10.1145/3423211.3425691
https://doi.org/10.1145/2485732.2485748
http://shiftleft.com/mirrors/www.hpl.hp.com/techreports/2005/HPL-2005-30R1.pdf
http://shiftleft.com/mirrors/www.hpl.hp.com/techreports/2005/HPL-2005-30R1.pdf
http://shiftleft.com/mirrors/www.hpl.hp.com/techreports/2005/HPL-2005-30R1.pdf
http://shiftleft.com/mirrors/www.hpl.hp.com/techreports/2005/HPL-2005-30R1.pdf
http://shiftleft.com/mirrors/www.hpl.hp.com/techreports/2005/HPL-2005-30R1.pdf
http://shiftleft.com/mirrors/www.hpl.hp.com/techreports/2005/HPL-2005-30R1.pdf

10.1109/MASCOT.2009.5366623.

 Xia W, Jiang H, Feng D, Hua Y. SiLo: A similarity-locali-

ty based near-exact deduplication scheme with low RAM

overhead and high throughput. In Proc. the 2011

USENIX Conference on USENIX Annual Technical Con-

ference, Jun. 2011.

[30]

 Xu G, Tang B, Lu H, Yu Q, Sung C W. LIPA: A learn-

ing-based indexing and prefetching approach for data

deduplication. In Proc. the 35th Symposium on Mass

Storage Systems and Technologies, May 2019, pp.299–310.

DOI: 10.1109/MSST.2019.00010.

[31]

 Wei J, Jiang H, Zhou K, Feng D. MAD2: A scalable high-

throughput exact deduplication approach for network

backup services. In Proc. the 26th IEEE Symposium on

Mass Storage Systems and Technologies, May 2010. DOI:

10.1109/MSST.2010.5496987.

[32]

 Guo F, Efstathopoulos P. Building a high-performance

deduplication system. In Proc. the 2011 USENIX Confer-

ence on USENIX Annual Technical Conference, Jun.

2011.

[33]

 Zhang Y, Jiang H, Feng D, Xia W, Fu M, Huang F, Zhou

Y. AE: An asymmetric extremum content defined chunk-

ing algorithm for fast and bandwidth-efficient data dedu-

plication. In Proc. the 2015 IEEE Conference on Comput-

er Communications, Apr. 26–May 1, 2015, pp.1337–1345.

DOI: 10.1109/INFOCOM.2015.7218510.

[34]

 Xia W, Jiang H, Feng D, Hua Y. Similarity and locality

based indexing for high performance data deduplication.

IEEE Trans. Computers, 2015, 64(4): 1162–1176. DOI: 10.

1109/TC.2014.2308181.

[35]

Peng-Fei Li received his B.S. de-

gree in computer science and technolo-

gy from Huazhong University of Sci-

ence and Technology, Wuhan, in 2017.

He is currently a Ph.D. candidate ma-

joring in computer system architec-

ture at Huazhong University of Sci-

ence and Technology, Wuhan. His research interests in-

clude in-memory indexes, network-attached key-value

stores, and deduplication techniques.

Yu Hua received his B.S. and

Ph.D. degrees in computer science

from Wuhan University, Wuhan, in

2001 and 2005, respectively. He is cur-

rently a professor at Huazhong Uni-

versity of Science and Technology,

Wuhan. His research interests include

cloud storage systems, file systems, non-volatile memo-

ry architectures, etc.

Qin Cao received her B.S. degree in

computer science from Central China

Normal University, Wuhan, in 2017,

and her Master degree in computer

science and technology from Huazhong

University of Science and Technology,

Wuhan, in 2020. Her research inter-

ests include data deduplication techniques and persis-

tent memory systems.

Peng-Fei Li et al.: An Enhanced Physical-Locality Deduplication System for Space Efficiency 1379

https://doi.org/10.1109/MASCOT.2009.5366623
https://doi.org/10.1109/MSST.2019.00010
https://doi.org/10.1109/MSST.2010.5496987
https://doi.org/10.1109/INFOCOM.2015.7218510
https://doi.org/10.1109/TC.2014.2308181
https://doi.org/10.1109/TC.2014.2308181

	1 Introduction
	2 Background
	2.1 Workflow of a Deduplication System
	2.2 Fingerprint Access Bottleneck
	2.3 Chunk Fragmentation Problem
	2.4 Garbage Collection

	3 Observations on Fragmented Chunks
	4 Design of HiDeStore
	4.1 Fingerprint Cache with Double Hash
	4.2 Chunk Filter to Separate Chunks
	4.3 Recipes Updating
	4.4 Restore Phase
	4.5 Removing of Expired Versions

	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Performance in Deduplication Phase
	5.2.1 Deduplication Ratio
	5.2.2 Deduplication Throughput
	5.2.3 Space Consumption for Fingerprint Table

	5.3 Performance in Restore Phase
	5.4 Overheads Incurred by HiDeStore
	5.5 Expired Backup Deletion

	6 Related Work
	7 Conclusions
	Conflict of Interest
	References

