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Abstract    The accurate and robust unmanned aerial vehicle (UAV) localization is significant due to the requirements of

safety-critical  monitoring  and  emergency  wireless  communication  in  hostile  underground  environments.  Existing  range-

based localization approaches fundamentally rely on the assumption that the environment is  relatively ideal,  which en-

ables a precise range for localization. However, radio propagation in the underground environments may be dramatically

influenced by various equipments, obstacles, and ambient noises. In this case, inaccurate range measurements and inter-

mittent ranging failures inevitably occur, which leads to severe localization performance degradation. To address the chal-

lenges, a novel UAV localization scheme is proposed in this paper, which can effectively handle unreliable observations in

hostile underground environments. We first propose an adaptive extended Kalman filter (EKF) based on the fusion of ul-

tra-wideband (UWB) and inertial measurement unit (IMU) to detect and adjust the inaccurate range measurements. Aim-

ing  to  deal  with  intermittent  ranging  failures,  we  further  design  the  constraint  condition  by  limiting  the  system state.

Specifically, the auto-regressive model is proposed to implement the localization in the ranging blind areas by reconstruct-

ing the lost measurements. Finally, extensive simulations have been conducted to verify the effectiveness. We carry out

field experiments in an underground garage and a coal mine based on P440 UWB sensors. Results show that the localiza-

tion accuracy is improved by 16.9% compared with the recent methods in the hostile underground environments.

Keywords    unmanned aerial vehicle (UAV) localization, Kalman filter, ultra-wideband (UWB) observation, hostile un-

derground environment

 
 

1    Introduction

With the development of underground equipment

automation, the unmanned aerial vehicle (UAV) plays

a  crucial  role  in  unmanned  and  automated  under-

ground  scenes,  which  is  mainly  utilized  for  safety

monitoring,  equipment  inspection,  emergency  rescue,

and so on. It not only reduces the labor intensity and

risk of workers but also improves production efficien-

cy[1].  Due  to  the  complex  terrain  in  actual  under-

ground  environments,  intelligent  monitoring  through

industrial  robots  may  lead  to  the  failure  of  data  ac-

quisition[2]. UAV, as a novel detection tool in the un-

derground environments, is suitable for entering harsh

areas  with  pollution  and  danger  for  operation.  The

UAV with its small  size and light weight has signifi-

cant  advantages  to  complete  some  specified  work  as

shown  in Fig.1,  which  can  carry  different  types  of

equipments  and  perform  different  tasks  according  to

operational  demands[3].  In addition,  UAV is very im-
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portant  for  underground  fire  monitoring  and  fire

fighting, and it is also an effective way to promote the

underground  emergency  wireless  communication  net-

work, enabling engineers to remotely capture data in

underground  work  areas[4–6].  Accurate  and  reliable

UAV  localization  is  the  basis  of  intelligent  under-

ground operations, but it remains one of the most cha-

llenging  issues  in  hostile  underground  environments.

There  exist  many  wireless  localization  schemes,

which  mainly  rely  on  WiFi[7],  Bluetooth[8],  RFID[9],

ZigBee[10],  or  LTE[11] to  realize  localization.  Com-

pared with the above wireless signals, the ultra-wide-

band (UWB) technology[12] has the advantages of low

energy consumption, strong anti-multipath effect, and

high  accuracy.  UWB  can  provide  absolute  range  in-

formation,  but  the  ranging  accuracy  is  greatly  re-

duced in the complex not-line-of-sight (NLOS) under-

ground scenes.  The inertial  measurement unit  (IMU)

can provide orientation and relative displacement in-

formation.  Consequently,  the  fusion  of  UWB  and

IMU is an ideal solution for UAV localization in hos-

tile  environments[13, 14],  which  can  overcome the  lack

of  orientation  information,  the  long-term  drift  error,

and obtain better performances[15–17].

Many excellent algorithms were proposed for sen-

sor  information  fusion,  such  as  extended  Kalman fil-

ter  (EKF)[18],  unscented  Kalman  filter  (UKF)[19],  cu-

bature  Kalman filter[20],  particle  filter[21],  and  nonlin-

ear  optimization[22].  Among  these  fusion  algorithms,

EKF is the most commonly utilized method for non-

linear systems[23–25], in which the state propagation is

realized by low-cost IMU and the measurement is up-

dated  by  UWB ranging.  The  aforementioned  typical

filtering  methods  assume  that  the  ranging  measure-

ments  are  available.  However,  inaccurate  range  mea-

surements and intermittent ranging failures often oc-

cur  in  hostile  underground  environments.  Directly

adopting the classical EKF localization schemes is in-

feasible  and  may  lead  to  serious  localization  perfor-

mance degradation.

This  paper  aims  to  achieve  accurate  and  robust

UAV  localization  in  hostile  underground  environ-

ments  and  correspondingly  conducts  experiments  in

typical  hostile  underground  scenarios  (an  under-

ground  garage  and  an  underground  coal  mine).  We

improve the multi-sensor fusion algorithms[15, 26, 27] to

enhance the localization performance. A design is pro-

posed  to  detect  and  correct  the  inaccurate  UWB

ranging measurements. Besides, the influence of mea-

surement  losses  on  localization  performance  is  re-

duced by setting system constraints  and reconstruct-

ing UWB range measurements. Specifically, the main

contributions can be summarized as follows.

• To the best of our knowledge, we are the first to

propose a novel UAV localization framework for deal-

ing  with  unreliable  observations  based  on  the  fusion

of  UWB  and  IMU,  which  can  achieve  accurate  and

robust UAV localization in hostile underground envi-

ronments.

• An adaptive EKF is proposed to detect and cor-

rect  outliers.  We  further  introduce  the  state  con-

straint  to  compensate  for  intermittent  UWB  signal

losses.  Moreover,  an  auto-regressive  model  is  em-

ployed to reconstruct measurements in blind areas of

UWB.

• The  localization  performance  is  evaluated  th-

rough  extensive  simulations  and  field  experiments  in

an underground garage and an underground coal mine.

The rest of the paper is organized as follows. Sec-

tion 2 briefly  introduces  the  motivation  behind  this

work  and  preliminaries.  The  proposed  UAV localiza-

tion  framework  and  algorithms  in  hostile  under-

ground environments  are  proposed and elaborated in

Sections 3–5. In Section 6, the simulations and experi-

ments  are  carried  out,  and  the  performance  evalua-

tion is further presented. Section 7 introduces related

work, and Section 8 summarizes the paper. 

2    Background

In  this  section,  the  UWB-ranging  experiments  in

an underground garage and an underground coal mine

are first presented. Then, the movement model based

on the fusion of UWB and IMU is introduced. 

2.1    UWB Ranging in Various Scenarios

The  underground  environments  generally  encom-

pass  underpasses,  subways,  basements,  underground
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Fig.1.  Interface of UAV localization in underground intelligent
development.
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shopping  malls,  underground  garages,  underground

coal  mines,  and  so  on.  This  paper  takes  the  widely

applied  underground  garages  and  the  extremely  hos-

tile  underground coal  mines as the representatives of

hostile underground environments.

Underground garages are widely applied in urban

areas and are typical  underground spaces.  Compared

with the common underground environments (such as

subways,  basements,  and  underground  shopping

malls),  there are significant obstacles such as numer-

ous vehicles, pipes, and concrete structures in the un-

derground garages.  These  obstacles  bring the inaccu-

racy of  wireless  signal  arrival  time or  angles,  leading

to a degradation of localization performances. In Chi-

na,  coal  is  the  main  energy  source,  and  most  coal

mines  belong  to  underground  mines  with  extremely

hostile  environments.  The  localization  in  under-

ground coal mines faces the following challenges. The

mine tunnel is narrow, closed, restricted, and the geo-

logical structure is uneven, resulting in serious multi-

path effects. Signal reflection caused by large produc-

tion  equipments  and  metal  support  structures  in

mines  further  aggravates  the  multipath  effect.  Be-

sides,  high  temperature,  high  humidity,  high  dust,

noises,  and  non-line-of-sight  have  an  obvious  influ-

ence on UWB signals in harsh coal mines. These fac-

tors may make the ranging and communication mod-

ules  work  abnormally  or  even  fail[28],  resulting  in  lo-

calization failure.

The critical  step of filter-based localization meth-

ods is measurement update. The unreliable UWB sig-

nals may cause measurement updates to pause.  Note

that if the signal cannot reach the receiver within the

sampling  period[29],  the  delayed  signal  is  also  viewed

as measurement loss. To elaborate on the issues men-

tioned  above,  we  record  the  UWB  measurements  in

an indoor corridor, an underground garage, and a coal

mine  laboratory,  respectively.  Compared  with  indoor

scenarios, UWB measurements have larger ranging er-

rors and loss rates in practical coal mines, followed by

underground  garages[30].  Our  experimental  results  al-

so verify it. Fig.2(a) shows the mean and variance of

ranging  errors  with  different  ranges  and  scenarios.

With the ranging range from 3 m to 30 m, the rang-

ing  errors  increase  by  61.5%,  63.2%,  and  96.6%,  re-

spectively.  The  cumulative  distribution  function

(CDF)  of  UWB  ranging  errors  is  presented  in

Fig.2(b).  At  the  actual  range  9.02  m,  it  can  be  seen

that  more  than  20% of  the  ranging  errors  is  greater

than 0.5m, and more than 10% of the ranging errors

is  greater  than  2  m  in  the  coal  mine  laboratory.

Fig.2(c) shows the measurement loss rate in three sce-

narios,  where  we  conduct  more  than  10  000  ranging

experiments.  The  farther  the  range  between  two
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Fig.2.   Evaluation  of  UWB  ranging  in  different  scenarios.  (a)
Mean  and  variance  of  ranging  errors.  (b)  CDF  of  ranging  er-
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nodes, the more serious the loss of measurements. Es-

pecially, the loss rates in the three scenarios are 8.9%,

16.4%, and 28.9% at 9.02 m, respectively.

From the above experiments, we argue that inac-

curate ranging is a common issue, which is more pro-

nounced in underground garages and coal mines, and

may  be  accompanied  by  the  loss  of  range  measure-

ments.  All  the above limitations will  bring severe lo-

calization  performance  degradation  if  directly  using

the  classical  EKF.  Hence,  a  new  localization  frame-

work is required to provide accurate and robust UAV

localization  in  hostile  underground  environments,

which  forms  the  motivation  of  our  work.  This  paper

starts from the algorithm level rather than improving

the ranging accuracy through signal processing. 

2.2    UAV Movement Model

ab = (abx, aby, abz)
T

p = (px, py, pz)
T

v = (vx, vy, vz)
T

x ∈ R9

We assume that the UAV follows a variable accel-

eration  motion.  Considering  the  instability  of  IMU,

we let  the acceleration bias  be a

part of the state vector to be estimated, as well as the

UAV  position  and  velocity

.  Then  an  augmented  state  vector

 is  established  according  to  (1).  Based  on  the

Markov theory, the current state of the UAV is only

related to the last  state.  The UAV movement model

consists of the system motion equation and the obser-

vation equation, which are defined as (2) and (3), re-

spectively.
 

x = (px, vx, abx, py, vy, aby, pz, vz, abz)
T ∈ R9, (1)

 

xk = Akxk−1 +Bk−1uk−1 +wk−1, (2)
 

rk = h(xk) + vk, (3)

wk−1 vk

Ak Bk

T

where  and  denote the dynamic noise and the

measurement  noise,  respectively.  The  system  matrix

 and input gain  defined in (4) and (5) can be

calculated under the acceleration assumption and  is

the time interval of each iteration.
 

Ak = diag (A′
k, A

′
k, A

′
k) , Bk = diag (B′

k, B
′
k, B

′
k) ,
(4)

 

A′
k =

 1 T −T 2

2
0 1 −T
0 0 1

 ,B′
k =


T 2

2
0 0

T 0 0
0 0 0

 . (5)

uk−1In the movement model,  is the control input

and  can  be  obtained  through  acceleration  measure-

ments[26], which is described as:

 

uk−1 = (ax, k−1, 0, 0, ay, k−1, 0, 0, az, k−1, 0, 0)
T,

h(x)and  in (3) is expressed by:
 

h(x) =

√
(px − pAx)

2
+ (py − pAy)

2
+ (pz − pAz)

2
,

pAx pAy pAz

A

where , , and  represent the position of the

anchor . The UAV movement model provides a the-

oretical  basis  to  predict  and  update  states  for  the

UAV localization framework. 

3    UAV Localization Scheme

This  section  introduces  the  proposed  UAV  local-

ization  scheme,  which  mainly  consists  of  a  localiza-

tion framework and the theoretical foundation of the

basic extended Kalman filter. 

3.1    System Framework

The  UAV  localization  framework  is  a  completed

localization  solution  based  on  the  UAV  movement

model as shown in Fig.3. The initial UAV position in

the three-dimensional space is determined by the tri-

lateration  method  within  the  signal  coverage  of  four

non-coplanar anchors, while its orientation is manual-

ly specified to achieve initial alignment. In the estab-

lished UAV movement model, IMU is adopted as con-

trol inputs, and UWB measurements are used as ob-

servations.  As described above, UWB signals are un-

reliable  in  hostile  environments,  which  inevitably

brings  intermittent  and  unreliable  UWB ranging,  re-

sulting in incorrect or even failed state updates.

Therefore, we first propose the adaptive extended

Kalman filter (AEKF) to solve these problems. If the

UWB  measurement  is  obtained  in  the  current  sam-

pling  period,  AEKF  is  performed  to  detect  outliers

and further estimate the position, velocity, and accel-

eration  bias.  Otherwise,  the  state  estimation  of  the

UAV is obtained by the extended Kalman filter based

on  the  state  constraint  (CEKF)  that  considers  the

equality relation.  When UWB measurements are lost

in  multiple  continuous  periods,  it  means  that  the

UAV  is  in  the  blind  areas  of  UWB ranging.  In  this

case,  the  lost  measurements  can  be  reconstructed  by

the  auto-regressive  model,  and  the  estimation  is  up-

dated by the extended Kalman filter based on the au-

to-regressive  model  (AREKF).  Thus,  an  efficient

UAV localization framework is finally formed by inte-

grating the above filtering methods, which is called an

extended  Kalman  filter  with  unreliable  observations

(UO-EKF). 
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3.2    Basic EKF for UAV Localization

For  the  non-linearity  localization  systems,  EKF

shows robust and accurate performance. Based on the

above UAV movement model (2) and (3), the predic-

tions of the state and error variance can be obtained

by the following equations:
 

x̂k|k−1 = Akx̂k−1 +Bk−1uk−1,

 

Pk|k−1 = AkPk−1A
T
k +Qk−1.

τa τb

Assume  that  IMU  is  interfering  with  Gaussian

noises.  Furthermore,  and  represent  IMU noises

and the uncertainty of acceleration bias, respectively.

Thus,  the  covariance  matrix  of  system  noise  can  be

obtained as:
 

Qk−1 = diag
(
Q′

k−1, Q
′
k−1, Q

′
k−1

)
,

 

Q′
k−1 =



T 3τa
3

+
T 5τb
20

T 2τa
2

+
T 4τb
8

−T 3τb
6

T 2τa
2

+
T 4τb
8

Tτa +
T 3τb
3

−T 2τb
2

−T 3τb
6

−T 2τb
2

Tτb

 .

k

According to (3), the predicted range between the

mobile UAV and the UWB anchor at time  is:
 

r̂k|k−1 = h(x̂k|k−1).

Then,  the  measurement  matrix  can  be  obtained

by the first-order Taylor expansion:
 

Hk =

(
p̂x − pAx

r̂k|k−1

, 0, 0,
p̂y − pAy

r̂k|k−1

, 0, 0,
p̂z − pAz

r̂k|k−1

, 0, 0

)
,

p̂x p̂y p̂z

k

where ( , , ) represents the predicted position of

the UAV at time .

The measurement update of EKF is defined as:
 

x̂k = x̂k|k−1 +Kk(rk − r̂k|k−1),
 

Pk = (I −KkHk)Pk|k−1,
 

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1,

Rk = σ2
r

σr

where  the  measurement  noise  covariance ,

and  represents  the  measurement  uncertainty  be-

tween the anchor and the mobile UAV.

The EKF based on the fusion of  UWB and IMU

under  the  acceleration  assumption  is  introduced  in

this section. Nevertheless, such traditional EKF is not
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suitable  for  UAV  localization  in  the  hostile  under-

ground environments. 

4    AEKF for Measurement Outliers

ek|k−1

Due  to  the  impacts  of  multipath  effects  and  ob-

structions,  the  outliers  of  UWB  ranging  are  in-

evitable  in  hostile  underground  scenarios.  Here,

AEKF is proposed for abnormal UWB ranging to im-

prove localization accuracy by minimizing the error of

the  innovation  covariance  matrix  and  solving  the

adaptive factor to adjust the noise covariance matrix.

Based on EKF, the innovation  is defined as:
 

ek|k−1 = rk − r̂k|k−1.

Its covariance matrix is:
 

Mk|k−1 = E{ek|k−1e
T
k|k−1}

= HkPk|k−1H
T
k +Rk

= HkAkPk−1A
T
kH

T
k +HkQk−1H

T
k +Rk.

Mk|k−1

rk

r̂k|k−1 Mk|k−1

It can be seen that  reflects the error vari-

ance between the range measurement  and its pre-

diction . Excessive  means the range mea-

surement  may  be  unreasonable,  which  should  be  dy-

namically  adjusted  based  on  the  actual  noise.  In  the

followings, we give its coping strategy in localization.

Ψ ⩾ 0
Ψ

Mk|k−1 ⩽ Ψ

λk > 0

M̄k|k−1

The threshold of innovation error variance 

is  introduced for  outlier  detection,  and  can be se-

lected according to the actual situation. If the innova-

tion covariance matrix , basic EKF is em-

ployed. Otherwise, the adaptive factor  is intro-

duced  to  adjust  the  covariance  of  the  system  and

measurement noise. Accordingly, the updated innova-

tion covariance matrix  is represented as:
 

M̄k|k−1 = HkAkPk−1A
T
kH

T
k + λk(HkQk−1H

T
k +Rk).

(6)

M̄k|k−1

λk λ∗
k

Considering the updated matrix  is a func-

tion  of ,  the  optimal  value  can be  obtained by

minimizing the following formula:
 

min{F (λk) =
∥∥Ψ − M̄k|k−1(λk)

∥∥2}, (7)

∥M∥2 M ∥M∥2
= tr(MMT)where  is the norm of  and .

C = M̄k|k−1 D = HkAkPk−1

AT
kH

T
k E = HkQk−1H

T
k +Rk

C(λk) = D + λkE

λk

For convenience, let , 

,  and .  Obviously,  (6)

can now be rewritten as .  Here  we

solve  according to the similar idea in [27], and the

solving procedure of (7) is as follows.

 

F (λk) = ∥Ψ −D − λkE∥2

= tr{(Ψ −D − λkE)(Ψ −D − λkE)T}

= λ2
ktr{EET} − 2λktr{(Ψ −D)ET}+

tr{(Ψ −D)(Ψ −D)T}.

λ∗
k

F (λk) dF (λk)/dλk = 0

The necessary condition for  to yield a minimum of

 is , which gives
 

dF (λk)

dλk

= 2λktr{EET} − 2tr{(Ψ −D)ET} = 0.

Thus, one can easily get the optimal solution:
 

λ∗
k =

tr{(Ψ −D)ET}
tr{EET}

,E ̸= 0.

And it can be further expressed as:
 

λ∗
k=

tr{(Ψ−HkAkPk−1A
T
kH

T
k )(HkQk−1H

T
k +Rk)

T}
tr{(HkQk−1HT

k +Rk)(HkQk−1HT
k +Rk)T}

.

Accordingly,  the  updated  innovation  covariance  ma-

trix is as follows:
 

M̄ ∗
k|k−1 = HkAkPk−1A

T
kH

T
k + λ∗

k(HkQk−1H
T
k +Rk).

Finally,  we  implement  the  proposed  adaptive  ex-

tended Kalman filter. 

5    Localization with Measurement Loss

Two improvements based on EKF are proposed in

this section. The first improves the accuracy of UAV

localization by constraining the state when the inter-

mittent  loss  of  UWB measurements  occurs.  The  sec-

ond reconstructs  continuous lost  measurements  when

the UAV flies in the blind areas of UWB ranging, and

then  AEKF  is  adopted  to  deal  with  the  inaccurate

measurement  reconstructed  by  the  auto-regressive

model. 

5.1    CEKF  for  Intermittent  Measurement

Loss

ηk

k ηk = 0

ηk

The  severe  obstruction  and  interference  of  large

equipments in hostile underground environments may

lead to the failure of UWB-ranging or even long-term

failures. A binary random variable  is introduced to

represent  whether  the  UWB  measurement  is  lost  or

not  at  time.  If ,  it  indicates  that  the  range

measurement  is  lost.  Otherwise,  the  range  measure-

ment is  successfully received. Let us assume  is  an

independent  and  identically  distributed  (i.i.d.)
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p(ηk = 0) = θBernoulli  variable  and .  Together  with

(3), it yields that:
 

rk = ηkh(xk) + vk.

x̂k

Pk

Correspondingly,  the state estimation  and the

error covariance  can be described as below:
 

x̂k = x̂k|k−1 + ηkKk(rk − r̂k|k−1),

 

Pk = (I − ηkKkHk)Pk|k−1.

ηk = 0

The above method called Open-Loop Kalman Fil-

ter (OLKF), is a classic strategy to solve the issue of

measurement loss. However, it does not perform mea-

surement updates when . Although OLKF is a

simple  and  fast  method  to  deal  with  measurement

loss, the localization performance of OLKF is unsatis-

factory in the underground environments.

Therefore, CEKF is proposed to improve the accu-

racy  while  the  range  measurements  are  accidentally

lost  by projecting unconstrained state  estimation on-

to  the  constraint  plane  and  transforming  it  into  a

minimization  problem.  Generally  speaking,  the  state

vectors  often  satisfy  some  kind  of  equality  relation,

and adding the corresponding equality constraint can

improve  estimation  accuracy.  In  actual  localization,

because of the high sampling frequency of UWB, the

innovations  in  adjacent  sampling  periods  are  close.

Without loss of generality, we give the following state

constraint:
 

Hkxk −Hkx̂k|k−1 ⩽ dk−1,

dk−1 = rk−1 − r̂k−1|k−2where  is  the  innovation  of  the

last sampling period. In other words, the system state

of the UAV should meet (8) at least:
 

Hkxk −Hkx̂k|k−1 = dk−1. (8)

x̂k

x̄k x̂k x̄k

We  directly  project  the  unconstrained  state  esti-

mate  onto the constraint plane (8) when the range

measurement  is  lost.  The  constrained  state  estima-

tion  is the projection of . Thus,  satisfies the

following equations:
 

x̄k = minx̄k
{(x̄k − x̂k)

TW (x̄k − x̂k)},
 

Hkx̄k = dk−1 + r̂k|k−1,

r̂k|k−1 = Hkx̂k|k−1 W

L

where ,  and  is  a  positive  defi-

nite matrix. The expression  with the Lagrange op-

erator  and the necessary conditions  for  its  minimiza-

tion are given as follows:

 

L = (x̄k − x̂k)
TW (x̄k − x̂k) +

2ST
k (Hkx̄k − r̂k|k−1 − dk−1),

∂L

∂x̄k

= W (x̄k − x̂k) +HT
kSk = 0,

∂L

∂Sk

= Hkx̄k − r̂k|k−1 − dk−1 = 0,

Skwhere  is  the  Lagrange  operator.  From the  above

formulas, one can easily get the solution:
 

Sk = (HkW
−1HT

k )
−1(Hkx̂k − r̂k|k−1 − dk−1), (9)

 

x̄k = x̂k −W −1HT
kSk. (10)

W = I W = P −1
k

Particularly,  it  is  the  least  mean  square  error

method  if .  When ,  it  degenerates

into the maximum likelihood estimation method.

According to (9) and (10), the following equation

can be easily got:
 

xk − x̄k

= xk − x̂k +W −1HT
k (HkW

−1HT
k )

−1(Hkx̂k −Hkxk)

= (I −W −1HT
k (HkW

−1HT
k )

−1Hk)(xk − x̂k)

= Γk(xk − x̂k),

Γk = I −W −1HT
k (HkW

−1HT
k )

−1Hk

Γk xk

P̄k

where . Consider-

ing that  and  are independent of each other, we

obtain the covariance matrix of estimation error :
 

P̄k = E{(xk − x̄k)(xk − x̄k)
T}

= ΓkE{(xk − x̂k)(xk − x̂k)
T}ΓT

k

= ΓkPkΓ
T
k .

Till  now,  we  have  finished  the  CEKF  derivation

for intermittent measurement losses. 

5.2    AREKF  for  Continuous  Measurement

Loss

k

Although the performance of CEKF is better than

that of OLKF, it still cannot provide satisfactory per-

formance for the continuous losses of  range measure-

ments when the UAV is in the range blind area. The

auto-regressive model is a promising scheme that can

compensate  for  the  lost  measurements  in  the  process

of state estimation[31, 32].  Inspired by this,  AREKF is

proposed  based  on  the  auto-regressive  compensation

scheme,  in which the compensated UWB range mea-

surement at time  is expressed as:
 

r̄k =

p∑
i=1

αirk, i,

r̄k rk,i

i p

where  is the reconstructed measurement.  is the

latest -th observation stored in memory,  is the ob-
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αi

servation  number  which  is  determined  according  to

actual  situations,  and  is  the  linear  weight  coeffi-

cient.

The output error of  the compensated observation

vector is further defined as follows:
 

er(k)=rk − r̄k.

αiConsequently, the weight  can be obtained by mini-

mizing the following formula:
 

Jk = E{er(k)e
T
r (k)} = E{(rk − r̄k)(rk − r̄k)

T}.

αiAccording to [33], we calculate the value of  by:
 

∂Jk

∂αi

= E
{
∂Jk

∂r̄k

∂r̄k

∂αi

}
= E{2(rk − r̄k)r

T
k, i}=0. (11)

p

Furthermore, (11) is rewritten as a linear system con-

sisting of  equations:
  

p∑
i=1

αiE{rk, ir
T
k, 1} = E{rkr

T
k, 1},

p∑
i=1

αiE{rk, ir
T
k, 2} = E{rkr

T
k, 2},

...
p∑

i=1

αiE{rk, ir
T
k, p} = E{rkr

T
k, p}.

(12)

α = (α1, α2, . . . , αp)
T

Obviously, the optimal value of 

can be obtained by solving (12).

r̄k

After the lost observation is reconstructed by vec-

tor , AEKF is called to detect and refine the recon-

structed value in the proposed AREKF. The state es-

timation can be expressed as:
 

x̂k = x̂k|k−1 +Kk(r̄k − r̂k|k−1).

d

d

d

d

At  last,  we  have  a  decision-making  problem  left,

that is, how to define continuous loss and when to ex-

ecute  AREFK. Here  a  threshold of  the  measurement

lost time  is  introduced. When the number of mea-

surement losses exceeds , AREKF is invoked. Other-

wise, we adopt CEKF for intermittent measurements.

The value of  is determined by the practical require-

ments.  Moreover,  we  will  give  guidelines  about  the

threshold  through  simulations.  Combined  with  the

proposed algorithms AEKF, CEKF, and AREKF, we

form the overall localization framework. 

6    Simulations and Experiments

In  this  section,  the  performance  of  the  proposed

localization  framework  is  evaluated  by  simulations

and experiments. We first compare UO-EKF with the

recent work Fusion EKF[26] and UKF[15] under differ-

ent  parameters  in  the  Gazebo  platform[34].  Then,  we

compare  UO-EKF  with  the  classical  EKF  only  with

UWB  (EKF-UWB)[35],  Fusion  EKF,  UKF,  and

ESKF[34] in  an  underground  garage  and  an  under-

ground coal mine to verify the practical effect, where

ESKF is the recent solution in the coal mine environ-

ment. 

6.1    Simulations in the Gazebo Platform

We  utilize  the  Gazebo  platform  to  simulate  the

UAV localization. Gazebo is a simulation platform of

the  robot  operating  system  (ROS),  which  can  pro-

vide the ground truth required for localization.

− −2

As shown in Fig.4, four non-coplanar anchors are

placed at (0, 2, 0), (4, , 0), (4, 4, 2), and (2, 4, 0),

respectively,  where  the  unit  of  coordinates  is  meters.

The  detailed  sensor  parameters  adopted  in  simula-

tions can be seen in Table 1, where the sampling fre-

quency of the UWB and IMU sensors are 50 Hz and

100  Hz.  respectively.  The  UWB  node  and  the  IMU

sensor are attached to the UAV, whose maximum lin-

ear and angular velocities are 1 m/s and 0.6 rad/s, re-
 

Anchor 1
(0, -2, 0)

Anchor 3

Anchor 4

Anchor 2










(4, -2, 0)

(4, 4, 2)

(2, 4, 0)

Fig.4.  Simulations in the Gazebo platform.
 

Table  1.    Parameters in Simulations

Parameter Value

◦/sGyroscope noise ( ) 0.2× 10−3

µgAcceleration noise ( ) 1.6× 10−2

◦/hGyroscope random walk ( ) 8.0× 10−6

µgAcceleration random walk ( ) 0.1× 10−2

UWB frequency (Hz) 5.0× 101

IMU frequency (Hz) 1.0× 102
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spectively.

First,  we  demonstrate  the  performance  of  UKF

and  UO-EKF  in  terms  of  the  trajectory  and  CDF

with various parameters in Fig.5. The values of UWB

R

θ

R = 0.25 θ = 0.4

parameters including the observation noise  and loss

rate  are empirical values obtained by analyzing ex-

tensive  observations  collected  in  the  underground

garages  and  the  coal  mines  during  the  early  ranging

experiments. By comparing Fig.5(a) and Fig.5(b), we

can see  that  the  trajectory  generated  by UO-EKF is

closer to the ground truth. With the increase of obser-

vation  noise  and  loss  rate,  both  UKF  and  UO-EKF

have  certain  performance  degradation.  Nevertheless,

UO-EKF  offers  a  preferable  accuracy  even  in  severe

conditions  with  and ,  as  shown  in

Fig.5(b).  It  can  be  seen  that  UO-EKF almost  elimi-

nates the localization delay.

R = 0.002 5 θ = 0.1

R = 0.25 θ = 0.4

In Fig.5(c),  the  CDF  of  localization  errors  for

UKF  and  UO-EKF  is  illustrated.  Specifically,  when

 and ,  the  maximum  and  average

localization errors of the UKF are 0.41 m and 0.19 m,

respectively.  For  UO-EKF,  the  corresponding  errors

are 0.36 m and 0.16 m, respectively. The localization

accuracy  has  been  improved  by  about  15.8%.  When

 and ,  the  average  localization  errors

of UKF and UO-EKF are about 0.58 m and 0.31 m,

respectively.  The  performance  promotion  is  up  to

46.6%,  which  shows  that  the  larger  the  observation

noise  and  the  loss  rate,  the  greater  the  performance

improvement of UO-EKF.

Moreover,  we  compare  the  proposed  three  algo-

rithms,  AEKF,  CEKF,  and  AREKF,  with  Fusion

EKF.  As  shown  in Fig.6(a),  the  trajectory  obtained

by  AEKF is  closer  to  the  ground  truth  than  Fusion

EKF  without  the  loss  of  UWB  measurements.  The

UAV  localization  accuracy  of  AEKF  has  been  im-

proved to 0.13 m by calculation. Similarly, CEKF and

AREKF  show  better  performance  than  Fusion  EKF

when the UWB measurement is lost or even when the

UAV  is  in  the  blind  areas.  The  CDF  of  localization

errors  is  further  shown in Fig.6(b).  Solved  according

to  Lagrange's  theorem,  the  localization  accuracy  of

CEKF  outperforms  Fusion  EKF  by  more  than  25%.

Specifically, all errors are less than 0.7 m for AREKF

in the blind areas, while the corresponding CDF is only

40% for Fusion EKF.

d

d

d

5

d

As  described  above,  if  the  number  of  measure-

ment  losses  does  not  exceed  threshold ,  CEKF  is

performed. Otherwise, AREKF is invoked. Fig.6(c) il-

lustrates the impact of loss time  on UO-EKF local-

ization accuracy. When the loss time  is smaller than

, the root mean square error (RMSE) basically keeps

the  same.  As  the  loss  time  continues  to  increase,

the  RMSE has  an obvious  increment and it  is  up to
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Fig.5.   Performance  of  UKF  and  UO-EKF  with  different  pa-
rameters. (a) Trajectory of UKF in the -  plane. (b) Trajec-
tory of UO-EKF in the -  plane. (c) CDF of localization er-
rors.
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d = 20

d 5

0.492  m  when .  The  results  confirm  that,  al-

though CEKF is simple and efficient, it may not well

deal with five or more continuous measurement losses.

Therefore, the threshold  can be set as  in this sim-

dulation, while we can adjust  based on actual condi-

tions in practical applications. 

6.2    Experiments in Underground Garage

In  this  subsection,  we  perform experiments  in  an

underground  garage  to  verify  the  feasibility  of  our

framework.  For  the  complex  underground  garages,

there  are  numerous  obstacles  (vehicles,  pipes,  and

concrete structures) as illustrated in Fig.7. We estab-

lish  the  UAV localization  coordinate  system through

accurate  ranging  and  azimuth  measuring.  Four  non-

coplanar  anchors  are  placed  at  (0,  0,  0.16),  (7.48,

0.05,  0.16),  (0.02,  7.90,  0.51),  (7.28,  7.77,  0.16),  re-

spectively,  where  the  coordinates  are  in  meters.  The

UAV  is  equipped  with  a  P440  UWB  node  and  a

HI229  IMU  sensor,  and  the  setup  parameters  are

shown in Table 2. Since the ground truth of localiza-

tion  cannot  be  obtained  directly  in  experiments,  the

NOKOV motion capture system with eight cameras is

utilized  to  provide  a  100  Hz sampling  frequency  of

ground truth.
 
 

Anchor 1
(0, 0, 0.16)

Anchor 3 Anchor 4

Anchor 2

P440
UWB HI229

IMU

(7.48, 0.05, 0.16)

(7.28, 7.77, 0.16)(0.02, 7.90, 0.51)

Fig.7.  Underground garage scene and equipment.
 
 
 

Table  2.    Parameters in Underground Garage Experiments

Parameter Value

◦/s/gGyroscope noise ( ) 0.100 0

g/
√
HzAcceleration noise ( ) 0.001 5

◦/sGyroscope random walk ( ) 1.000 0

Acceleration random walk (g) 0.030 0

UWB frequency (Hz) 50.000 0

IMU frequency (Hz) 100.000 0

m2UWB variance ( ) 0.003 6

 

After  calibrating  the  UWB  sensors  and  initial

alignment  of  IMU,  we  conduct  the  UAV localization

experiments in the underground garage, in which the
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Fig.6.   Localization performance comparison.  (a)  Trajectory in
the -  plane  with  different  algorithms.  (b)  CDF  of  localiza-
tion errors. (c) RMSE of UO-EKF with different loss time .
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maximum linear velocity and angular velocity are set

to 1 m/s and 0.5 rad/s, respectively. Under the above

configurations,  the  flight  range  of  the  UAV is  about

30 m, and the flight time is about 70 s. It is pointed

out that the loss rate of UWB ranging in this experi-

ment is 16.8% by post-measurement statistics.

x y

z

x y

z

UO-EKF is  compared with EKF-UWB[35],  Fusion

EKF[26], UKF[15], and ESKF[34]. The ground truth and

estimated trajectory are illustrated in Fig.8(a). It can

be seen that the performance of UO-EKF is obvious-

ly  better  than  those  of  other  algorithms.  To  further

describe  the  performances  of  these  algorithms,

Figs.8(b)–8(d) show the positions of the -axis, -ax-

is,  and -axis  in  the  localization  coordinate  system,

respectively. Although the accuracy has an inevitable

degradation on the corner of the -  plane for all al-

gorithms,  UO-EKF can  still  achieve  excellent  perfor-

mance. In the -axis direction, the trajectory of UO-

EKF  is  also  nearer  to  the  ground  truth,  especially

when the UAV takes off and lands.

80%

The CDF of localization errors with the aforemen-

tioned  four  algorithms  and  UO-EKF  is  shown  in

Fig.9. It is clear that UO-EKF shows the best perfor-

mance  among  all  algorithms.  For  UO-EKF,  about

 localization  errors  are  less  than  0.2  m,  and  er-

rors are not larger than 0.3 m. The detailed position

errors on three axes are illustrated in Fig.10. At last,

the RMSE values of all the above algorithms are pre-

sented in Table 3, which illustrates that UO-EKF has

better  robustness  and  localization  accuracy  with

RMSE 0.192 m in the underground garage. In the fol-

lowing  subsection,  we  further  conduct  the  localiza-

tion experiments in a realistic coal mine environment. 

6.3    Experiments in Coal Mine

As  described  in Subsection 2.1,  the  underground

coal  mine  is  a  typical  hostile  underground  environ-

ment, which subjects to serious multipath effects and

various noise interference. These factors make the in-

crease of outliers and the loss of UWB range measure-

ments. Due to the limited and fixed scope of the un-

derground monitoring system, it is difficult to satisfy

the dynamic monitoring requirements.  When there is

a temporary demand or problem in coal mine produc-

tion,  it  is  essential  to  carry  out  rapid  environmental

parameter monitoring and video patrol in local areas.

S

To verify  the  practicability  and effectiveness,  the

UAV  that  we  independently  control  in  a  coal  mine

can  take  corresponding  measures  and  quickly  enter

the designated area to complete monitoring and oth-

er  tasks.  The  trajectory  of  the  UAV  is  an  approxi-

mate -shape.  The  initial  setting  of  IMU  is  aligned

with the localization coordinate system. Moreover, its
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Fig.8.  Position of UAV in the underground garage with different algorithms. (a) Trajectory in the -  plane. (b) Position along the
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Peng-Peng Chen et al.: UAV Localization in Hostile Underground Environments 1411



intrinsic  parameters  are  still  consistent  with those in

the  underground garage.  Besides,  four  UWB anchors

are fixed in the tunnel, as shown in Fig.11. In the giv-

en coal mine experiment environment, the ranging er-

ror  variance  is  about 0.022 5 m2,  and  the  measure-

ment loss rate is up to 32.5%, which are both higher

than  those  in  the  underground  garage.  Compared

with the underground garage, the performance of the

ESKF localization algorithm is reduced by 14.5%.

Fig.12 presents  the  trajectory  of  the  UAV in  the
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Table  3.    Performance in Underground Garage

Algorithm RMSE

EKF-UWB[35] 0.327

Fusion EKF[26] 0.275

UKF[15] 0.234

ESKF[34] 0.228

UO-EKF (ours) 0.192
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Fig.11.  Underground coal mine scene.
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coal  mine  tunnel.  The  performances  of  all  the  algo-

rithms have a certain degradation compared with the

underground  garage.  Especially,  due  to  the  random

jitter of UWB ranging and the IMU attitude bias, the

localization  performance  sharply  decreases  when  the

UAV turns. Despite that, the proposed UO-EKF still

shows  satisfactory  localization  results. Fig.13 further

describes  the  CDF  of  the  localization  errors.  The
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maximum and average localization errors of ESKF are

about 0.461 m and 0.253 m by calculation, respective-

ly, while the corresponding errors of the UO-EKF are

0.284 m and 0.205 m, respectively. It is worth noting

that the performance improvement in the coal mine is

about  19.0%,  which  is  obviously  more  remarkable

than that in the underground garage. It confirms that

the  proposed  UO-EKF  with  unreliable  observations

has  stronger  robustness  and  accuracy  in  hostile  coal

mine  environments.  Besides,  it  can  be  seen  from

Fig.14 that the maximum errors of three axes for UO-

EKF are less than 0.4 m, and the average errors are

only 0.21 m, 0.16 m, and 0.23 m, respectively.
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Although the true values of velocity and accelera-

tion bias are unavailable in our system configuration,

we argue that the estimated velocity and acceleration

bias in Fig.15 are reasonable based on the accuracy of

the above localization results. Specifically, we can see

from Fig.15(a)  that  the  speed  of  the  UAV  does  not

exceed 1 m/s,  which accords  with the maximum lin-

ear speed setup of the UAV. Furthermore, as can be

seen  from Fig.15(b),  the  acceleration  bias  estimation

fluctuates  around  0,  and  the  maximum  value  is  not

larger than 0.5 m/s2, which validates there are no cu-

mulative  errors  in  the  proposed  localization  scheme.

In  addition,  since  the  external  transformation  be-

tween the IMU and the navigation coordinate system

is  required  for  localization,  we  additionally  estimate

the UAV attitudes shown in Fig.15(c). Eventually, re-

sults show that the yaw, roll, and pitch angles are al-

so consistent with the UAV's physical flight attitude.

In  the  end,  the  RMSEs  of  these  typical  algo-

rithms are given in Table 4. Although the UWB mea-

surements are unreliable and lost seriously in the coal

mine,  our  scheme  can  still  achieve  accurate  and  ro-
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16.9%
bust  localization  with  RMSE  0.217  m.  Furthermore,

the  accuracy  is  improved  by  compared  with

ESKF.  Through  the  above  experimental  results,  we

can  conclude  that  the  proposed  UO-EKF can  satisfy

the  requirements  of  UAV  localization  in  hostile  coal

mines. 

7    Related Work

Multi-Sensor  Fusion.  The  localization  schemes

based on multi-sensor fusion have attracted extensive

research, especially the fusion of UWB and IMU. The

localization  performances  between  the  fusion  of  IMU

in the prediction step and in the update step are com-

pared in [36], and the results show that the latter has

better  performance.  In  [26],  IMU  is  utilized  as  the

control  input  in  the  prediction  step  to  estimate  the

acceleration  bias,  which  reduces  the  localization  de-

lay  and  improves  the  accuracy.  However,  the  lin-

earization error introduced by EKF promotes the re-

search  of  localization  algorithms  based  on  UKF[15],

ESKF[14],  and  particle  filter[21].  Moreover,  a  coupled

UWB/INS localization framework is proposed in [37],

and the minimum variance unbiased finite impulse re-

sponse method is  utilized to obtain accurate position

and velocity estimation. It has better immunity to the

error  of  prior  knowledge  of  noise  variance.  In  [38],  a

composite  filtering  is  developed  for  UAV localization

with  the  TDOA-based  UWB,  which  can  deal  with

measurement noise and dynamic uncertainty simulta-

neously.  Although  the  linearization  error  is  reduced,

the issues of measurement error and loss in the com-

plex  environment,  have  not  been  well  solved.  To

achieve  accurate  and  robust  localization  performance

in complex scenes, an elastically tightly coupled UWB

visual-inertial  indoor  localization  system (R-UVIS)  is

designed  in  [39].  Due  to  the  dark,  low  illumination,

and  less  texture  environment  in  the  hostile  under-

ground coal mine scenarios, the method of fusing visu-

al sensors is not applicable.

NLOS  Localization.  Many  algorithms  are  pro-

posed  for  large  UWB  range  measurement  errors  be-

cause  of  NLOS,  like  constraint  optimization[40],  H-in-

finity  filter  (HIF)[41],  and  cubature  KF  (CKF)[42].  In

[29], a UWB NLOS mitigation for localization is pro-

posed.  It  introduces  the  equality-constrained  Taylor

series  robust  least  squares  (ECTSRLS)  technique  to

suppress  residual  NLOS  range  errors.  In  the  harsh

coal mine environments, the proposed ESKF-fusion[34]

is  only  a  linear  fitting  of  UWB measurement,  which

cannot solve the problem of inaccurate UWB ranging.

VBUKF[43] was proposed to reduce the interference of

NLOS  by  smoothing  with  the  consideration  of  time-

variant  measurement  noise.  Based on machine  learn-

ing  and  deep  learning,  some ranging  error  identifica-

tion  and  elimination  algorithms  are  also  proposed  in

[44, 45].  The  algorithm  is  combined  with  EKF,  and

the  accurate  range  difference  is  selected  for  calcula-

tion,  which  effectively  reduces  the  NLOS  measure-

ment  error.  Nevertheless,  the  above  methods  usually

deal with the UWB ranging measurement error inde-

pendently  and  are  not  closely  combined  with  the  lo-

calization algorithm. This paper starts from the local-

ization algorithm, and both inaccurate and lost UWB

measurements  are  the  focus  and  challenge  of  our

work. 

8    Conclusions

In this  paper,  we designed a novel  UAV localiza-

tion  framework  UO-EKF  to  handle  the  outliers  and

losses  of  ranging  measurements  in  hostile  under-

ground  environments.  Based  on  the  fusion  of  UWB

and  IMU,  three  localization  algorithms,  AEKF,

CEKF,  and  AREKF,  were  proposed  in  the  localiza-

tion framework.  AEKF is  used to  detect  and correct

outliers,  which improves  the accuracy of  localization.

In addition, CEKF and AREKF are used to compen-

sate  for  the  loss  of  range  measurements,  which  fur-

ther  promotes  the  localization  performance.  Simula-

tions and experiments showed that the proposed UO-

EKF is feasible and can achieve better robustness and

accuracy in hostile underground environments. In fu-

ture work, we will further improve the localization al-

gorithm to expand application areas. 
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