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Abstract    The ability to recommend candidate locations for service facility placement is crucial for the success of ur-

ban planning. Whether a location is suitable for establishing new facilities is largely determined by its potential popularity.

However, it is a non-trivial task to predict popularity of candidate locations due to three significant challenges: 1) the spa-

tio-temporal behavior correlations of urban dwellers, 2) the spatial correlations between candidate locations and existing

facilities, and 3) the temporal auto-correlations of locations themselves. To this end, we propose a novel semi-supervised

learning model, Spatio-Temporal Graph Convolutional and Recurrent Networks (STGCRN), aiming for popularity predic-

tion and location recommendation. Specifically, we first partition the urban space into spatial neighborhood regions cen-

tered  by  locations,  extract  the  corresponding  features,  and  develop  the  location  correlation  graph.  Next,  a  contextual

graph convolution module based on the attention mechanism is introduced to incorporate local and global spatial correla-

tions among locations. A recurrent neural network is proposed to capture temporal dependencies between locations. Fur-

thermore, we adopt a location popularity approximation block to estimate the missing popularity from both the spatial

and temporal domains. Finally, the overall implicit characteristics are concatenated and then fed into the recurrent neural

network to obtain the ultimate popularity. The extensive experiments on two real-world datasets demonstrate the superi-

ority of the proposed model compared with state-of-the-art baselines.
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1    Introduction

The recent research of urban planning focuses pri-

marily on identifying appropriate new geographical lo-

cations for placing service facilities (e.g., supermarket,

vehicle  charging  station,  and  coffee  shop),  especially

in the fact  that congener facilities  have already been

established in  urban regions.  According to  the  corre-

sponding  facility  placement  expectation,  both  service

providers and urban dwellers will gain significant ben-

efits, including a prosperous economy, convenient life,

and  smooth  traffic.  Many  essential  factors  should  be

considered  in  recommending  candidate  locations  in

urban areas, but one of the most important factors is

the  profit  of  the  facility  placement.  Establishing  a

particular  service  facility  at  different  locations  will

lead  to  varied  incomes.  For  instance,  opening  new

fast-food  restaurants  near  business  districts  or  rail-

way stations can yield higher profits than those locat-

ed  in  residential  areas.  Therefore,  before  deciding

where  to  place  new  facilities,  it  is  necessary  to  ap-

praise  the  profits  incurred  along  the  time  on  these

candidate locations.

In  this  paper,  popularity  is  seen  as  the  reflection

of profits or earnings intuitively for a particular facili-

ty's  location  recommendation,  which  is  measured  by

the number of customers who are served. Specifically,

facility popularity is formally quantified by the num-
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ber  of  customer  check-ins  during  a  certain  period  on

location-based  social  networks  (e.g.,  Weibo,  Douban,

and  Twitter).  Consequently,  the  potential  popularity

of  candidate  locations  can  facilitate  the  determina-

tion of location selection for service facility placement,

namely,  incremental  candidate  location  recommenda-

tion  (ICLR).  For  instance,  as  shown  in Fig.1,  there

are two candidate locations, A and B, for a new Star-

bucks  in  an  urban  area  where  five  Starbucks  exist

with their historical popularity in terms of month-by-

month  check-in  records  available.  Therefore,  ICLR

aims  to  predict  potential  monthly  popularity  for  the

most  profitable  location  based  on  the  corresponding

historical data and other relevant characteristics. Fur-

ther, a more profitable time node can also be predict-

ed, such as certain seasons and months.
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Fig.1.  Incremental candidate location recommendation.
 

Many  efforts  have  been  put  into  location  recom-

mendations. The most commonly used model of popu-

larity  prediction  is  feature  engineering,  whose  ratio-

nale is that locations with similar characteristics tend

to have closer popularity. Traditional approaches are

usually  based  on  the  features  of  location  geography

and  user  mobility[1–3].  In  recent  studies,  analyzing

characteristics  from  different  location-based  online

services  has  attracted  much  more  attention[4–8],  such

as check-in records[5],  social preferences[6],  and transi-

tional  trajectories[8].  Despite  the  significant  progress

brought by recent research, it is a non-trivial task to

predict  the  popularity  transformations  over  time  or

within  a  time  period  (e.g.,  month  by  month,  or  na-

tional holidays), due to the difficulty in capturing the

spatio-temporal  correlations  among  locations  them-

selves or between candidate locations and existing fa-

cilities,  as  well  as  the  incompleteness  and scarcity  of

location  characteristics.  To  sum  up,  we  need  to  re-

solve the following three significant challenges.

1) Customer  Effect.  The  spatio-temporal  effects

for  location  popularity  are  implicitly  made  by  urban

dwellers  (facility  customers).  In  addition  to  the  con-

ventional features (e.g.,  residential  place,  daily travel

trajectory, and POI check-in), social relationship is al-

so one of the essential factors affecting the choices of

service  facility  locations  on  online  social  networks,

such as reciprocal recommendation or internet celebri-

ty economy.

2) Spatial Correlation. The non-linear spatial cor-

relations rest among locations. The location populari-

ty is not only explicitly affected by the occupancy of

both candidate locations and existing facilities nearby,

but  can  also  have  implicitly  irregular  correlations

with  distant  facilities.  For  example,  two  facilities  far

away from each other can have comparable populari-

ty if the regional environments are similar.

3) Temporal  Dependency.  The  dynamic  temporal

correlations exist within the locations themselves. Fu-

ture popularity of candidate locations is auto-depend-

ed on their popularity in previous time periods. In ad-

dition,  customer  effect  and  spatial  correlation  can

vary  over  time,  which  makes  the  dependencies  even

harder to capture.

In recent years, deep learning has been widely em-

ployed to model high-dimensional spatio-temporal da-

ta.  For  example,  Graph  Convolutional  Network

(GCN) extends the well-known Convolutional Neural

Network  (CNN)  to  a  non-Euclidean  graph  structure.

The latent representation of each graph node in GCN

is evolved by aggregating and then propagating repre-

sentations of its various neighbors[9].  In addition, Re-

current Neural  Network (RNN)[10] and its  successors,

e.g.,  Long-Short-Term-Memory  (LSTM)  network[11]

and Gated Recurrent Unit (GRU) network[12], are ini-

tially  proposed  to  solve  natural  language  processing

problems,  as  they  can  be  directly  employed  to  effec-

tively learn complicated schemes from a large amount

of  sequential  information.  Therefore,  these  useful

technologies can be introduced into the recommenda-

tion  of  candidate  locations.  Specifically,  graph  nodes

serve as locations, and edges represent spatial correla-

tions  between  pair-wise  locations.  Both  the  spatial

characteristics  and  temporal  impacts  can  be  well

modeled for popularity prediction.

This  paper  aims  to  address  these  aforementioned

problems with the help of GCN and RNN, by propos-

ing  the  Spatio-Temporal  Graph  Convolutional  and

Recurrent Networks (STGCRN) framework for popu-

larity prediction and location recommendation, where
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congener  facilities  have  already  been  established  and

their  historical  popularity  is  available.  Specifically,

the main contributions of our work are summarized as

follows.

● With the significant consideration of spatio-tem-

poral  trajectories  and  online  social  services  of

dwellers, we partition the urban space into spatial re-

gions  centered  by  locations,  and  extract  the  corre-

sponding multi-dimensional characteristics from exist-

ing  facilities,  candidate  locations,  and  regional

dwellers. Based on these we develop the location cor-

relation graph.

● We  introduce  a  novel  semi -supervised  spatio-

temporal learning model to incorporate graph charac-

teristics and historical popularity of existing facilities

based on the location correlation graph, whose goal is

to  predict  the  popularity  of  candidate  locations  over

time  to  facilitate  the  geographical  placement  of  new

facilities.

● We propose an attention mechanism based con-

textual graph convolution module to incorporate both

local  and global  spatial  correlations  among locations,

and  also  introduce  an  RNN  to  capture  the  dynamic

temporal dependencies. Furthermore, a popularity ap-

proximation  block  is  employed  to  estimate  the  miss-

ing  popularity  from  both  spatial  and  temporal  do-

mains.

● Extensive  experiments  are  carried  out  on  two

real-world  datasets  from  Beijing  and  New  York,

which all  verify that our model significantly achieves

the best prediction performance compared with state-

of-the-art baselines.

The rest of the paper is organized as follows. We

review  related  work  in Section 2,  and  present  some

preliminary  concepts  and  formulate  the  location  rec-

ommendation problem in Section 3. We introduce the

pre-processing  of  inputs  in Section 4.  The  proposed

model is discussed in more detail in Section 5. The ex-

periments  are  conducted  in Section 6,  and  the  paper

is concluded in Section 7. 

2    Related Work
 

2.1    Location Recommendation

Facility  location  recommendation  identifies  the

optimal candidate locations to set up new service fa-

cilities for dwellers of cadidate locations, according to

the  primary  selection  criterion  of  the  popularity  of

each candidate location. Karamshuk et al.[1] first  for-

mally  proposed  the  popularity  to  rank  all  candidate

k

locations  for  the  best  retail  store  placement,  using  a

linear model to evaluate popularity by recognizing ge-

ographic  and  user  mobility  features  and  translating

them into  scores.  Li  et al.[13] first  introduced dweller

trajectories to appraise a candidate location based on

the number of potential  customers it can attract,  for

which each trajectory is assigned a score according to

a distribution model. Mitra et al.[14] developed Trajec-

tory-Aware  Optimal  Placement  of  Services  (TOPS)

that selects the best  candidate locations on the road

network  to  optimize  a  wide  class  of  objective  func-

tions  defined  over  dweller  trajectories.  They  proved

that  TOPS  is  NP-hard  and  accordingly  developed  a

multi-resolution  clustering-based  approximation

framework  of  NetClus.  Mitra et  al.[4] further  extend-

ed  TOPS  to  Trajectory-Aware  Inconvenience-Mini-

mizing Placement of Services (TIPS), aiming to mini-

mize  the  dweller  inconvenience  in  trajectory-aware

service placement.

k

Furthermore, Ma et al.[6] and Wang et al.[7] incor-

porated both geographical and categorical preferences

of  candidate  locations,  and  especially  considered  the

effect of social relationships among online service cus-

tomers  for  ultimate  popularity  prediction.  For  the

next optimal restaurant placement, Wang et al.[2] ad-

ditionally took advantage of customer reviews to con-

struct  predictive  characteristics,  and  incorporated

them into a regression model to predict the number of

check-ins  that  a  candidate  location  would  likely  at-

tract. Li et al.[15] only recognized the unique trajecto-

ries that directly pass by the locations to identify the

most  influential  candidate  locations  for  facility

placement.  However,  these  above  approaches  ignore

the  primary  temporal  dependencies  among  locations,

where the recommended locations may vary at differ-

ent time periods.

Recently,  Hsieh et  al.[5] devised a semi-supervised

learning model API, which predicts the temporal pop-

ularity  of  candidate  locations  for  retail  store  place-

ment. API first defines a set of location affinity func-

tions for each relevant feature and then constructs the

location affinity graph to model spatial and temporal

correlations  among  locations,  and  is  finally  imple-

mented  by  Gaussian  random  fields.  Although  both

spatial and temporal correlations are considered, API

fails to incorporate them into a unified framework to

improve recommendation accuracy.

In addition, Ruan et al.[16] formulated the dynam-

ic  allocation  problem  of  public  resources  in  a  small

area (e.g., trash bins in an amusement park), and the

proposed  MALMCS  framework  employs  matrix  fac-
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torization  for  spatio-temporal  neural  networks  (MF-

STN)[17] to  predict  crowd  flows.  MF-STN  captures

spatio-temporal correlations between urban regions by

a spatio-temporal (ST) feature learner and then lever-

ages the learned latent characteristics to make predic-

tions within a specific region. Hsieh et al.[18] designed

the GEM framework for air quality prediction, which

utilizes  existing  monitoring  data  and  heterogeneous

city dynamics, such as meteorology, human mobility,

road network structure, and urban POIs.

Zheng et  al.[19] proposed  a  semi-supervised  learn-

ing  approach  to  infer  real-time  and  fine-grained  ur-

ban air quality, where an artificial neural network and

a linear-chain conditional random field are adopted to

resolve  spatial  and  temporal  features,  respectively.

For  the  next  POI  recommendation  that  people  will

visit in future trips, Liu et al.[20] proposed ST-RNN by

extending  RNN.  ST-RNN models  time  intervals  in  a

recurrent  architecture,  and incorporates  distance-spe-

cific transition matrices for modeling geographical dis-

tances.  Luo et  al.[21] developed  STAN,  a  bi-layer  at-

tention  architecture  that  aggregates  spatio-temporal

correlation in trajectories and recalls the targets with

the  help  of  personalized  item frequency  for  POI  rec-

ommendation.  Although these  studies  are  not  direct-

ly  relevant  to  the  popularity  prediction  of  locations,

we can consider the dynamic allocation and air quali-

ty  prediction  as  a  special  kind  of  recommendation

problem under study. 

2.2    Graph  Convolutional  and  Recurrent

Network

GCN-based models are generally more progressive

and flexible than purely CNN-based approaches. Due

to  its  remarkable  effectiveness,  GCN  has  been  suc-

cessfully  applied  to  several  spatio-temporal  forecast-

ing tasks with the help of a recurrent neural network.

Zheng et  al.[22] predicted  the  transportation  requests

by Spatial-Temporal Graph Convolutional Sequential

Learning  (ST-GCSL)  across  different  positions  and

time slots. It builds a granular model within both the

spatio-temporal gate block and clustering context fea-

ture sequence. As for traffic flow prediction, Wang et
al.[23] proposed  a  novel  spatio-temporal  graph  neural

network,  which  can  comprehensively  capture  spatial

and temporal patterns by a learnable positional atten-

tion  mechanism and  a  sequential  component,  respec-

tively.  Zhang et  al.[24] further  designed  SHARE  for

predicting  city-wide  parking  availability  whose  main

advantages  lie  in  a  hierarchical  graph  convolutional

structure and a GRU-based recurrent neural network.

In  addition,  they  developed  an  approximation  mod-

ule to estimate missing real-time parking availability.

By  considering  temporal  properties  of  traffic  flows,

i.e., recent, daily-periodic, and weekly-periodic depen-

dencies,  Guo et  al.[25] used  the  ASTGCN  model  to

solve traffic flow forecasting problems, where the tem-

poral  dependencies  are  also  implemented  by  the  at-

tention mechanism of GCN.

Moreover, Bai et al.[26] investigated the challenges

of passenger demand over multiple time horizons and

then  present  STG2Seq,  a  multiple  hierarchical  gate

graph convolution module with two attention mecha-

nisms,  to  simultaneously  capture  both  spatial  and

temporal  correlations.  Geng et  al.[27] performed  a  re-

gional  demand  forecast  of  accurate  ride-hailing,  ST-

MGCN. It  first  encodes  pair-wise  correlations  among

regions into multiple graphs and then explicitly mod-

els  them by multi-graph convolution.  Finally a GRU

block  is  employed  to  re-weigh  different  historical

characteristics.

Liu et  al.[28] proposed  HMTRL,  a  unified  route

representation  learning  framework  for  multi-modal

transportation  recommendation,  where  both  the  spa-

tio-temporal  dependencies  in transportation networks

and the semantic coherence of historical routes are ex-

ploited. Wang et al.[29] introduced a knowledge graph

with temporal  information into POI recommendation

and then devised the framework of STGCAN, to learn

user preferences by dynamically capturing the spatio-

temporal  neighborhoods.  For  effective  traffic  flow

forecasting,  Li  and Zhu[30] proposed STFGNN, which

learns hidden spatio-temporal dependencies by a nov-

el  fusion  operation,  and  handles  long  sequences  with

the  help  of  an  integrated  graph  module  and  a  gated

convolution  module.  Consequently,  these  above  con-

crete  studies  on  the  graph  convolutional  and  recur-

rent  network  in  request  predictions  make  the  graph

convolutional  and  recurrent  network  credible  in  the

practice of spatio-temporal location recommendation.

Despite the great contributions of the existing re-

searches,  there  has  been  a  lack  of  practical  work  on

spatio-temporal  popularity  prediction  and  location

recommendation  for  urban  facility  placement  from  a

comprehensive perspective. Therefore, we propose the

novel  model  STGCRN  based  on  the  graph  convolu-

tional and recurrent network, whose effectiveness and

stability are significantly guaranteed. 

3    Preliminaries

In  this  section,  we  present  the  notations  used
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throughout  the  paper  in Table 1,  provide  a  range  of

definitions,  formulate  the  recommendation  problem,

and present an overview of the proposed model.
 
 

Table  1.    Definition of Notations

Notation Definition

l Particular location

τ Route trajectory

Gs Social network

X Contextual characteristics

Y Historical popularity

ỹ Predicted popularity

F(·) Mapping function

r Urban region

G Location correlation graph

Si(ri, rj) ri rjSemantic similarity of  and 

xl,t
li

Local spatial implicit feature

xg, t
li

Global spatial implicit feature

ht
li

Temporal hidden state

ysdl, t
li

Local spatial popularity

y
sdg, t
li

Global spatial popularity

ytd, t
li

Approximated temporal popularity

yf, t
li

Fused popularity distribution
 

3.1    Definitions and Problem Statement

Gr = (Vr, Er,Wr)

Vr

Er

Wr

e(u, v) ∈ Er

w(u, v) ∈ Wr

To  begin  with,  an  undirected  graph

 is  introduced  to  represent  an  ur-

ban  space  with  numerous  inhabits  and  the  corre-

sponding road network.  is the set of road intersec-

tions  (nodes),  denotes  the  set  of  road  segments

(edges),  and  is  the  symmetric  weight  matrix.

Each  edge  has  a  positive  weight

, i.e., actual spatial distance.

l ∈ L

L = Ll ∪ Lu = {l1, l2, . . . , lm} Ll ̸= Lu m

Ll Lu

l ∈ Lu

Definition 1 (Location). A location  is a par-
ticular  site  where  a  specific  service  facility  has  al-
ready been established or will be as planned in specif-
ic  urban  areas.  We  denote  a  set  of  locations

, , where  is the
total number of locations,  and  represent a set of
locations with and without facilities, respectively, and

 is referred to as a candidate location.
τ ∈ Γ

τ = {(p1, t1), (p2, t2), . . . , (pζ, tζ)} pi

ti

Definition 2 (Trajectory). A trajectory  illus-
trates  the  daily  travel  pattern  of  the  dweller  in  the
road  network,  which  is  described  in  the  sequential
forms  of ,  where 
represents  a  specific  geographical  position  at  a  road
segment  (including  road  intersection)  collected  by
GPS-liked  devices,  and  denotes  the  corresponding

ti < tj
i < j 1 ⩽ i, j ⩽ ζ

timestamp  when  the  dweller  passing  by, ,  if
, .

Gs = (Vs, Es)

Vs

Es

e(u, v) ∈ Es u v u

v

Definition  3 (Social  Relationship). The online  so-
cial relationships among urban dwellers are defined by
a  directed  graph  in  the  location-based
social  network,  where  is  the  set  of  dwellers (cus-
tomers), and  represents the set of edges. Each edge

 from node  to  denotes that  has fol-
lowed  with a positive weight of 1.

yli◦tj
li

tj

Definition  4 (Popularity). The  popularity  of
the candidate location  for a particular facility repre-
sents  the  prospective  number  of  customers  who  will
consume there in a future time period .

Note  that  the  location  popularity  of  an  existing

facility is indicated by the number of historical check-

ins made by customers in a certain time period.

Th
XL◦Th =

{X t−Th+1,X t−Th+2, . . . ,X t}
YLl◦Th = {Y t−Th+1

Ll
Y t−Th+2

Ll
, . . . ,Y t

Ll
} Ll

Lu

Tf

Definition  5 (Location  Popularity  Prediction).

Given  historical  consecutive  time  steps ,  a  set  of
contextual  characteristics  for  all  locations 

,  and  a  set  of  historical
popularity ,  for ,
location  popularity  prediction  is  to  calculate  the  fu-
ture  popularity  for  candidate  locations  over  the
next consecutive periods :
 

F(X ;YLl◦Th) → (Ŷ t+1
Lu

, Ŷ t+2
Lu

, . . . , Ŷ t+Tf
Lu

),

F(·)
Ŷ t+i

Lu

1 ⩽ i ⩽ Tf Tf > 1

where  is the mapping function that needs to be

learned,  and  is  the  predicted  popularity,

, and .

Gr

L XL◦Th

YLl◦Th U

Γ

Gs

Lk
u◦t ⊂ Lu t

|Lk
u◦t| = k

Definition  6 (The  ICLR  Problem). Given  an  ur-
ban area within the road network , all the locations

, the multi-dimensional features , the historical
popularity ,  and  the  dwellers  with  both  the
corresponding  trajectories  and  social  relationships

, the ICLR problem seeks to select the optimal can-
didate  locations  in  a  future  period ,

,  which  will  obtain  the  maximum popularity
when  establishing  a  specific  type  of  facility  in  those
candidate locations. 

3.2    Framework Overview

The  framework  of  STGCRN  is  shown  in Fig.2,

where the inputs are the multi-dimensional character-

istics of all locations and historical check-ins of exist-

ing facilities, and the outputs are the predicted popu-

larity of candidate locations in future periods. Specifi-

cally, it includes five major components.

First,  for  data  pre-processing,  the  urban  space  is

partitioned  into  spatial  regions,  where  there  is  only

Pu Wang et al.: Spatio-Temporal Location Recommendation for Urban Facility Placement 1423



one  location  in  each  region.  The  contextual  features

are  extracted  from  locations  and  regional  dwellers,

and subsequently the location correlation graph is de-

veloped. Second, a graph convolutional module is pro-

posed  to  model  spatial  correlations  among  locations.

Both the local and global spatial correlations are cap-

tured  by  two  multi-head  attention  mechanism  based

graph convolutional blocks. Third, a recurrent neural

network  module  is  introduced,  employing  the  LSTM

blocks  to  model  the  dynamic  temporal  dependencies

inside  the  locations  themselves.  Fourth,  an  approxi-

mation block is  employed to  estimate  the  probabilis-

tic  distributions  of  missing  popularity  from  spatial

and temporal domains. In the spatial domain, a mul-

ti-head  attention  mechanism  based  graph  convolu-

tional  block  is  additionally  utilized  to  propagate  the

observed  popularity  to  the  missing  popularity  based

on the contextual similarity of locations.  In the tem-

poral domain, the LSTM blocks are reused to approx-

imate  the  current  popularity  distributions  based  on

their  previous  outputs.  Subsequently,  the  two  esti-

mated  popularity  results  are  integrated  through  an

entropy-based mechanism and then concatenated with

both local and global spatial characteristics. Fifth, the

previous concatenated characteristics are fed into the

LSTM blocks to generate the ultimate popularity for

location recommendation. 

4    Pre-Processing

This section introduces the data pre-processing of

STGCRN  in  detail,  including  region  partition,  fea-

ture  extraction,  and  location  correlation  graph  con-

struction. 

4.1    Region Partition

The  intuitive  consideration  of  region  partition  is

that urban dwellers are more prone to access services

from nearby facilities, e.g., shopping in a nearby mall,

or  dining  within  walking  distance.  Therefore,  it  can

easily form the agglomeration effects centered by the

location in the road network.

r ∈ R

Definition  7 (Urban  Region). An  urban  region
 is illustrated as a spatial complex that consists

of a location and a neighborhood area. There are also
many different  kinds  of  facilities  that  provide  a  vari-
ety of urban functions and living services for dwellers.

As aforementioned that a location corresponds to

an  urban  region  one-to-one,  we  partition  the  urban

space  into  a  two-level  structure  considering  urban

characteristics and dweller mobility.

k

κ κ

For  the  first  level,  the  urban  area  is  partitioned

into  sub-areas  based  on  lower  administrative  bound-

aries. The intuitions are that the urban planning can

differ  in  these  administrative  regions,  and  the  func-

tionalities of each region are usually different, but the

living patterns of dwellers in the same region are gen-

erally  similar.  For  the  second  level,  we  continue  to

partition  the  first-level  sub-areas  by  applying  a -

Medoids  based  approach[31] according  to  locations,

dweller trajectories, and road networks, and then ob-

tain  regions, where  is the number of locations in

this urban space. Specifically, we first cluster all  tra-

jectories to the nearest location according to the met-
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Fig.2.  STGCRN architecture overview.
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ric  of  the  shortest  spatial  distance  between  trajecto-

ries and locations in the road network. Then we parti-

tion two neighboring clusters by the road edges with

the  average  minimum  intervals  to  their  correspond-

ing  outer  trajectories.  The  intuition  is  similar  to  the

classification  principle  of  the  Support  Vector  Ma-

chine (SVM)[32].

r1 r2

An example is illustrated in Fig.3, where two cof-

fee  shops  and  seven  dweller  trajectories  (solid  lines)

are  located.  According  to  the  two-level  partition

method,  the  road  edges  coverd  with  dotted  lines  are

the partition boundary between regions  and .
  





Fig.3.  Urban regional partition. 

4.2    Feature Extraction

The candidate  location  recommendation  is  highly

contextualized. Therefore, four typical views are cho-

sen  to  capture  the  features  of  the  regional  contexts:

spatio-temporal  trajectory,  social  relationship,  public

transportation,  and  similar  facility.  These  views  re-

turn  multiple  scores  corresponding  to  quality  assess-

ment in each of the time periods. 

4.2.1    Spatio-Temporal Trajectory

We  consider  the  two  most  relevant  features:  the

numbers  of  inflow  and  outflow  of  crowds,  as  well  as

their  corresponding  distributions  of  spatial  distances

between trajectories and locations.

ri
li

t ∈ [ts, te]

Γt
in(ri) τ = {(p1, t1), (p2, t2), . . . ,

(pζ, tζ)} τ ∈ Γt
in(ri) τ ∈ Γ pj−1 /∈ ri ∧ pj ∈ ri

tj ⩾ ts j > 1 ts te

t

t

Γt
out(ri) τ ∈ Γt

out(ri)

Specifically,  given  an  urban  region  within  the

location , the corresponding inflow of trajectories in

time  period  can  be  denoted  as  the  set  of

,  for  each  trajectory 

, ,  iff , ,  and

, ,  where  and  are  the  starting  and

ending timestamps in time period , respectively. Sim-

ilarly, the outflow of crowds in time period  is illus-

trated  as  the  set  of ,  for  each ,  iff

τ ∈ Γ pj ∈ ri ∧ pj+1 /∈ ri tj ⩽ te j > 0

ri t

, ,  and , .  There-

fore, the features of the inflow and outflow of crowds

of region  in time period  can be represented as:
 

N t
in(ri) = |Γt

in(ri)|, N t
out(ri) = |Γt

out(ri)|.

τj li

Meanwhile,  the  shortest  spatial  commuting  dis-

tance from trajectory  to location  is defined as:
 

dm(li, τj) = min
∀pk

j , p
ι
j∈τj

{ds(pk
j , li) + ds(li, p

ι
j)− da(p

k
j , p

ι
j)},

(1)

ds(p
k
j , li) pk

j

li da(p
k
j , p

ι
j)

pk
j pι

j τj

N t
in(ri) N t

out(ri)

Dt
in(ri) Dt

out(ri)

N t
in(µri , σri

2) N t
out(µri , σri

2)

Dt
in(ri) Dt

out(ri)

where  is the shortest spatial distance from 

to  in the road network, and  is the spatial

distance from  to  by going along . By calculat-

ing all the commuting distances between location and

trajectories  in  and  according  to  (1),

we can obtain two distance sets  and .

Subsequently,  two  normal  distributions  of

 and  are employed to fit the

data distributions in  and , respectively.

The  intuition  behind  this  is  that  a  location  has

higher popularity if there are a greater number of in-

flow  and  outflow  of  crowds,  or  if  the  distance  be-

tween the location and the trajectory is shorter. 

4.2.2    Social Relationship

Γt
in(ri) Γt

out(ri) U t
in(ri) U t

out(ri)

Two  essential  characteristics  of  social  relation-

ships  are  acknowledged:  the  reciprocal  recommenda-

tion  denoted  by  the  number  of  social  friends  of

dwellers,  and  the  recommending  effect  of  influencers

represented by the number of followers.  For the first

sub-feature,  two  users  (dwellers)  are  supposed  to  be

close  friends  if  they  have  followed  each  other  in  on-

line  social  services.  Assuming  that  the  corresponding

user sets of  and  are  and ,

respectively,  then  the  reciprocal  recommendation  is

represented as:
 

St
in(ri) =

∑
u∈Ut

in(ri)

|F t
s (u)|, St

out(ri) =
∑

u∈Ut
out(ri)

|F t
s (u)|,

F t
s (u) u

t

where  is the set of close friends of user , which

only includes those social friends that have trajectory

activities in time period , as the user sets are split by

time period for processing.

εf
|F f(u)| ⩾ εf

For the second sub-feature, a user is called an in-

fluencer  or  celebrity  if  the  number  of  followed  users

on  social  networks  is  greater  than  the  threshold ,

i.e., .  For  simplicity,  it  is  supposed  that

the  impact  of  influencers'  recommendations  can  be
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ri
V (ri) = {|F f(u1)|, |F f(u2)|, . . . , |F f(um)|}

∀j ∈ [1,m] |F f(u1)| ⩾ εf

seen  in  all  time  periods.  Therefore,  the  recommend-

ing  effect  of  in  all  time  periods  can  be  defined  as

the  set  of ,

, . 

4.2.3    Public Transportation

ri
li t

ri T t
in(ri)

T t
out(ri)

Public transportation (e.g., bus or metro) is one of

the  most  popular  travel  modes  in  large  cities  due  to

its cheapness and convenience, and thus it is acknowl-

edged  as  another  essential  factor  in  dweller  mobility

intentions.  In  more  detail,  given  an  urban  region 

within location  and time period , we follow the ex-

tracted sub-features as described in LUCGAN[33], i.e.,

the set of inflow and outflow of  denoted by 

and , respectively. Therefore the number of in-

flow and outflow of public transportation can be rep-

resented as:
 

TN t
in(ri) = |T t

in(ri)|, TN
t
out(ri) = |T t

out(ri)|.

Db(ri) Dm(ri)

ri

In  addition,  the  densities  of  bus  stops  and metro

stations are denoted by  and , which re-

flect the numbers of  bus stops and metro stations in

, respectively. 

4.2.4    Similar Facility

M t(ri) = {yt
l1
(ri), y

t
l2
(ri), . . . , y

t
lm
(ri)}

yt
lj
(ri) lj

t ri 1 ⩽ j ⩽ m

The existing facilities of similar categories can ad-

versely affect locations' regional popularity due to ho-

mogeneous competition.  For example,  the decision of

opening a Luckin Coffee in a candidate location would

entail  investigation  of  similar  facilities  (e.g.,  Star-

bucks and Pacific Coffee) within the same region. To

this end, the feature of similar facilities can be denot-

ed  as  the  set  of ,

where  is the facility popularity of  over time

period  in region , .

li ri
X t

ri
= {N t

in(ri), N
t
out(ri), µri(in, t), σri

2(in, t), µri(out, t)
σri

2(out, t), St
in(ri), S

t
out(ri), V (ri), TN

t
in(ri), TN

t
out(ri)

Db(ri), Dm(ri),M
t(ri)} t

µri(in, t) σri
2(in, t)

N t
in T

R

X

To  sum  up,  the  multi-dimensional  characteristics

of location  (region ) can be represented as a vector

,

,

 over  time  period ,  where

 and  are  the  mean  and  square  of

variance  of ,  respectively.  For  all  time  periods 

and regional set , the feature vectors can be formal-

ly aligned by padding 0 to the end if their lengths are

inconsistent. Finally, the aggregated characteristics of

the  three  different  dimensions,  i.e.,  time  period,  ur-

ban region, and location, are incorporated into tensor

. 

4.3    Location Correlation Graph Construction

Graph  structure  Location  Correlation  Graph

(LCG) is  introduced to model the real-world correla-

tions  among  locations.  Specifically,  as  illustrated  in

Fig.4,  locations  serve  as  nodes,  and  spatial  correla-

tions  of  pair-wise  locations  are  represented  as  edges,

ensuring  that  both  the  spatial  characteristics  and

temporal  impacts  can be captured for  the  popularity

prediction of candidate locations.
  






















...

Fig.4.  Example of LCG.
 

G = (V,X ,A) V

V = L |V | = |L| = |R| A

G

Definition 8 (Location Correlation Graph). LCG is
an  undirected  graph  that  includes  locations,  regional
features, and the corresponding connectivity. It is for-
mally represented as , where  is the lo-
cations, , ,  and  denotes  the
adjacency matrix of .

G
Following a previous study[22], two types of neigh-

bors are designated among the locations (nodes) in ,

i.e.,  geographical  neighbors  and  semantic  neighbors,

with  the  intuition  that  two  corresponded  urban  re-

gions  are  geographically  close  or  have  similar  inflow

and  outflow  patterns.  In  addition,  they  are  regarded

as  reflections  of  local  correlations  and global  correla-

tions among locations.

li lj

εg ds(li, lj) ⩽ εg

Specifically,  according  to  the  first  law  of  geogra-

phy  that  near  things  are  more  related  than  distant

things[34],  the  geographical  neighbors  are  devised  to

capture  local  spatial  correlations  between  a  location

and its adjacent locations. Moreover, for the adminis-

trative integrity of urban planning in a city, two loca-

tions  of  and  are  still  considered  as  geographical

neighbors,  if  the spatial  distance between them is no

more than a threshold , i.e., .

In addition to local  correlations,  distant locations

can also be correlated through similar contextual fea-

tures.  For  example,  distant  locations  in  similar  func-

tional  regions  can  show  similar  popularity  distribu-

tions  over  time  periods.  Therefore,  we  introduce  se-

mantic neighbors to denote global correlations among

locations  with  similar  inflow  and  outflow  patterns.
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ri rj

The Pearson correlation coefficient is utilized to quan-

tify  the  flow  patterns  of  two  regions  and .  The

semantic similarity can be defined as:
 

Si(ri, rj) =αsPs(Q
T
in(ri), Q

T
in(rj)) +

(1− αs)Ps(Q
T
out(ri), Q

T
out(rj)),

Ps
αs

QT
in(ri) QT

out(ri)

ri
T

where  is  the  function  of  the  Pearson  Correlation

Coefficient,  is  the  parameter  that  controls  the

weight,  and  denote  the  count  se-

quences  (vectors)  of  inflow  and  outflow  in  over

time periods , respectively.
 

QT
in(ri) = {N t−T+1

in (ri), N
t−T+2
in (ri), . . . , N

t
in(ri)},

QT
out(ri) = {N t−T+1

out (ri), N
t−T+2
out (ri), . . . , N

t
out(ri)}.

εs Si(ri, rj) ⩾ εs
A G

Therefore,  we  regard  two  distant  locations  as  se-

mantic neighbors if their semantic similarity is greater

than the threshold , i.e., . Subsequent-

ly, the adjacency matrix  of  is defined as:
 

Aij =

{
1, if li, lj are neighbors,
0, otherwise.

 

5    Proposed Model

To  facilitate  spatio-temporal  popularity  predic-

tion  and  candidate  location  recommendation,  we

present details of the proposed STGCRN model based

on LCG, including four steps: spatial correlation mod-

eling, temporal dependency modeling, popularity pre-

diction  and  location  recommendation,  and  model

training. 

5.1    Spatial Correlation Modeling

In  the  spatial  domain,  the  popularity  of  adjacent

facilities is usually correlated and mutually influenced.

For  example,  when  a  location  has  more  visits  at  a

time period, the visits of nearby locations tend to be

adversely  influenced,  and  the  influence  of  local  loca-

tions  can  vary  non-linearly.  In  addition  to  the  local

correlation,  distant  locations  can  also  show  similar

popularity  if  they are  located in  regions  with similar

functions;  for  example,  large  residential  regions  tend

to have lower crowd flows during office hours.

vi ∈ G

To  capture  local  and  global  spatial  correlations

among locations, a contextual convolution (CttConv)

block based on LCG is proposed to compute the cor-

responding  coefficients,  implemented  by  the  Multi-

Head Graph Attention (MGAT) mechanism. The in-

tuition  behind  CttConv  is  that  graph  node 

li
xlj

lj ∈ N(li) 1 ⩽ j ⩽ |N(li)|
N(li)

li

li
t

(i.e.,  location ) can aggregate the multi-dimensional

contextual characteristics  of neighboring locations

by  convolution,  where , ,

 is the geographical and semantic neighbor set of

location . Then new implicit features can be generat-

ed  through  characteristic  transformation  by  MGAT.

Therefore,  the  local  implicit  feature  of  location  at

time period  is defined as:
 

xl, t
li

=
K

||
k=1

σ

 ∑
lj∈Nl(li)

αk
ijW

k
a x

l, t−1
lj

 ,

||K
k=1

K

σ

xl, t−1
lj

lj t− 1 Nl(li)

li W k
a

k

αk
ij

li lj k

where  is the concatenation of  implicit sub-fea-

tures in MGAT,  is a non-linear activation function

(e.g., ReLU or Sigmoid),  is the explicit charac-

teristic of  over time period ,  is the geo-

graphical neighbor set of ,  is a learnable weight-

ed  matrix  shared  among  locations  in  the -th  local

sub-features, and  denotes the proximity score be-

tween  and  in  the -th  local  sub-features  as  de-

fined below:
 

αk
ij =

exp(An(W k
l x

l, t−1
li

,W k
l x

l, t−1
lj

))∑
lk∈Nl(li)

exp(An(W k
l x

l, t−1
li

,W k
l x

l, t−1
lk

))
, (2)

W k
l

G k

An

where  is also a learnable weighted matrix shared

over all edges in  in the -th local sub-features, and

 is a shared specific attention mechanism, e.g., dot-

product.

li t
Meanwhile, the global implicit characteristic of lo-

cation  over a time period  is similarly calculated as:
 

xg, t
li

=
K

||
k=1

σ

 ∑
lj∈Ng(li)

βk
ijW

k
s x

g, t−1
lj

 ,

Ng(li) li W k
s

k βk
ij

li lj k

where  is the semantic neighbor set of ,  is

a learnable weighted matrix shared over all  locations

in  the -th  global  sub-features,  and  denotes  the

proximity  score  between  and  in  the -th  global

sub-features as defined below:
 

βk
ij =

exp(An(W k
g x

g, t−1
li

,W k
g x

g, t−1
lj

))∑
lk∈Ng(li)

exp(An(W k
g x

g, t−1
li

,W k
g x

g, t−1
lk

))
, (3)

W k
g

G k

where  is a learnable weighted matrix shared over

all edges in  in the -th global sub-features. 

5.2    Temporal Dependency Modeling

In the temporal  domain,  dependencies  consistent-

ly exist inside locations themselves. Therefore, we em-

Pu Wang et al.: Spatio-Temporal Location Recommendation for Urban Facility Placement 1427



li Xli = {xt−T+1
li

,xt−T+2
li

, . . . ,

xt
li
} T

li t− 1 t ht−1
li

ht
li

ht−1
li

ht
li

ploy  LSTM,  an  effective  variant  implementation  of

RNN, to extract the sequential hidden characteristics

and  then  model  the  corresponding  temporal  depen-

dencies.  Specifically,  let  the  input  characteristic  se-

quences of  be defined as 

 in previous  steps, and let the implicit status of

 at  time  steps  and  be  denoted  as  and

,  respectively.  Then  the  temporal  dependency  be-

tween  and  can be represented as follows:
 

f t
li
= σ(Wf[h

t−1
li

,xt
li
] + bf),

zt
li
= σ(Wz[h

t−1
li

⊕ xt
li
] + bz),

C̃t
li
= tanh(WC [h

t−1
li

⊕ xt
li
] + bC),

Ct
li
= f t

li
⊙Ct−1

li
+ zt ⊙ C̃t

li
,

ot
li
= σ(Wo[h

t−1
li

⊕ xt
li
] + bo),

ht
li
= ot

li
⊙ tanhCt

li
,

f t
li

zt
li

C̃t
li

Ct
li

ot
li

Wf Wz WC Wo bf
bz bC bo ⊕

tanh

tanh(z) = (ez − e−z)/(ez + e−z) ⊙
ht

li

Tf

where  is the forget gate in LSTM,  is the input

gate,  denotes  the  cell  state,  denotes  the  cell

update,  is the output gate, , , , , ,

, , and  are learnable parameters,  is the con-

catenation operation,  is the activation function,

,  and  is  the

hadamard  product.  In  addition,  the  hidden  state 

can be  directly  used to  predict  the  popularity  of  the

next consecutive  periods:
 

(ŷt+1
li

, ŷt+2
li

, . . . , ŷt+Tf
li

) = σ(Woh
t
li
),

Wo ∈ R|ht
li
|×Tfwhere . 

5.3    Popularity Prediction and Location

Recommendation

The  historical  popularity  (check-ins)  of  existing

facilities  is  an  exceptional  input  characteristic  that

can help to improve the accuracy of the future popu-

larity prediction for candidate locations. However, due

to  data  privacy  concerns,  only  a  small  percentage  of

valid  historical  check-in  information  is  collected

through online social services.

yv
li
= P (yli)

yli
YLl

YLl

To better employ the information hidden in these

few  existing  facilities,  we  propose  the  approximation

module  for  missing  popularity  from  both  the  spatial

and temporal domains, consisting of three blocks: the

spatial  graph convolution block,  the  temporal  LSTM

block,  and  the  fusion  block.  Moreover,  we  learn  the

probability  distribution  of  location  popularity,  i.e.,

,  rather  than  approximate  a  scalar  popu-

larity , for better information preservation. For his-

torical  popularity ,  the  one-hot  encoding  is  em-

ployed  to  discretize  to  vectors.  Finally,  the  ap-

proximated popularity  distributions  are  concatenated

with both local and global spatial characteristics, and

are subsequently fed into the LSTM blocks to obtain

the ultimate popularity for the recommendation. 

5.3.1    Spatial Approximation

t

ysdl, t
li

li ∈ Lu

Similar  to  CttConv,  we  propose  the  prediction

convolution  (PrdConv)  block  also  implemented  by

MGAT, to estimate location popularity from both the

local and global spatial domains. Unlike CttConv, the

approximated  popularity  is  only  the  aggregated  his-

torical popularity of existing location facilities. There-

fore,  PrdConv  can  improve  node  connectivity  for

more  sufficient  propagation  of  historical  popularity,

which alleviates the data scarcity problem. The aggre-

gated vector representations can be preserved for fur-

ther  processing  without  extra  activation  functions.

Specifically, in a time period , the local spatial popu-

larity distribution  of each location  is de-

fined as:
 

ysdl, t
li

=
1

K

K∑
k=1

∑
j∈Nl(li)

αk
ijy

t
li
,

ysdg, t
li

li ∈ Lu

and  the  global  spatial  popularity  of  each  loca-

tion  is defined in a similar way:
 

ysdg, t
li

=
1

K

K∑
k=1

∑
j∈Ng(li)

βk
ijy

t
li
,

αk
ij βk

ij

li lj

where  and  are the local  and global  proximity

scores between  and  computed through MGAT in

(2) and (3), respectively. 

5.3.2    Temporal Approximation

ht−1
li

t− 1

t

In  the  temporal  domain,  we  reuse  the  outputs  of

the LSTM block to approximate the missing populari-

ty  distributions.  Unlike  the  implementation  of  final

popularity  prediction,  the  missing  popularity  estima-

tion adopts a different Softmax function. Specifically,

suppose that the hidden state obtained from LSTM is

 in previous time period , then the approxi-

mated missing popularity distribution at  is defined as:
 

ytd, t
li

= Softmax(Wtdh
t−1
li

),

Wtd

ytd, t
li

where  is a learnable weighted matrix shared by all

hidden states. In addition, this step involves no addi-

tional  computation  of  LSTM,  and  all  the  vector  ele-

ments in  can be normalized and their sum is 1.
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5.3.3    Distribution Fusion

yt
li

According  to  previous  studies[18, 24],  the  ultimate

popularity  estimation  weighs  more  on  approximation

and  has  less  uncertainty  in  recommendation  model.

Therefore,  an  entropy-based  mechanism  is  employed

to  fuse  the  spatio-temporal  distributions  rather  than

average them directly, and subsequently the approxi-

mation results with smaller entropy are the outcome.

Given  an  approximated  popularity  distribution ,

the entropy is defined as:
 

H(yt
li
) = −

p∑
j=1

yt
li
(j) logyt

li
(j),

yt
li
(j) yt

li

yt
li
∈ Rp

where  denotes  the j-th  dimension  of ,

.  The  spatio-temporal  distribution  fusion  is

defined in (4).
 

yf, t
li

=
(
exp(−H(ysdl, t

li
))ysdl, t

li
+ exp(−H(ysdg, t

li
))ysdg, t

li
+

exp(−H(ytd, t
li

))ytd, t
li

)/(
exp(−H(ysdl, t

li
))+

exp(−H(ysdg, t
li

)) + exp(−H(ytd, t
li

))
)
. (4)

 

5.3.4    Popularity Prediction and Location

Recommendation

xt
li

l ∈ L t xt
li
= xl,t

li
⊕ xg, t

li
⊕ yf,t

li

The approximated popularity distribution is com-

bined  with  the  outputs  of  CttConv,  to  obtain  the

overall  hidden  characteristics  for  each  location

 at  time  period ,  i.e., .

Next, the hidden location representations are fed into

the  LSTM  module  to  generate  ultimate  popularity

distributions.  Subsequently,  a  multi-layer  perceptron

(MLP) module is employed to scalarize the generated

distributions,  to  obtain  the  final  popularity  predic-

tion results for each candidate location.

k

In  the  recommendation  process,  we  can  sort  the

candidate  location  set  from  the  spatial  dimension  or

the  temporal  dimension  according  to  the  predicted

popularity,  and then generate  a  series  of  well-ranked

candidate  location  lists  for  top-  incremental  recom-

mendation. For instance, they can predict the top-10

popular candidate locations in an upcoming month or

popularity trends of a particular candidate location in

the next six months. 

5.4    Model Training

STGCRN  is  a  typical  semi-supervised  model

yt
li

ysdl, t
li

ysdg, t
li

ytd, t
li

based  on  existing  location  facilities  with  historical

popularity,  and  therefore  a  number  of  semi-super-

vised learning paradigms can be adopted in the mod-

el  training.  In  missing  popularity  approximation,  the

cross entropy (CE) loss is introduced to minimize the

errors  between  actual  popularity  ( )  and  estimated

popularity  distributions,  i.e., , ,  and .

The three loss functions are separately defined as fol-

lows:
 

Osdl = − 1

|Ll||Th|

|Ll|∑
i=1

|Th|∑
j=1

yt−Th+j
li

logysdl, t−Th+j
li

,

Osdg = − 1

|Ll||Th|

|Ll|∑
i=1

|Th|∑
j=1

yt−Th+j
li

logysdg, t−Th+j
li

,

Otd = − 1

|Ll||Th|

|Ll|∑
i=1

|Th|∑
j=1

yt−Th+j
li

logytd, t−Th+j
li

.

ỹt
li

In  the  process  of  final  popularity  prediction,  we

aim  to  minimize  the  mean  square  error  (MSE)  be-

tween the predicted popularity ( ) and actual popu-

larity, therefore the loss function is defined as:
 

Op =
1

|Ll||Tf|

|Ll|∑
i=1

|Tf|∑
j=1

(ỹt+j
li

− yt+j
li

)
2
.

By acknowledging the CE loss and MSE loss, the

learning objective of STGCRN is to minimize the fol-

lowing function on the basis of comprehensive analy-

sis of both:
 

O = αl(Osdl +Osdg +Otd) + (1− αl)Op,

αlwhere  is the parameter that controls the weight of

two losses. 

6    Experimental Study

Extensive  experiments  are  conducted  in  this  sec-

tion.  First,  we  introduce  the  experimental  setup,  in-

cluding  dataset  description  and  experimental  imple-

mentation.  Next,  the  baselines  and  evaluation  met-

rics are established. The effectiveness and stability of

the proposed model compared with baselines are final-

ly reported. 

6.1    Experimental Setup
 

6.1.1    Datasets

This  paper  does  not  focus  on  discussing  the  fac-

tors  that  affect  the  determination  of  candidate  loca-
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tions. Instead, it uses the road intersections as candi-

date locations for the input of the proposed approach.

We  choose  the  Beijing  central  district  and  the  New

York Manhattan district as the geographical areas for

location  recommendation  by  extracting  the  struc-

tures of the road network from Openstreet[35] and ini-

tializing the candidate location set, and then combin-

ing  them  with  the  corresponding  location-based  so-

cial  datasets,  i.e.,  spatio-temporal  trajectories,  social

networks,  and  POI  check-ins.  As  a  result,  two  real

datasets of Beijing Central District (BJCD) and New

York Manhattan District (NYMD) are established to

conduct the entire experiments, as described in detail

in Table 2.  Meanwhile,  we  predict  location  populari-

ty  in  future  successive  time  periods  according  to  the

timestamps  of  both  trajectory  stay  points  and  POI

check-ins. Specifically, the datasets are collected from

February 2014 to January 2015, divided into 12 con-

secutive months and 52 weeks.

1) BJCD.  The  first  dataset  contains 13 936 cus-

tomers (urban dwellers) within three offline-online lo-

cation-based social characteristic sets, i.e., offline spa-

tio-temporal  trajectories  obtained  from  traveling

records  of  Beijing  taxis,  online  social  friend  relation-

ships  crawled  from  Sina  Weibo①,  and  POI  check-in

records also crawled from Sina Weibo.

2) NYMD. The second dataset contains 3 381 cus-

tomers,  where  social  friend  relationships  and  POI

check-ins are crawled from Twitter② and Instagram③,

and  trajectories  are  extracted  from  traveling  records

of  taxis  and  shared  bikes  in  the  Manhattan  district.

However, the original trajectories only include the in-

formation  (e.g.,  positions  and  timestamps)  of  depar-

tures  and arrivals,  which prevents  us  from capturing

the whole process of customer travels. Since the road

network structure in Manhattan is straight and regu-

lar,  we  employ  the  road  route  that  has  the  shortest

spatial distance from departure to arrival as the com-

plete trajectory.

A  series  of  existing  facilities  datasets  is  also  col-

lected  for  model  training,  and  the  corresponding

statistics are reported in Table 3. In BJCD, we choose

three  types  of  service  facilities  from  the  open  LBS

platform  of  AutoNavi④:  Baby  Service  Place  (BSP),

China Unicom Service Hall (CUSH), and fast Vehicle

Charging  Station  (VCS).  In  NYMD,  three  types  of

fast-moving  consuming  facilities,  i.e.,  Starbucks

(SBS),  7-Eleven  (7-11),  and  McDonald's  (MDS),  are

extracted from the open platform of Google Maps⑤. 

6.1.2    Implementation

Th Tf
Th Tf

εf εg εs αs

K

α

α βs

k ∈ {20, 30, 50, 80} k

All  models  are  implemented  with  Python  3.6.0

and  Pytorch  1.6.0.  The  datasets  of  trajectory  and

POI check-in are divided into 12 parts and 52 parts,

according  to  month  and  week,  respectively.  We

choose  = 9 and  = 3 for monthly prediction, and

set  = 28 and  = 6 for weekly prediction. We set

 = 1 000,  = 2 000,  = 0.4, and  = 0.5 for the

thresholds  and  weight,  respectively.  The  number  of

layers of CxtConv and PrdConv are all set to 2, and

the  number  of  latent  characteristics  is  =  6  in

MGAT. The dot-product attention mechanism is em-

ployed in this paper. The activation function is set to

Parametric ReLU (PReLU,  = 0.2) in CxtConv and

PrdConv, and Sigmoid in the other layers, e.g., MLP.

We  adopt  the “6/2/2” principle  to  utilize  the

datasets,  where the first  60% are taken as  the train-

ing set, the following 20% for validation, and the rest

is the test set. In each dataset, 70% POI facilities are

marked as unlabeled. We set the batch size as 32 for

training,  and  the  Adam  Optimizer  is  adopted  with

the  fixed  learning  rate  of  = 0.001  and  = (0.9,

0.999). The recommendation number set of candidate

locations is , where  = 30 is set as

the default. 

 

Table  2.    Summary of Dataset Statistics

Dataset Number of
Road

Intersections

Number of
Road

Segments

Number of
Candidate
Locations

Number of
Customers/
Trajectories

Number of
Social

Network Nodes

Number of
Social

Relationships

Number of
POI

Check-ins

BJCD 136 903 176 384 110 102 13 936 709 671 3 530 549 3 547 711

NYMD 5 310 6 891 5 008 3 381 71 817 1 414 519 836 482
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⑤https://developers.google.com/maps/, Nov. 2024.
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https://developers.google.com/maps/


6.2    Baselines

We  compare  the  performance  of  proposed

STGCRN  with  a  range  of  competitive  methods  and

two variants of STGCRN. Although some models[19, 24]

are not initially designed for popularity prediction or

location  recommendation  of  urban  facilities,  we  ex-

tend them for  contrast  due  to  the  similarity  of  their

predictive theory.

● RK. Regression Kriging[36] is a hybrid approach

of  Generalized  Linear  Model  and  Ordinary  Kriging,

where  location  popularity  is  calculated  based  on  the

weighted averages of  geographical  neighbors in LCG.

This study extends RK to multi-step popularity pre-

diction in the temporal domain by concatenating con-

cessive predicted popularity in each time step.

● MF-STN. Matrix Factorization for Spatio-Tem-

poral  Neural  Networks  (MF-STN)[17] decomposes  the

region-specific  parameters  into  learnable  matrices  to

model  latent  functions  and  correlations  among  re-

gions for popularity prediction in the spatial and tem-

poral  domains.  The  region  partition  is  implemented

by LCG as explained in Definition 8.

● L-CoT. Co-Training[19] is  a  semi-supervised

learning framework based on two separated classifiers,

including a spatial classifier based on an artificial neu-

ral  network and a temporal  classifier  based on a lin-

ear-chain  conditional  random  field.  We  extend  it  to

the  popularity  prediction  of  L-CoT  (Location-CoT),

where the monitor station is taken as the location.

● L-SHARE. Semi-Supervised Hierarchical Recur-

rent  Graph  Neural  Network[24] is  a  state-of-the-art

method devised for city-wide parking availability pre-

diction. A hierarchical graph convolution module and

a gated recurrent unit module are proposed to model

the  spatial  and  temporal  correlations  between  park-

ing lots. We extend it to L-SHARE, where the park-

ing lot is regarded as the location.

● API. Affinity-Based Popularity  Inference[5] is  a

state-of-the-art  graph-based  semi-supervised  learning

method.  It  employs  a  set  of  location  affinity  func-

tions to model the affinities (similarities) between lo-

cations. Then, based on the intuition that nearby lo-

cations  with  high  affinity  scores  may  have  similar

popularity distributions, the Gaussian random field is

employed to evaluate the temporal popularity of can-

didate locations.

● STGCRN-GA. STGCRN-GA  is  an  elementary

version of  STGCRN, where both the global CttConv

(MGAT)  and  the  missing  popularity  approximation

module are removed.

● STGCRN-A. STGCRN-A  is  another  essential

variant of our proposed model, but excludes the miss-

ing popularity approximation module, where the hid-

den states obtained from LSTM are directly fed into

MLP to predict the final popularity.

● STGCRN. STGCRN  is  the  final  approach,

where  the  spatio-temporal  popularity  is  evaluated  as

described in Section 5. 

6.3    Evaluation Metrics

li ∈ Lu tj ∈ Tf ỹt
li

yt
li

To evaluate the effectiveness of popularity predic-

tion, two typical metrics are designed: accuracy (Acc)

and  root  mean  square  error  (RMSE).  Suppose  that

the  predicted  popularity  and the  ground-truth  popu-

larity of  in time period  are  and ,

respectively, then the accuracy can be defined as:
 

Acc =

∑
li∈Lu

∑
tj∈Tf

hit(ỹ
tj
li
, y

tj
li
)

|Tf| × |Lu|
,

hit() hit(ỹt
li
, yt
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)

ỹt
li
− εa ⩽ yt
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⩽ ỹt

li
+ εa hit(ỹt

li
, yt

li
)

εa

εa

εa

where  is the hit function, and  = 1, if

, otherwise  = 0. The

parameter  controls  the  evaluation  strictness  by

varying the granularity of the ground-truth populari-

ty.  Specifically,  a  lower  value  implies  a  stricter

evaluation that the accuracy tends to be lower for dif-

ferent  approaches,  and  vice  versa.  To  balance  the

evaluation strictness and accuracy, we set  to 5. In

addition, we use RMSE to measure the variances be-

tween the predicted and the ground-truth popularity

in spatio-temporal domains, where a lower RMSE val-

ue refers to better evaluation performance. Specifical-

ly, RMSE is defined as:
 

RMSE =

√√√√√
∑
li∈Lu

∑
tj∈Tf

(ỹ
tj
li
− y

tj
li
)
2

|Tf| × |Lu|
.

k
To  measure  the  ranking  quality  of  the  recom-

mended  top-  candidate  locations,  we  employ  the

normalized discounted cumulative gain (NDCG) met-

ric that is frequently used in the performance evalua-

tion of information retrieval systems[1]. Given the two

 

Table  3.    Statistics of Existing Facilities

Facility Number of
Stores

Number of
Check-ins

Number of
Average Check-ins

BSP 416 387 025 930

CUSH 585 237 123 405

VCS 729 319 957 439

SBS 203 104 681 516

7-11 118 19 548 166

MDS 84 39 069 465
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k

R̃ R k

top-  descending-ordered  lists  of  the  estimated  and

the  ground-truth  popularity:  and , NDCG@  is

defined as:
 

NDCG@k =
DCG@k
IDCG@k

=

k∑
i=1

2r̃(li) − 1

log(i+ 1)

k∑
i=1

2r(li) − 1

log(i+ 1)

,

k k

r̃(li)

r(li) li i R̃
R k

r(li) = (|Lu| − p(li) + 1)/|Lu| r(li) ∈ [0, 1]

p(li)

R @k ∈ (0, 1]

where IDCG@  is the maximum possible DCG@  for

the ground-truth set of the ranking list, and  and

 denote the relative scores of  at position  in 

and ,  respectively.  Taking DCG@  as  an  example,

we  have , ,

and  indicates the relative position number from

left to right in . In addition, NDCG , and

a greater value of NDCG implies a more precise rec-

ommendation result. 

6.4    Evaluation Results
 

6.4.1    Effectiveness Evaluation

The  weekly  and  monthly  experimental  results  of

Acc and RMSE for six specific facilities in BJCD and

NYMD are shown in Table 4 and Table 5, respective-

ly,  and  the  results  of  the  proposed  STGCRN  model

(including its two variants) are bolded in this subsec-

tion.  As  expected,  we  can  see  that  the  proposed

STGCRN  model  (including  its  two  variants)  signifi-

cantly  outperforms  all  competitors  under  all  condi-

tions.  Specifically,  STGCRN  achieves,  on  average,

(21.18%,  21.71%,  21.73%)  and  (48.68%,  45.56%,

49.17%)  improvements  beyond  the  state-of-the-art

API framework on Acc and RMSE in BJCD for BSP,

CUSH,  and  VCS,  respectively.  Similarly,  the  aver-

aged  improvements  of  Acc  and  RMSE  are  (25.64%,

16.58%,  17.54%)  and  (44.57%,  31.57%,  36.39%)  in

SBS,  7-11,  and  MDS,  respectively.  This  is  because

STGCRN  not  only  considers  both  the  spatio-tempo-

ral  activity  trajectory  and  the  social  friend  relation-

ship  of  urban  dwellers,  but  also  captures  the  spatial

correlation of locations through contextual graph con-

volutional  module  and  the  temporal  dependency

through the LSTM module, which better resolves the

intractable problems of customer effect, spatial corre-

lation, and temporal dependency in popularity predic-

tion.

However, most competitors purely learn populari-

ty  from  urban  macro  characteristics,  such  as  traffic

flow,  facility  check-in,  or  facility  category,  rendering

suboptimal results. Although L-SHARE and API con-

sider  temporal  characteristics  and  employ  a  graph-

based structure to model the correlations among loca-
 

Table  4.    Effectiveness Evaluation in BJCD w.r.t. k = 30

Method BSP CUSH VCS

Week Month Week Month Week Month

Acc RMSE Acc RMSE Acc RMSE Acc RMSE Acc RMSE Acc RMSE

RK 0.17 63.10 0.16 71.67 0.15 68.77 0.13 78.67 0.14 72.34 0.15 76.07

MF-STN 0.25 52.48 0.19 58.24 0.26 53.49 0.20 63.51 0.27 56.52 0.22 60.33

L-CoT 0.28 37.38 0.24 44.71 0.30 40.70 0.22 51.08 0.25 31.11 0.25 49.15

L-SHARE 0.39 28.55 0.36 36.37 0.39 29.14 0.29 40.22 0.35 32.89 0.32 43.90

API 0.41 25.79 0.35 22.32 0.38 28.12 0.32 28.88 0.38 27.36 0.35 29.16

STGCRN-GA 0.42 20.09 0.35 21.65 0.40 22.60 0.33 28.61 0.40 23.92 0.37 28.39

STGCRN-A 0.44 14.41 0.38 19.06 0.42 17.31 0.35 24.70 0.43 18.55 0.38 22.14

STGCRN 0.49 8.92 0.43 15.19 0.45 11.66 0.40 19.41 0.48 10.13 0.41 18.85

 

Table  5.    Effectiveness Evaluation in NYMD w.r.t. k = 30

Method SBS 7-11 MDS

Week Month Week Month Week Month

Acc RMSE Acc RMSE Acc RMSE Acc RMSE Acc RMSE Acc RMSE

RK 0.21 67.04 0.18 77.13 0.19 63.99 0.19 85.20 0.23 69.97 0.20 79.19

MF-STN 0.31 54.83 0.23 63.75 0.30 53.10 0.21 66.58 0.28 55.18 0.24 64.77

L-CoT 0.33 41.98 0.24 49.28 0.34 39.84 0.27 48.19 0.31 43.72 0.28 59.11

L-SHARE 0.37 30.67 0.28 40.39 0.35 29.04 0.30 44.81 0.37 28.30 0.29 42.74

API 0.39 23.10 0.33 25.61 0.38 25.22 0.35 29.03 0.38 24.22 0.36 32.66

STGCRN-GA 0.41 20.33 0.36 22.69 0.38 24.77 0.37 25.82 0.41 22.14 0.38 28.79

STGCRN-A 0.42 17.84 0.38 19.01 0.40 20.37 0.38 24.20 0.43 18.65 0.39 25.94

STGCRN 0.46 12.71 0.44 14.30 0.43 16.47 0.42 20.77 0.45 15.01 0.42 21.31
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tions,  they  fail  to  capture  multi-dimensional  features

of dwellers, and predict missing popularity in terms of

existing  check-ins.  Therefore,  all  the  above  results

demonstrate the effectiveness of the missing populari-

ty approximation, hierarchical graph convolution, and

recurrent neural network of STGCRN.

In  addition,  it  is  observed  that  the  performance

during the weekly period is generally superior to that

during the monthly period. We think such results are

likely  due  to  the  far  more  partitioned  time  slots  in

weekly periods, which facilitates a better model learn-

ing process as the characteristics accumulated in each

month is lower than that in each week. Therefore, the

popularity across weeks tend to be closer to each oth-

er, making the corresponding prediction relatively eas-

ier.

k

k

k

We proceed  to  report  the  effectiveness  of  all  ap-

proaches  by  varying  parameter ,  which  enables  the

detailed demonstration of the performance of two typ-

ical facilities out of the six ones in terms of BSP and

SBS. According to the results in Table 6 and Table 7,

the  proposed  model  still  beats  all  competitors  under

different  values, which corresponds to the results of

a fixed  reported in Table 4 and Table 5.

Specifically,  STGCRN  achieves,  on  average,

(27.36%,  21.18%,  24.66%,  38.48%)  and  (60.61%,

48.68%,  52.34%,  63.37%)  improvements  beyond  the

k
state-of-the-art  API  approach  on  Acc  and  RMSE  in

BSP for  = 20, 30, 50, and 80, respectively. Similar-

ly, the averaged improvements of Acc and RMSE are

(21.20%,  25.64%,  26.96%,  28.52%)  and  (55.75%,

44.57%,  47.15%,  46.44%)  in  SBS.  The  results  show

that  the  performance  of  BSP  is  superior  to  that  of

SBS. It is due to the fact that the dataset of BSP is

well-collected,  where  the  numbers  of  spatio-temporal

trajectories,  social  friend relationships,  BSP facilities,

and the  corresponding check-ins  are  larger  in  BJCD.

Therefore, the models are more prone to learn the la-

tent characteristics and complex parameters. Besides,

it consistently reveals the advantage of incorporating

multi-dimensional characteristics of dwellers for popu-

larity prediction and location recommendation.

k

k

k

On the contrary, the overall effectiveness decreas-

es successively with the increase of  in all cases, and

these  approaches  achieve  the  best  performance  when

setting  to  20.  We  think  such  understandable  re-

sults are due to more comparisons between the pairs

of recommended locations and ground-truth locations

driven by a larger  value, which leads to the rise of

result uncertainty. For instance, a facility located in a

prosperous district of an urban center will  gain more

check-ins than one in an underdeveloped district due

to  huge  visitor  flows  with  great  consumption.  Thus,

the  prediction  performance  becomes  more  accurate

due  to  the  abundant  characteristics  of  this  location.
 

Table  6.    Effectiveness Evaluation Using BSP in BJCD w.r.t. Varied k

Method k = 20 k = 30 k = 50 k = 80

Week Month Week Month Week Month Week Month

Acc RMSE Acc RMSE Acc RMSE Acc RMSE Acc RMSE Acc RMSE Acc RMSE Acc RMSE

RK 0.19 60.46 0.20 61.82 0.17 63.10 0.16 71.67 0.14 82.21 0.13 85.63 0.11 89.77 0.09 107.25

MF-STN 0.24 49.86 0.22 47.75 0.25 52.48 0.19 58.24 0.21 65.76 0.18 69.55 0.19 72.10 0.15 84.52

L-CoT 0.27 38.90 0.25 45.24 0.28 37.38 0.24 44.71 0.27 51.60 0.23 56.30 0.24 61.38 0.21 69.71

L-SHARE 0.41 26.17 0.34 37.72 0.39 28.55 0.36 36.37 0.35 37.23 0.32 45.58 0.29 53.14 0.27 58.44

API 0.45 22.33 0.40 25.41 0.41 25.79 0.35 22.32 0.37 21.86 0.32 40.41 0.34 45.02 0.29 57.19

STGCRN-GA 0.48 18.93 0.45 19.17 0.42 20.09 0.35 21.65 0.40 16.19 0.34 26.09 0.37 30.50 0.32 43.63

STGCRN-A 0.50 15.35 0.47 16.96 0.44 14.41 0.38 19.06 0.41 11.78 0.37 23.13 0.38 24.41 0.35 34.11

STGCRN 0.55 8.19 0.53 10.70 0.49 8.92 0.43 15.19 0.46 10.04 0.40 19.96 0.43 15.14 0.39 22.67

 

Table  7.    Effectiveness Evaluation Using SBS in NYMD w.r.t. Varied k

Method k = 20 k = 30 k = 50 k = 80

Week Month Week Month Week Month Week Month

Acc RMSE Acc RMSE Acc RMSE Acc RMSE Acc RMSE Acc RMSE Acc RMSE Acc RMSE

RK 0.25 60.31 0.22 65.28 0.21 67.04 0.18 77.13 0.20 70.07 0.15 84.93 0.15 89.60 0.11 103.99

MF-STN 0.34 50.49 0.29 58.50 0.31 54.83 0.23 63.75 0.27 64.60 0.19 79.64 0.22 76.82 0.14 91.02

L-CoT 0.35 48.87 0.33 40.04 0.33 41.98 0.24 49.28 0.31 56.03 0.23 73.90 0.29 55.88 0.20 77.08

L-SHARE 0.40 23.79 0.36 32.21 0.37 30.67 0.28 40.39 0.34 47.41 0.24 62.23 0.32 50.25 0.22 70.89

API 0.44 18.32 0.41 22.12 0.39 23.10 0.33 25.61 0.36 45.45 0.29 48.51 0.35 47.77 0.27 54.01

STGCRN-GA 0.45 15.03 0.42 18.20 0.41 20.33 0.36 22.69 0.39 35.21 0.32 40.54 0.37 36.10 0.30 43.33

STGCRN-A 0.47 11.77 0.44 14.97 0.42 17.84 0.38 19.01 0.40 33.95 0.35 36.09 0.38 32.47 0.34 37.57

STGCRN 0.53 8.17 0.50 9.71 0.46 12.71 0.44 14.30 0.43 22.10 0.39 27.15 0.42 23.36 0.37 31.44
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k

In contrast,  the performance of  popularity prediction

in remote locations has a modest reduction since they

lack adequate explicit features. However, as  increas-

es,  our  proposed  STGCRN  still  has  the  best  perfor-

mance,  and its  performance  decline  is  not  significant

compared with the baselines.

k

k

Furthermore,  we  have  implemented  two  variants

of  STGCRN, i.e.,  STGCRN-GA and STGCRN-A, to

evaluate the module improvements.  As expected,  the

overall performance of STGCRN-GA and STGCRN-A

generally  outperforms  the  five  baselines.  This  is  be-

cause our proposed variants significantly consider and

incorporate  the  spatio-temporal  characteristics  of  ur-

ban dwellers and locations. There is a successive effec-

tiveness  improvement  by  comparing  STGCRN  with

its two variants. For instance, by adding the MGAT

block,  STGCRN-A  achieves,  on  average,  5.77%

greater Acc and 20.29% lower RMSE compared with

STGCRN-GA  in  BJCD  when  =  30.  By  further

adding the missing popularity approximation module,

STGCRN  achieves,  on  average,  10.91%  greater  Acc

and 28.67% lower RMSE compared with STGCRN-A.

Improvements  are  also  consistent  under  other  condi-

tions, such as in NYMD and with varied . All above

results  demonstrate  the  promising  effectiveness  of

global spatial correlation capturing and missing popu-

larity approximating. 

6.4.2    Stability Evaluation

To  investigate  the  prediction  stability  over  time,

we  present  the  weekly  and  monthly  performance  of

BSP  in Fig.5 and Fig.6.  As  expected,  the  Acc  and

RMSE of STGCRN are stably superior to those of all

the  competitors,  which  especially  reflects  so  during

the time period of a month, and the stability perfor-

mance is not directly affected by the number of time

slots.  We  argue  that  such  promising  results  are  not

due to the multi-domain spatio-temporal features that

are  carefully  designed,  but  the  learning  of  attention

mechanism  and  LSTM  that  separately  capture  the

spatial  correlations  and  temporal  dependencies,  as

well as approximation of missing popularity and char-

acteristic  fusion.  Thus  these  efforts  ensure  a  better

performance  on  model  learning  when  the  dataset  is

naturally  uneven  and  sparse  across  different  time

slots.  However,  the  other  deep  learning  based  ap-

proaches (e.g.,  L-CoT and L-SHARE) that only cap-

ture conventional characteristics and adopt relatively

deficient  models,  present  successively  inferior  results

in unsatisfactory environments.

Looking  further  into  the  results,  one  extra  inter-

esting finding is  that  RK clearly  achieves  better  sta-

ble performance in terms of both weekly and month-

ly  time periods,  but it  turns out the lowest  Acc and

the  highest  RMSE  compared  with  other  approaches

as shown in Tables 4–7. We think this is because RK

is  a  linear-based  spatial  interpolation  model,  which

rarely  acknowledges  any  other  significant  influencing

features  for  popularity  prediction.  Therefore,  it  re-

sults in the worst effectiveness performance. 

6.4.3    Ranking Evaluation

k

In  order  to  examine  the  ranking  effectiveness  of

recommended  top-  popular  candidate  locations,  we

follow the experimental setting of Geo-Spotting[1] and

API[5] for the two most related deep learning models
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k

(i.e.,  L-SHARE  and  API)  under  BSP  and  SBS  with

varied , where the results are reported in Fig.7 and

Fig.8.

k

As expected,  our  proposed  STGCRN consistently

achieves  the  best  performance  against  the  two  com-

peting  baselines  under  all  conditions.  The  reason  is

that  STGCRN takes  into  consideration  three  signifi-

cant correlations comprehensively (local spatial corre-

lation, global spatial correlation, and dynamic tempo-

ral  dependency),  and  also  introduces  an  approxima-

tion block, which jointly facilitates a better populari-

ty  prediction  performance  of  candidate  locations  and

provide  the  most  relevant  recommendation  lists.

Therefore, we believe STGCRN can be quite effective

for  the  top-  candidate  location  recommendation  for

urban facility placement, compared with state-of-the-

art baselines. 

6.4.4    Parameter Sensitivity

Th
Tf

To further study the impact of different hyper-pa-

rameters  of  the  proposed  model,  we  evaluate

STGCRN based on BSP by varying the four most im-

portant  parameters:  the  historical  time  steps ,  the

prediction time steps , the ratio of locations within

urban facilities and popularity (labeled locations), and

the  number  of  attention  heads  in  MGAT.  When  we

vary a hyper-parameter, the others are set to default

values as in Subsection 6.1.2.

Th
Th k

Th

Th

Varying . We evaluate the effect of historical in-

put time steps  in different  (i.e.,  20, 30, 50, and

80), where  varies from 7 to 42 weekly and 3 to 9

monthly,  respectively.  As shown in Fig.9,  the weekly

performance steadily improves when  increases from

7 to 28 but the performance has a degradation when
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Th

Th

 further  rises  from  28  to  42  as  shown  in Fig.9(a).

This is because a relatively short input of characteris-

tics  cannot  provide  sufficient  temporal-depended  in-

formation in the LSTM blocks, whereas an excessive-

ly  long-term  historical  input  brings  more  noise  to

temporal  dependency  modeling.  However,  there  are

still significant performance improvements by increas-

ing  as displayed in Fig.9(b). We argue that collect-

ing more monthly characteristics  of  locations  enables

us  to  acquire  more  accurately  predicted  popularity,

but  the  effectiveness  performance  can  eventually  di-

minish as too long monthly input is introduced, as il-

lustrated in Fig.9(a).

Tf

Tf k

Varying .  The  results  of  the  impact  of  predic-

tion steps are shown in Fig.10. As expected, the over-

all  predicted  accuracy  decreases  slightly  and  consis-

tently by increasing  with varied . We think such

understandable  results  are  due  to  the  successive  rise

Tfof noise among all locations with the increase of  in

weekly and monthly predictions. However, the degra-

dation trends are acceptable due to our well-modeled

STGCRN.  For  instance,  there  is  only,  on  average,  a

4.17% decrease  in  accuracy  performance  as  shown in

Fig.10(a), while the predicted future steps grow from

2 to 10.

|Ll| / |L|

Varying  the  Ratio  of  Labeled  Locations.  To  test

the  effect  of  the  ratio  of  labeled  locations  (i.e.,

),  we vary the  proportion from 10% to 90%.

The  results  are  presented  in Fig.11.  As  can  be  seen,

employing  more  locations  with  popularity  can  pro-

gressively  increase  the  accuracy  of  both  weekly  and

monthly predictions. There are two major reasons for

this  remarkable results:  a more precise  model  can be

trained due to the increasing number of labeled loca-

tions, and the missing popularity approximation block

can  be  more  accurately  learned  based  on  the  more
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abundant available popularity data. However, obtain-

ing an enormous number of popularity-available loca-

tions  in  urban  can  lead  to  extra  economic  costs  and

may  be  constrained  by  privacy  policies.  Additional

factors  should  be  acknowledged  to  balance  both  the

prediction effectiveness and data-collecting costs.

K K

K

K

Varying . We vary the attention head  from 1

to  12  for  weekly  and  monthly  predictions.  As  illus-

trated in Fig.12, employing more attention heads en-

ables  the proposed STGCRN to be more accurate  in

popularity prediction, but the improvement in accura-

cy begins to moderate when  = 6 in Fig.12(a) and

 = 9 in Fig.12(b), respectively. One possible reason

is that only a portion of attention heads in MGAT is

essential  and  confident  for  the  prediction  task,  and

these “effective” heads  potentially  focus  on  different

parts of LCG, which makes it possible to express so-

phisticated  correlations,  including  attending  to  adja-

cent  locations  and  then  tracking  spatio-temporal  de-

pendencies.  Therefore,  unimportant  attention  heads

can be dropped for efficiency without significantly af-

fecting the prediction performance. 

7    Conclusions

In this paper, we developed STGCRN, a novel se-

mi-supervised deep learning framework, with the goal

of  fine-grain  popularity  prediction.  STGCRN  first

partitions an urban space into spatial neighborhoods,

where each one is centered around a specific location,

extracts corresponding features,  and then forms a lo-

cation  correlation  graph.  Next,  a  contextual  graph

convolution  module  was  introduced  to  incorporate

both local and global spatial correlations of locations,

and a recurrent neural network was further proposed

to  capture  temporal  dependencies  between  locations.
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Finally, a missing popularity approximation block was

employed to predict location popularity from both the

spatial and temporal domains. Extensive experiments

conducted  on  two  real-world  datasets  of  Beijing  and

New  York,  demonstrated  the  superiority  of  our  pro-

posed  STGCRN  with  proven  effectiveness,  stability,

and ranking  quality.  Based  on the  location  populari-

ty prediction, we can obtain well-ranked candidate lo-

cation  lists  for  facility  placement.  Based  on  this

study,  we  are  motivated  to  explore  the  updates  to

candidate locations and dwellers in the future. 
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