

Indoor Uncertain Semantic Trajectory Similarity Join

Hong-Bo Yin1 (尹洪波), Dong-Hua Yang1, 2 (杨东华), Kai-Qi Zhang1 (张开旗), Member, CCF
Hong Gao2, * (高　宏), Distinguished Member, CCF, and Jian-Zhong Li3 (李建中), Fellow, CCF

1 Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China
2 Center of Analysis, Measurement and Computing, Harbin Institute of Technology, Harbin 150001, China
3 Faculty of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of

Sciences, Shenzhen 518055, China

E-mail: hongboyin@hit.edu.cn; yang.dh@hit.edu.cn; zhangkaiqi@hit.edu.cn; honggao@hit.edu.cn; lijzh@hit.edu.cn

Received April 14, 2022; accepted July 6, 2023.

Abstract With the widespread deployment of indoor positioning systems, an unprecedented scale of indoor trajectories

is being produced. By considering the inherent uncertainties and the text information contained in such an indoor trajecto-

ry, a new definition named Indoor Uncertain Semantic Trajectory is defined in this paper. In this paper, we focus on a new

primitive, yet quite essential query named Indoor Uncertain Semantic Trajectory Similarity Join (IUST-Join for short),

which is to match all similar pairs of indoor uncertain semantic trajectories from two sets. IUST-Join targets a number of

essential indoor applications. With these applications in mind, we provide a purposeful definition of an indoor uncertain

semantic trajectory similarity metric named IUS. To process IUST-Join more efficiently, both an inverted index on indoor

uncertain semantic trajectories named 3IST and the first acceleration strategy are proposed to form a filtering-and-verifi-

cation framework, where most invalid pairs of indoor uncertain semantic trajectories are pruned at quite low computation

cost. And based on this filtering-and-verification framework, we present a highly-efficient algorithm named Indoor Uncer-

tain Semantic Trajectory Similarity Join Processing (USP for short). In addition, lots of novel and effective acceleration

strategies are proposed and embedded in the USP algorithm. Thanks to these techniques, both the time complexity and

the time overhead of the USP algorithm are further reduced. The results of extensive experiments demonstrate the superi-

or performance of the proposed work.

Keywords filtering-and-verification framework, indoor uncertain semantic trajectory, inverted index, trajectory simi-

larity join

1 Introduction

For people in different countries and continents,

approximately 87% of our lives are spent in indoor

space, such as shopping malls, airports, and office

buildings, which is disclosed by multiple studies[1]. For

example, there are over 100 million passengers board-

ing at Beijing Capital International Airport in 2018①.

Thus, quite a few movements of individuals are con-

tained in such indoor space. What is more, the past

few years have witnessed the great breakthroughs in

indoor position technologies[2] and the widespread de-

ployment of indoor positioning systems. Driven by the

above key factors, an unprecedented scale of indoor

trajectories is being produced. Such indoor trajecto-

ries can serve as a foundation for a wide variety of in-

door applications, which are expected to boom in the

coming years②[3].

In indoor space, an indoor positioning system is

commonly used to track the positions of indoor mov-

Regular Paper

This work was partially supported by the National Natural Science Foundation of China under Grant Nos. U22A2025,
U19A2059, 61732003, 61832003, U1811461, and 62102119, and the Key Research and Development Projects of the Ministry of Sci-
ence and Technology of China under Grant No. 2019YFB2101902.

*Corresponding Author

Yin HB, Yang DH, Zhang KQ et al. Indoor uncertain semantic trajectory similarity join. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 39(6): 1441−1465 Nov. 2024. DOI: 10.1007/s11390-023-2418-4

①https://en.wikipedia.org/wiki/Beijing_Capital_International_Airport, Apr. 2024.

②https://www.abiresearch.com/press/over-800-million-smartphones-using-indoor-location/, Nov. 2024.
©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-023-2418-4
https://doi.org/10.1007/s11390-023-2418-4
https://doi.org/10.1007/s11390-023-2418-4
https://doi.org/10.1007/s11390-023-2418-4
https://doi.org/10.1007/s11390-023-2418-4
https://doi.org/10.1007/s11390-023-2418-4
https://doi.org/10.1007/s11390-023-2418-4
https://en.wikipedia.org/wiki/Beijing_Capital_International_Airport
https://en.wikipedia.org/wiki/Beijing_Capital_International_Airport
https://en.wikipedia.org/wiki/Beijing_Capital_International_Airport
https://en.wikipedia.org/wiki/Beijing_Capital_International_Airport
https://en.wikipedia.org/wiki/Beijing_Capital_International_Airport
https://en.wikipedia.org/wiki/Beijing_Capital_International_Airport
https://en.wikipedia.org/wiki/Beijing_Capital_International_Airport
https://www.abiresearch.com/press/over-800-million-smartphones-using-indoor-location/
https://www.abiresearch.com/press/over-800-million-smartphones-using-indoor-location/
https://www.abiresearch.com/press/over-800-million-smartphones-using-indoor-location/
https://www.abiresearch.com/press/over-800-million-smartphones-using-indoor-location/
https://www.abiresearch.com/press/over-800-million-smartphones-using-indoor-location/
https://www.abiresearch.com/press/over-800-million-smartphones-using-indoor-location/
https://www.abiresearch.com/press/over-800-million-smartphones-using-indoor-location/
https://www.abiresearch.com/press/over-800-million-smartphones-using-indoor-location/
https://www.abiresearch.com/press/over-800-million-smartphones-using-indoor-location/
https://www.abiresearch.com/press/over-800-million-smartphones-using-indoor-location/
https://www.abiresearch.com/press/over-800-million-smartphones-using-indoor-location/
https://www.abiresearch.com/press/over-800-million-smartphones-using-indoor-location/
https://www.abiresearch.com/press/over-800-million-smartphones-using-indoor-location/

U1 χ1 = [(p26, t1, t101), (p21, t257,

t260), (p24, t270, t274), (p23, t338, t341),(p22, t350, t354), (p22,

t482, t485)] (p, ts, te)

U1

p

[ts, te]

ing users to generate indoor trajectories[4]. The posi-

tions of an indoor moving user are captured by the in-

door positioning system when it is in the detection

ranges of static positioning devices (e.g. RFID sen-

sors or bluetooth base stations) distributed in indoor

space[5] as shown in Fig.1. It is a relatively simple ex-

ample of a shopping mall with one floor, and this ex-

ample is used for illustration throughout this paper.

For an indoor moving user, a sequence of static posi-

tioning devices ordered by the timestamps is called

the indoor trajectory generated by the indoor posi-

tioning system. For example, the generated indoor

trajectory of user is

. And each tuple in such an in-

door trajectory records that was under the detec-

tion range of the static positioning device in the

closed time interval .

χ1

There are inherent uncertainties in indoor trajec-

tories generated by using such an indoor positioning

system. In general, because of the limited number of

static positioning devices, the whole indoor space is

unable to be entirely covered by detection ranges of

all static positioning devices. Due to the discreteness

of detection ranges, the positions of an indoor mov-

ing user between two successive tracking events are

not avaliable[5]. And combined with the quite com-

plex indoor topology, more than one potential indoor

path may be inferred. Let us take the generated in-

door trajectory for example. In the open time in-

(t274, t338) U1

H20 R23

p24 p23

(t354, t482) U1 H20

R22 2× 2 = 4

U1 χ1

terval , user might go through hallway

 or room from the detection range of static

positioning device to that of . And in the open

time interval , might be in hallway

or room . Thus, we can infer potential

indoor paths of user from indoor trajectory .

PT χ1

R21 R22 R23

U1

As shown in multiple studies[6], knowledge extrac-

tion from mobility data can be significantly promot-

ed by considering the semantic information contained

in mobility data. From a semantic trajectory (i.e., a

text-embedded trajectory), we can know not only

where and when the indoor moving user has been, but

also what this user has done. For example, one poten-

tial indoor path of indoor trajectory passes

rooms , and , which are labeled with

“Huawei”, “Apple”, and “Nike”, respectively. From

this, we can say that user might like consumer

electronics and sportswear.

By combining the inherent uncertainties in in-

door trajectories and semantic information in poten-

tial indoor paths, we present a new definition named

Indoor Uncertain Semantic Trajectory. And given an

indoor trajectory and the indoor topology, the corre-

sponding indoor uncertain sematic trajectory encodes

all potential indoor semantic paths of the indoor mov-

ing user, where each potential indoor semantic path is

a sequence of rooms, doors, hallways, and staircases

ordered by the corresponding timestamps. And each

potential indoor semantic path is associated with the

corresponding sematic information and a likelihood.

Door

Staircase

Room

Hallway

Virtual Door

Position DeviceApple

Starbuck

OPPO

McDonald's

KFC

Huawei

Costa

Nike

HEYTEA

Watsons

ERKE





















 



 





 














 



























 








  

 





















 













 







Fig.1. Example of indoor space and static positioning device deployment.

1442 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

P Q
P Q

θ

With the increasing use of GPS-enabled devices,

massive outdoor trajectories are continuously grow-

ing at a high speed[7]. And nowadays, the analysis and

the application of outdoor trajectories are attracting

more and more people's attention, such as [8–10].

Trajectory similarity join on outdoor trajectories,

which serves as a primitive, yet quite essential query,

has been widely studied[11, 12]. In this paper, we study

a new essential query named Indoor Uncertain Se-

mantic Trajectory Similarity Join (IUST-Join for

short). Given two sets of indoor uncertain semantic

trajectories and , IUST-Join is to find all pairs of

indoor uncertain semantic trajectories from and

with spatio-textual similarity exceeding the given sim-

ilarity threshold . IUST-Join can serve as a quite es-

sential query in a number of indoor application sce-

narios, such as friend recommendation based on simi-

lar shopping interests, keyword-aware indoor route

recommendation, trajectory near-duplicate detection,

geo-text data cleaning, and so on.

Though various trajectory similarity metrics[11, 13]

have been proposed, there is no “best” trajectory sim-

ilarity metric superior to all the others in terms of ac-

curacy, which has been proved through plenty of ex-

periments[14]. Each trajectory similarity metric has its

advantages and disadvantages, and how to choose the

most suitable one depends on the application scenar-

ios. With the application scenarios of IUST-Join in

mind, we provide a purposeful definition of an indoor

uncertain semantic trajectory similarity metric named

IUS, where both spatial proximity and semantic simi-

larity are considered to determine how much these

two indoor uncertain semantic trajectories are similar

to each other. The indoor distance between two posi-

tions is defined as the shortest walking Euclidean dis-

tance in the indoor space by considering the indoor

topology[15]. And for IUS, it is the first time that in-

door distances are used to measure the spatial prox-

imity between each pair of indoor uncertain semantic

trajectories.

In the computation, IUST-Join is far more compli-

cated than trajectory similarity join on outdoor tra-

jectories. Since for each pair of indoor uncertain se-

mantic trajectories, to get their spatial proximity, the

spatial proximities between all pairs of potential

paths all need to be calculated. What is more, seman-

tic information of indoor uncertain semantic trajecto-

ries also needs to be considered in calculating the sim-

ilarity between each pair of indoor uncertain seman-

tic trajectories. In addition, because of the pretty high

time complexity and time overhead, using a brute

force approach to process IUST-Join is totally infeasi-

ble. To address this, we propose the USP algorithm

with lots of novel and effective acceleration strategies

embedded, which can reduce the time complexity and

accelerate the processing of IUST-Join greatly.

To sum up, the main contributions of our work

are listed as follows.

● By considering the inherent uncertainties and

the text information contained in indoor trajectories,

a new definition named Indoor Uncertain Semantic

Trajectory is proposed.

● We are the first to define and formalize a primi-

tive, yet quite essential similarity join query on in-

door uncertain semantic trajectories, which is named

IUST-Join. IUST-Join targets a number of essential

indoor applications. And with these applications in

mind, we provide a purposeful definition of the in-

door uncertain semantic trajectory similarity metric

named IUS.

● To accelerate the computation of IUST -Join,

both an inverted index on indoor uncertain semantic

trajectories named 3IST and the first acceleration

strategy are proposed to form a filtering-and-verifica-

tion framework. By using this framework, most in-

valid pairs of indoor uncertain semantic trajectories

can be pruned at quite low computation cost.

● Based on this filtering -and-verification frame-

work, we present the USP algorithm, a highly-effi-

cient algorithm in processing IUST-Join. In addition,

lots of novel and effective acceleration strategies are

proposed and embedded in the USP algorithm.

Thanks to these, both the time complexity and the

time overhead of processing IUST-Join are reduced

greatly.

● Extensive comparison experiments have been

done, and the results demonstrate superior perfor-

mance of our proposed methods. Besides, it is con-

firmed that by using our proposed USP algorithm, in-

stead of the well-designed baseline TII algorithm, to

process IUST-Join, at least 98.5% of the execution

time can be easily saved.

The rest of this paper is organized as follows. Sec-

tion 2 provides the formal definitions of the new es-

sential query IUST-Join and some basic conceptions.

To process IUST-Join, Section 3 introduces a base-

line method named the TII algorithm. And the USP

algorithm with lots of novel and effective acceleration

strategies embedded is introduced detailedly in Sec-

tion 4. Section 5 reports the experimental results and

Hong-Bo Yin et al.: Indoor Uncertain Semantic Trajectory Similarity Join 1443

analysis. Section 6 reviews related work, and Section 7

concludes this work.

2 Preliminaries and Problem Statement

In this section, how to map the indoor space to

the extended accessibility base graph, a mainstream

method showing the complex indoor topology, is in-

troduced first. Then, the concept of the indoor uncer-

tain sematic trajectory is defined. After that, we pro-

pose an indoor uncertain semantic trajectory similari-

ty metric named IUS. Last, based on IUS, a new es-

sential query named IUST-Join is formally defined.

Table 1 lists some key notations used throughout

this paper.

Table 1. Key Notations

Symbol Meaning

IP Set of all indoor partitions

R ⊆ IP Set of all rooms

D Set of all doors

P Set of all static positioning devices

S Set of all staircases

IL Set of all identity labels

TL Set of all thematic labels

IP ∈ IP An indoor partition

D ∈ D A door

p ∈ P A static positioning device

R ∈ R A room

S ∈ S A staircase

H ∈ IP A hallway

[ts, te] ts teClosed time interval from to

(ts, te) ts teOpen time interval from to

∆T Sampling time interval

U An indoor moving user

F Total number of floors

2.1 Extended Accessibility Base Graph

Gacc

Recently, mapping the complex indoor space to an

extended accessibility base graph and using such

a graph to process various queries in indoor space at-

tract much more attention, and are adopted by most

work[16, 17].

IP ∈ IP

Dk ∈ D
Dk.IP () {IPk1

∈ IP, IPk2
∈ IP}

IPk1
IPk2

Dk IPi ∈ IP

Some notations and functions to be used in the

follows are introduced first. An indoor partition

 is used to indicate a hallway, a room or a

staircase. And each indoor partition is numbered dif-

ferently in Fig.1. Given a door , the function

 returns a set , where

an indoor moving user can enter the indoor partition

 or through . And given , func-

IPi.D()

IPi

IPi.D() = {Dk ∈ D|IPi ∈ Dk.IP ()}
D24.IP () = {H20, R23} H20.D() = {D2,

D21, D22, D23, D24}

tion gives a set of doors, through each of

which an indoor moving user can directly enter .

In other words, .

In Fig.1, and

.

Gacc = (V, E, E2D,

FD2D) vi ∈ V

IPi ∈ IP
ei, j ∈ E vi vj ∈ V

IPi IPj ∈ IP (i ̸= j)

E2D(ei, j) = IPi.D() ∩ IPi.D()

Gacc

Gacc

v40 v41 v50
H40 R41 S50

e20,23 v20 v23

H20 R23

D23 D24

The extended accessibility base graph is a con-

nected and undirected graph

. A vertex represents the corresponding

indoor partition . And there is an edge

 between two vertexs and iff an in-

door moving user can directly move between the in-

door partitions and through each

door in the set . Be-

sides, can be easily changed to be a directed

graph when some doors only permit the movements in

one direction, such as the security check points in an

airport. Fig.2 shows the corresponding extended ac-

cessibility base graph of the indoor space shown

in Fig.1. The vertexs , and represent the

hallway , the room , and the staircase , re-

spectively. The edge between and de-

notes that an indoor moving user can directly move

between the hallway and the room through

the door or .

20

22

21 23

40

22

23

24

21

2

3010

11

12

13

0 50 41

32

31

33

14

50
0 41

3
32

31

25

34

1

11

12

14

1513

33
17

37

36

GaccFig.2. Extended accessibility base graph .

Gacc V E

E2D

FD2D

Gacc ∀Di, Dj ∈ D(i ̸= j)

Di Dj

The above introduces that the indoor topology in-

formation is integrated in by using , and

. Besides, to support distance-aware indoor que-

ries (e.g. nearest neighbor queries or shortest dis-

tance queries), some necessary indoor distances

also need to be integrated into . ,

and the intra-partition door-to-door distance between

 and is calculated according to the following

two cases:

FD2D (Di, Dj, IPk)=


|Di, Dj|IPk

,
if IPk ∈ (Di.IP () ∩Dj.IP ()) ,
∞, otherwise,

IPk ∈ (Di.IP () ∩Dj.IP ()) Di

Dj

where means that and

 are the different doors of the same indoor parti-

1444 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

IPk |Di, Dj|IPk

Di Dj

IPk

FD2D Gacc

Ds Dt

Ds Gacc

tion . And is the indoor distance be-

tween doors and within the indoor partition

, where the indoor distance is the shortest walk-

ing Euclidean distance in the indoor space. Thanks to

the existence of , is able to support dis-

tance-aware queries. For example, when we want to

get the mininum walking distance from the source

door to the destination door , we can keep all

unvisited doors in a priority queue, and expand the

search from on the graph in a way similar to

the classical Dijkstra Algorithm[18].

2.2 Indoor Uncertain Sematic Trajectory

pk.DR()

pk ∈ P

p2

pi pi.D()

pi.DR()

pj pj.IP ()

pj p2

p21 p50 p2.D() = D2

p24.D() = D24 p16 p26 p35

p16.IP () = R11 p26.IP () = H20

As illustrated in Section 1, the positions of an in-

door moving user are captured by the indoor position-

ing system when it enters the detection ranges of stat-

ic positioning devices. denotes the detection

range of a static positioning device . In Fig.1,

the detection range of each static positioning device is

in green. Based on the positions in the indoor space,

static positioning devices can be distinguished into

two categories, i.e., partitioning devices and presence

devices. For all partitioning devices, their detection

ranges altogether cover all entrances and exits of in-

door partitions, which means that an indoor moving

user cannot be undetected by any partitioning device

when it moves into another indoor partition. For par-

titioning devices whose detection ranges altogether

cover a door or a virtual door, they are all set to a

same notation. For instance, three partitioning de-

vices are all named in Fig.1. For a partitioning de-

vice , denotes the corresponding door or vir-

tual door which covers. Different from parti-

tioning devices, presence devices simply serve to

record the presence of some indoor moving user in an

indoor partition. Given a presence device ,

denotes the indoor partition where is. In Fig.1, ,

, and are all partitioning devices.

and . And , , and are called

presence devices. and .

It is assumed that all static positioning devices de-

tect and report the positions of moving users simulta-

neously and periodically at a relatively high sampling

rate (i.e., the sampling time interval is quite short).

(U, p, t)

U

p t

Typically, a raw detection reading of static posi-

tioning devices is a triple , which means that

indoor moving user was under the detection range

of static positioning device at timestamp . In the

process of generating indoor trajectories, all such raw

(U, p, ts, te)

U

p

[ts, te]

Ui

Ui

Ui

Ui

χi = [(pi1 , ts1, te1), (pi2 , ts2, te2), . . . , (pin , tsn, ten)]

U1

χ1 = [(p26, t1, t101), (p21, t257, t260), (p24,

t270, t274), (p23, t338, t341), (p22, t350, t354), (p22, t482, t485)]

[t1, t101] [t257, t260] [t270, t274]

[t338, t341] [t350, t354] [t482, t485] U1

U1

detection readings are converted into multiple track-

ing events in the form of . Such a track-

ing event means that indoor moving user is under

the detection range of static positioning device in

closed time interval . All such tracking events

are stored in the user tracking table (UTT). For all

the tracking events of indoor moving user in UTT,

in the corresponding closed time intervals, is de-

fined to be in the detected state; otherwise, is in

the undetected state. The sequence of all tracking

events in UTT with the same user ordered by the

timestamps is called the indoor trajectory

.

Table 2 shows an example of UTT. User ' indoor

trajectory is

.

In closed time intervals , , ,

, , and , is in the detect-

ed state; otherwise, is in the undetected state.

Table 2. User Tracking Table

U p ts te

U1 p26 t1 t101

U1 p21 t257 t260

U1 p24 t270 t274

U1 p23 t338 t341

U1 p22 t350 t354

U1 p22 t482 t485

...
...

...
...

As the analysis shown in Section 1, there are in-

herent uncertainties in indoor trajectories generated

by using such an indoor positioning system. Besides,

from a semantic trajectory (i.e., text-embedded trajec-

tory), we can know not only where and when the in-

door moving user has been, but also what he/she has

done. By combining the inherent uncertainties in in-

door trajectories and semantic information in poten-

tial indoor paths, we present a new definition named

Indoor Uncertain Semantic Trajectory, which is for-

mally defined as follows.

τi χi

Ui

Gacc

χi τi = {Pik |k = 1, 2, 3, . . .}
Ui

Pik = (PT, SM, L)

PT

SM

Definition 1. (Indoor Uncertain Sematic Trajecto-

ry). Given an indoor trajectory of the indoor
moving user and the extended accessibility base
graph , the corresponding indoor uncertain semat-
ic trajectory of is , which
encodes all potential indoor semantic paths of . As
a potential indoor semantic path,
consists of a potential indoor path and the corre-
sponding semantic information with the corre-

Hong-Bo Yin et al.: Indoor Uncertain Semantic Trajectory Similarity Join 1445

Lsponding likelihood .
Pik .PT =

[(κ1, [ts1, te1]), (κ1.5, (te1, ts2)), (κ2, [ts2, te2]), . . . ,

(κn, [tsn, ten])]

κj ∈ (IP ∪ D) κj+0.5 ∈ IP (κj, tsj,

tej) Ui Ui

κj

[tsj, tej] (κj+0.5, tej, tsj+1)

Ui Ui

κj+0.5

(tej, tsj+1)

τ1 = {P1k |k = 1, 2, 3, 4}
χ1

U1 (t274, t338)

P11 .PT U1

R23 (t274, t338) [t270, t274] U1

U1 D24

In Definition 1, each potential indoor path

 is a sequence of rooms, doors, hallways,

and staircases ordered by the corresponding times-

tamps, where and .

 means that is in the detected state, and is

in the indoor partition or near the door in the

closed time interval . And

means that is in the undetected state, and is in the

indoor partition in the open time interval

. Table 3 shows the corresponding indoor

uncertain sematic trajectory

of the indoor trajectory . The indoor moving user

 is in the undetected state in . And for

the potential indoor path , is in the room

 in . In , is in the detected

state, and is sure to be near the door .

P
k
.SM Pik .PT

Rm.IL()

Rm IL.TLs()

IL

R22.IL() =

.TLs() =

{ . . .}

To introduce the corresponding semantic informa-

tion of a potential indoor path , the se-

matic information contained in indoor partitions is

defined first. There are two types of sematic labels as-

sociated with each room, i.e., identity label (IL) and

thematic label (TL). Each room relates to only one

IL, and each IL is associated with a set of TLs. IL

refers to the specific name of a room, and TL is a tag

relevant to a given IL. denotes the corre-

sponding IL of the room , and returns

the corresponding TL set of the given . For exam-

ple, in Fig.1 and Fig.3, Apple, a famous

consumer electronics company. And Apple

laptop, smartphone, smartwatch, . Since the se-

Ui

Ui Pik .SM Pik .SM

AIL ATL

matic information about passesd rooms can reflect the

interests of , all ILs and TLs with the correspond-

ing lengthes of the time intervals about rooms, where

the user has been, are stored in .

consists of and , which are formally defined

as follows.

Pik .SM.AIL = {(ILx ∈ IL, ILTx)|ILTx =

Σ
(κj , tsj , tej)∈Pik

.PT
(tej − tsj)× ILx.Match(κj)+

Σ
(κj+0.5, tej , tsj+1)∈Pik

.PT
(tsj+1−tej)×ILx.Match(κj+0.5)},

Pik .SM.ATL = {(TLy ∈ TL, TLTy)|TLTy =

Σ
(ILx, ILTx)∈Pik

.SM.AIL

ILTx × TLy.Map(ILx)

ILx.TLs().size()
},

Input ∈ R Input.IL() = ILx ILx.Match

(Input) = 1 ILx.Match(Input) = 0 ILx.

TLs().size()

ILx.TLs() TLy ∈ ILx.TLs()

TLy.Map(ILx) = 1 TLy.Map(ILx) = 0

P11

P11 .SM.AIL = {(R21.IL(), t257 − t1), (R23.IL(),

t338 − t274), (R22.IL(), t482 − t354)} = ∆T

∆T ∆T ∆T

SM.ATL

where if and ,

; otherwise, .

is to get the number of distinct TLs in

the TL set . And if ,

; otherwise, . For

the potential indoor semantic path shown in Ta-

ble 3,

 {(Huawei, 256),

(Nike, 64), (Apple, 128)}, where is the

sampling time interval of the indoor position system.

Owing to the limitation of the scope, is

omitted in Table 3.

Pik .PT Pik .L =

l(κ1.5, te1, ts2)×l(κ2.5, te2, ts3)× . . . × l(κn−0.5, ten−1,

tsn) l(κj+0.5, tej, tsj+1)

κj+0.5

(tej, tsj+1)

The corresponding likelihood of is

. The function returns the like-

lihood that the user is in the indoor partition in

the open time interval .

τ1Table 3. Indoor Uncertain Sematic Trajectory

Time
Interval

P11 .PT P12 .PT P13 .PT P14 .PT

[t1, t257) R21 R21 R21 R21

[t257, t260] D21 D21 D21 D21

(t260, t270) H20 H20 H20 H20

[t270, t274] D24 D24 D24 D24

(t274, t338) R23 R23 H20 H20

[t338, t341] D23 D23 D23 D23

(t341, t350) H20 H20 H20 H20

[t350, t354] D22 D22 D22 D22

(t354, t482) R22 H20 R22 H20

[t482, t485] D22 D22 D22 D22

L l(R23, t274, t338)×
l(R22, t354, t482)

l(R23, t274, t338)×
l(H20, t354, t482)

l(H20, t274, t338)×
l(R22, t354, t482)

l(H20, t274, t338)×
l(H20, t354, t482)

SM.AIL ∆T
∆T ∆T

{(Huawei, 256),
(Nike, 64), (Apple, 128)}

∆T
∆T

{(Huawei, 256),
(Nike, 64)}

∆T
∆T

{(Huawei, 256),
(Apple, 128)}

∆T{(Huawei, 256)}

1446 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

2.3 Indoor Uncertain Semantic Trajectory

Similarity Metric IUS

As introduced in Section 1, IUST-Join can serve

as a quite essential query in a number of indoor appli-

cation scenarios, such as friend recommendation based

on similar shopping interests, keyword-aware indoor

route recommendation, trajectory near-duplicate de-

tection, geo-text data cleaning, and so on. And with

these applications in mind, we provide a purposeful

definition of an indoor uncertain semantic trajectory

similarity metric named IUS for IUST-Join. Both spa-

tial proximity and semantic similarity need to be con-

sidered in IUS to determine how much two given in-

door uncertain semantic trajectories are similar to

each other. Before we define IUS, some needed defini-

tions are formally defined first as follows.

Pik .PT = [(κ1, [ts1,

te1]), (κ1.5, (te1, ts2)), (κ2, [ts2, te2]), . . . , (κn, [tsn, ten])]

(2n− 1) Pik .PT [f].T ()

Pik .PT [f]

Given a potential indoor path

with triples. returns the length

of 's corresponding time interval, i.e.,

∀x ∈ [1, n], Pik .PT [2x].T () = tsx+1 − tex,

Pik .PT [2x− 1].T () = tex − tsx.

ST () is to get the sum length of all time intervals,

and is formally defined as:

Pik .PT.ST () =
2n−1

Σ
f=1

Pik .PT [f].T ().

Pik .rest().PT Pik .PT

(κn, tsn, ten)

 denotes without the last triple

, i.e.,

Pik .rest().PT =[(κ1, [ts1, te1]), (κ1.5, (te1, ts2)), . . . ,

(κn−0.5, (ten−1, tsn))].

P11 .PT = [(R21, [t1,

t257]), (D21, (t257, t260)), . . . , (R22, (t354, t482)), (D22, [t482,

t485])] P11 .PT [1].T () = t257 − t1 =

256∆T P11 .PT [2].T () = t260 − t257 = 3∆T
P11 .PT.ST () = (t257 − t1) + (t260 − t257) + . . . + (t485−

For the potential indoor path

 shown in Table 3,

 and .

t482) = 484∆T P11 .rest().PT = [(R21, [t1, t257]),

(D21, (t257, t260)), . . . , (R22, (t354, t482))]

. And

.

d(Dx, Dy)

Dx Dy

d(Dx, Dy)

iD(Pik .PT [a], Pjl .PT [b])

Pik .PT [a] Pjl .PT [b]

The door-to-door indoor distance is

the shortest walking Euclidean distance between

two doors and in the indoor space by consider-

ing the indoor topology. And based on ,

, the indoor distance between

 and , is formally defined as:

iD(Pik .PT [a], Pjl .PT [b]) =

d(Pik .PT [a], Pjl .PT [b]),

if Pik .PT [a] ∈ D and Pjl .PT [b] ∈ D

min
{

d(Pik .PT [a], Dy)|
Dy ∈ Pjl .PT [b].D()

}
,

if Pik .PT [a] ∈ D and Pjl .PT [b] ∈ IP

min
{

d(Dx, Pjl .PT [b])|
Dx ∈ Pik .PT [a].D()

}
,

if Pik .PT [a] ∈ IP and Pjl .PT [b] ∈ D

min
{

d(Dx, Dy)|Dx ∈ Pjl .PT [b].D()∧
Dy ∈ Pjl .PT [b].D()

}
,

if Pik .PT [a] ∈ IP and Pjl .PT [b] ∈ IP

.

iD(R22, R23) = iD(D22, R23) = min{ d(D22,

D23), d(D22, D24)} = d(D22, D23) MaxDist

In Fig.1,

. , a con-

stant, is the maximum door-to-door indoor distance in

the given indoor space, i.e.,

MaxDist = max{d(Dx, Dy)|Dx, Dy ∈ D}.

Θ(Pik , Pjl)

Pik

Pjl

Then based on the above definitions, we propose

, which measures the spatial dissimilarity

between two potential indoor semantic paths and

 in indoor distances. It is formally defined as follows.

Θ(Pik , Pjl)

Pik Pjl

Pik .PT Pjl .PT M N

Definition 2. (Spatial Dissimilarity Metric

). Given two potential indoor semantic
paths and , and the numbers of triples in

 and are and , respectively.

Θ(Pik , Pjl) =

Pjl .PT.ST (), if Pik .PT.ST () = 0

Pik .PT.ST (), if Pjl .PT.ST () = 0

min



sub(Pik .PT [M], Pjl .PT [N])+

Θ(Pik .rest(), Pjl .rest()),

Pik .PT [M].T ()+
Θ(Pik .rest(), Pjl),

Pjl .PT [N].T ()+
Θ(Pik , Pjl .rest())


, otherwise,

.

13

21

22

23

32

41

…

Apple

Huawei

KFC

Nike

OPPO

Starbuck

…

Coffee

Laptop

Smartphone

Sneakers

Sportswear

Fried Chicken

…

Room IL TL

Fig.3. Labels mappings of rooms.

Hong-Bo Yin et al.: Indoor Uncertain Semantic Trajectory Similarity Join 1447

sub(Pik .PT [M], Pjl .PT [N]) = |Pik .PT [M].T () −

Pjl .PT [N].T ()|+ iD(Pik .PT [M], Pjl .PT [N])

MaxDist
×

min{Pik .PT [M].T (), Pjl .PT [N].T ()}.

Φ()

To measure the semantic similarity between two

potential indoor semantic paths, not only ILs, but al-

so TLs are considered. Since there may be also great

similarity between rooms with different ILs, such as

“Huawei” and “Apple”. , measuring the semantic

similarity between two potential indoor semantic

paths, is formally defined as follows.

Φ(Pik , Pjl)

Pik Pjl

Definition 3. (Semantic Similarity Metric

). Given two potential indoor semantic
paths and ,

Φ(Pik , Pjl) = β×
Σ

ILx1∈IL
min{Pik .SM.ILT (ILx1

), Pjl .SM.ILT (ILx1
)}

Σ
ILx2

∈IL
max{Pik .SM.ILT (ILx2

), Pjl .SM.ILT (ILx2
)}
+

(1− β) ×
Σ

TLy1
∈TL

min{Pik .SM.TLT (TLy1
), Pjl .SM.TLT (TLy1

)}

Σ
TLy2∈TL

max{Pik .SM.TLT (TLy2
), Pjl .SM.TLT (TLy2

)}
.

β ∈ [0, 1]

Pik .SM.ILT (ILx) Pik .SM.TLT (TLy)

ILx

TLy Pik .SM.AIL Pik .SM.ATL

The parameter is to balance the weight be-
tween the similarities of AILs and ATLs.

 (resp.) returns
the corresponding time interval length of (resp.

) from (resp.).
Θ(Pik , Pjl)

Φ(Pik , Pjl)

There are some key properties of and

 listed as follows:

Θ(Pik , Pjl) = Θ(Pjl , Pik) Φ(Pik , Pjl) = Φ(Pjl ,

Pik)

● and

;

0 ⩽ Θ(Pik , Pjl) ⩽ (Pik .PT.ST () + Pjl .PT.ST ())

Pik .PT Pjl .PT

Θ(Pik , Pjl) Θ(Pik , Pjl) = 0

Pik .PT Pjl .PT

● .

The more similar and in indoor dis-

tances, the smaller . And iff

 and are identical;

0 ⩽ Φ(Pik , Pjl) ⩽ 1 Pik Pjl

Φ(Pik , Pjl)

● . And as and are more

similar in semantics, becomes larger.

Θ Φ

For two given indoor uncertain semantic trajecto-

ries, our proposed indoor uncertain semantic trajecto-

ry similarity metric IUS considers both spatial prox-

imity and semantic similarity of all pairs of potential

indoor semantic paths to determine how much these

two indoor uncertain semantic trajectories are similar

to each other. Based on the definition of and ,

the metric IUS is formally defined as follows.

IUS(τi, τj)

τi τj

Definition 4. (Indoor Uncertain Semantic Trajec-

tory Similarity Metric). Given a pair of
indoor uncertain sematic trajectories and ,

IUS(τi, τj) = Σ
Pik

∈τi
Σ

Pjl
∈τj

(Pik .L× Pjl .L× (α×

Θ′(Pik .PT, Pjl .PT) + (1− α)× Φ(Pik , Pjl))).

α ∈ [0, 1]

Θ′(Pik .PT, Pjl .PT)

= (1− (Θ(Pik , Pjl)/(Pik .PT.ST () + Pjl .PT.ST ())))

Θ(Pik , Pjl)

The parameter is to balance the weight be-
tween spatial proximity and semantic similarity of two
potential indoor semantic paths.

 is
to normalize into [0, 1].

Θ(Pik , Pjl) = Θ(Pjl , Pik) Φ(Pik , Pjl) =

Φ(Pjl , Pik) IUS(τi, τj) = IUS(τj, τi) ∈
[0, 1] τi τj
IUS(τi, τj)

Since and

, we can see that

. And the more similar and , the greater

.

2.4 Problem Definition of IUST-Join

τi
τi.KTL()

For an indoor uncertain semantic trajectory , all
key TLs are stored in the key TL set , which

is formally defined as follows.

τi.KTL()

τi
µ

Definition 5. (Key TL Set). Given an
indoor uncertain semantic trajectory and a thresh-
old ,

τi.KTL() ={TLy ∈ IL| Σ
Pik

∈τi

(Pik .L×

Pik .SM.ATL.TLT (TLy)) ⩾ µ}.

P
Q (τi ∈ P, τj ∈ Q)

τi τj

τi
τj θ

If two indoor uncertain semantic trajectories are

considered to be similar, a quite reasonable condition
is that they share at least one common key TL. This

condition is to guarantee that there is some mini-
mum sematic similarity between each pair of indoor
uncertain semantic trajectories in the similarity join

result. And such similar conditions have been widely
applied in many studies, such as [19, 20]. Given two
sets of indoor uncertain semantic trajectories and

, IUST-Join is to find all such pairs

that satisfy the following two conditions: 1) and
share at least one common key TL; 2) the indoor un-

certain semantic trajectory similarity between and
 is no less than a given threshold . IUST-Join is

formally defined as follows.

IUST Join(P,Q)

θ ∈ [0, 1] µ
P Q IUST Join(P,Q)

Definition 6. (Indoor Uncertain Semantic Trajec-
tory Similarity Join -). Given two
thresholds and , two sets of indoor uncer-
tain semantic trajectories and , -
returns

{(τi, τj) ∈ P×Q|τi.KTL() ∩ τj.KTL() ̸= ∅,

IUS(τi, τj) ⩾ θ}.

3 Baseline the TII Algorithm

In this section, we first propose an inverted index

1448 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

named 3IST, which is to prune many invalid pairs of

indoor uncertain semantic trajectories at quite low

computation cost in the process of IUST-Join. Then,

based on 3IST, we propose a baseline algorithm

named Traversing the Inverted Index (TII for short)

to process IUST-Join, which follows a filtering-and-

verification framework. Last, in order to reduce the

time cost and the time complexity of the TII algo-

rithm, two additional effective acceleration strategies

are also presented and embedded in the TII algo-

rithm.

3.1 Inverted Index 3IST

(τi, τj) ∈ P×Q (τi, τj)

IUST Join(P,Q)

P×Q

TLy ∈ IL

In Definition 6, only if there is at least one com-

mon key TL shared by a pair of indoor uncertain se-

mantic trajectories , might be

returned by - . And thus, in order to

filter out many invalid pairs of indoor uncertain se-

mantic trajectories from the candidate result set

, we can build an inverted index of all indoor

uncertain semantic trajectories (3IST for short) on

each key TL and search on such an invert-

ed index.

P Q

TLy ∈ IL
TLy.3IST (P) TLy.3IST (Q) P Q

The inverted index 3IST consists of inverted sets

on all key TLs. To build 3IST, we first go through

each indoor uncertain semantic trajectory in and

to get the corresponding key TL set. Then for each

key TL , we build two inverted sets

 and on and , respec-

tively, which are formally defined as:

TLy.3IST (P) = {τi ∈ P|TLy ∈ τi.KTL()},

TLy.3IST (Q) = {τj ∈ Q|TLy ∈ τj.KTL()}.

3.2 TII Algorithm

ResultSet

(τi, τj) ∈ P×Q

IUS(τi, τj) θ

IUST Join(P,Q)

In this subsection, we present a straightforward

baseline approach to answer IUST-Join, named TII

algorithm. And the pseudo code of the TII algorithm

is shown in Algorithm 1. is first initialized

to an empty set (line 1). Then we go through each

key TL in the inverted index 3IST (lines 2–10). And

for each pair of indoor uncertain semantic trajecto-

ries sharing at least one common key

TL, we need to check whether the degree of the simi-

larity is no less than the given threshold

(lines 3–9). Finally, by following this processing pro-

cedure, we can get the result set of - .

Algorithm 1. TII Algorithm

θ µ

P Q
Input: two thresholds and , two sets of indoor uncertain se-

 mantic trajectories and

IUST Join(P,Q)Output: the result set of -

ResultSet← ∅1:

TLy ∈ IL2: for do

τi ∈ TLy.3IST (P)3: 　　for do

τj ∈ TLy.3IST (Q)4: 　　　　for do

IUS(τi, τj) ⩾ θ5: 　　　　　　if then

ResultSet.append({τi, τj})6: 　　　　　　　　

7: 　　　　　　end if

8: 　　　　end for

9: 　　end for
10: end for

ResultSet return

3.3 Two Efficient Acceleration Strategies

Embedded in Algorithm TII

|D| |IL| |TL| |P| |Q|
D IL IL P Q

|τ |max |PT |max

F

Davg = |D|/F

Some notations to be used are firstly introduced
here. Suppose that , , , , and are

the sizes of sets , , , , and , respectively.
 and denote the maximal number of po-

tential indoor semantic paths in indoor uncertain se-
mantic trajectories and the maximal number of tu-
ples in potential indoor paths of indoor uncertain se-
mantic trajectories, respectively. In indoor space, the
layout of each floor is usually similar. denotes the
total number of floors. And the average number of
doors in each floor is denoted by .

Θ(Pik , Pjl)

Pik Pjl O(|PT |max
|PT |max)

Θ(Pik , Pjl)
Ds

Dt

Ds

Gacc

O(|D|2)
Θ(Pik , Pjl)

O(|PT |max
|PT |max × |D|2)

For the TII algorithm, though the time overhead
is reduced greatly by using the inverted index 3IST,
the time overhead of computing even a single

 is still completely unacceptable. According

to Definition 2, for each pair of potential indoor se-

mantic paths and , up to times

door-to-door indoor distances need to be calculated in
the calculation of . And for each door-to-

door indoor distance from the source door to the
destination door , all unvisited doors are kept in a
priority queue, and the search from on the graph

 is expanded in a way similar to the classical Dijk-
stra Algorithm. Thus, the time complexity of comput-
ing each door-to-door indoor distance is . And

thus, the time complexity of computing is

high up to , which is complete-

ly unacceptable during use.

Θ(Pik , Pjl)

(|Pik .PT |+
1)× (|Pjl .PT |+ 1)

Θ(Pik , Pjl)

First, we find that there are lots of repeated calcu-

lations of door-to-door indoor distances in a single

calculation of . To avoid this, we adopt

a dynamic programming solution, where a

 matrix is used in each calculation

of to store the intermediate results. Due to

Hong-Bo Yin et al.: Indoor Uncertain Semantic Trajectory Similarity Join 1449

O(|PT |max
|PT |max) O(|PT |max

2
)

this, the needed calculation times of door-to-door

indoor distances are reduced greatly from

 to .

Θ(Pik , Pjl)

Gacc

O(|D|3) = O(Davg
3 × F 3) |D| × |D| = Davg

2×F 2

M1

M1

M1

Second, the results of extensive experiments done

by us show that getting door-to-door indoor distances

by using the classical Dijkstra Algorithm takes up

over 99% of the total execution time in the calcula-

tion of . As a quite natural idea to address

this, we present the first pre-calculation method,

which is to make all door-to-door indoor distances

pre-calculated. In the pre-processing stage, a method

similar to the Floryd algorithm is used to search on

the extended accessibility base graph , and all

door-to-door indoor distances can be gotten in

. A ma-

trix named is used to record the calculated door-

to-door indoor distances. is kept in the main

memory. And by searching , we can get any door-

to-door indoor distance in constant time.

Unless otherwise noted, these two additional effec-

tive acceleration strategies are embedded in the TII

algorithm.

3.4 Complexity Analysis of Algorithm TII

Θ(Pik , Pjl)

O(|PT |max
|PT |max × |D|2) O(|PT |max

2
) Φ(Pik ,

Pjl) ILx

IL |IL|
Pik .SM.ILT (IL) Pjl .SM.ILT (IL)

TLx IL |TL|
Pik .SM.TLT (TL) Pjl .SM.TLT (TL)

Φ(Pik , Pjl) O(|IL|2 + |TL|2)

IUST

Join(P,Q) O(|P| × |Q| ×
|τ |max

2 × (|PT |max
|PT |max × |D|2 + |IL|2 + |TL|2))

O(|P| × |Q| × |τ |max
2 × (|PT |max

2
+ |IL|2 + |TL|2))

Thanks to these two additional effective accelera-
tion strategies embedded in the TII algorithm pre-
sented in Subsection 3.3, the time complexity of the
TII algorithm computing is reduced from

 to . For

 defined in Definition 3, for each element in

, we need to search at most times to get

 and . And for each

element in , we need to search at most

times to get and .

And thus, the time complexity of computing
 is . Thus for the TII algo-

rithm, by embedding these two effective acceleration
strategies, the time complexity of computing -

 is reduced greatly from

 to

.

4 Algorithm USP

For the TII algorithm, though both the time com-

plexity and the time overhead are reduced by using

the inverted index 3IST and two additional accelera-

tion strategies, there are still some limitations to be

addressed.

● For the first pre-calculation method, though any

O(Davg
3 × F 3)

O(Davg
2 × F 2) M1

F

Davg

door-to-door indoor distance can be obtained in con-

stant time, the time overhead of get-

ting all door-to-door indoor distances in the pre-pro-

cessing stage is a little high and the space overhead

 to store the matrix in the main

memory is also a little high for large and complex in-

door space. And both the time overhead and the

space overhead could become much higher when or

 gets larger (e.g., the shopping mall is with more

floors or with more doors in each floor).

Pik Pjl

Φ(Pik , Pjl)

O(|IL|2 + |TL|2)

● In the TII algorithm, for any two potential in-

door semantic paths and , the time complexity

of computing the semantic similarity is

high up to , which is pretty high. And

the time overhead becomes much higher as the num-

bers of distinct ILs and TLs contained in potential in-

door semantic paths increase.

Θ() O(|PT |max
|PT |max × |D|2)

O(|PT |max
2
)

Θ()

Θ()

● The analysis in Subsection 3.4 shows that by

using the TII algorithm, the time complexity of com-

puting is reduced from to

. However, the experimental results in

Subsection 5.2.1 show that the calculations of

functions take up over 99.9% of the total execution

time of the TII algorithm. This means that the time

overhead of computing functions is still quite

high, and need to be further improved.

IUS(τi, τj)

IUS(τi, τj)

In order to overcome these limitations, we pro-

pose an algorithm named USP, which consists of

many efficient and effective acceleration strategies.

The USP algorithm, which is shown in Algorithm 2,

follows a filtering-and-verification framework and

prunes most invalid pairs of indoor uncertain seman-

tic trajectories at quite low computation cost. The in-

verted index 3IST is still applied first in USP to fil-

ter out invalid indoor uncertain semantic trajectory

pairs that do not share any key TLs (lines 4–5). The

indoor uncertain semantic trajectory similarity met-

ric has been formally defined in Definition

4. And based on this, we can rewrite into

(lines 13, 15, and 16):

IUS(τi, τj)=α×Part1(τi, τj) + (1− α)× Part2(τi, τj),

Part1(τi, τj) = Σ
Pik

∈ τi
Σ

Pjl
∈ τj

(Pik .L × Pjl .L ×

Θ′(Pik .PT, Pjl .PT)) Part2(τi,τj)= Σ
Pik

∈τi
Σ

Pjl
∈τj

(Pik .L×

Pjl .L× Φ(Pik , Pjl)).

where

 and

More details about Algorithm 2 will be intro-

duced in the followings.

1450 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

Algorithm 2. USP Algorithm

P
Q θ ∈ [0, 1] µ

Input: two sets of indoor uncertain semantic trajectories and
 , and two thresholds and defined in Defini-

 tion 6

IUST Join(P,Q)Output: the result set of -

ResultSet← ∅1:

V isitedState← NewMatrix(P,Q)2:

TLy ∈ IL3: for do

τi ∈ TLy.3IST (P)4: 　　for do

τj ∈ TLy.3IST (Q)5: 　　　　for do

V isitedState[i][j] ̸= 06: 　　　　　　if then

7: 　　　　　　　　continue

8: 　　　　　　else

V isitedState[i][j]← 19: 　　　　　　　　

10: 　　　　　 end if

upart1 ← UPart1(τi, τj)11: 　　　　　

α× upart1 + (1− α) ⩾ θ12: 　　　　　 if then

part2 ← Part2(τi, τj)13: 　　　　　　　　

α× upart1 + (1− α)× part2 ⩾ θ14: 　　　　　　　　if then

part1 ← Part1(τi, τj)15: 　　　　　　　　　　

α× part1 + (1− α)× part2 ⩾ θ16: 　　　　　　　　　　if then

ResultSet.append((τi, τj))17: 　　　　　　　　　　　　

18: 　　　　　　　　　　end if

19: 　　　　　　　　end if

20: 　　　　　　end if

21: 　　　　end for

22: 　　end for
23: end for

ResultSet return

4.1 The Second Pre-Calculation Method

M1

M1

As shown in the first limitation in Section 4, un-

der the condition that any door-to-door indoor dis-

tance can be still gotten in constant time, to further

reduce the time overhead of obtaining the matrix

and the occupied main memory to store the matrix

, we present the second pre-calculation method.

M2 M1

∀z ∈ {1,
2, . . . , F} M2[z]

O(Davg
2) M2[z]

z

Gacc M2[z] O(Davg
3)

M2

O(Davg
3 × F)

O(Davg
3 × F 3) M1

M2 O(Davg
2 × F)

O(Davg
2 × F 2) M1

For the second pre-calculation method, in the pre-

processing stage, an array set , instead of , is

created and stored in the main memory.

, and is a matrix, whose size is

. stores all door-to-door indoor dis-

tances, where doors are all on the -th floor. A

method similar to the Floryd algorithm can be used

to search on part of the extended accessibility base

graph , and can be gotten in . And

thus, the time overhead of getting the array in

the pre-processing stage is only , not

 for , and the total space overhead

of in the main memory is only , in-

stead of for .

In the indoor space, the layouts of staircases on

different floors are usually the same. Then

∀Da, Db ∈ D
Da Db

M2

, and the door-to-door indoor distance

from the door to the door can be gotten by us-

ing the array as shown below:

M1[a, b] = M2.d(Da, Db) =
M2[Da.f][a, b], if Da.f = Db.f,

min

{
M2[Da.f].D2S(Da, Sc)+

Sc.d(Da.f,Db.f)+
M2[Db.f].S2D(Sc, Db)|Sc ∈ S

}
, otherwise.

Da.f Da S

M2[Da.f].D2S(Da, Sc)

Da

Sc (Da.f)

M2[Db.f].S2D(Sc, Db)

Sc

(Db.f) Db

M2[Da.f].D2S(Da, Sc) M2[Db.f].S2D(Sc, Db)

M2[Da.f]

M2[Db.f]

Sc.d(Da.f,Db.f)

Sc (Da.f)

Sc (Db.f)

Sc Sc.d(Da.f,Db.f)

M2

M2.d(Da, Db) O(|S|) |S|
|S|

M2.d(Da, Db) O(1)

O(Davg
3 × F 3) O(Davg

3 × F)

O(Davg
2 × F 2) O(Davg

2 × F)

 denotes which floor the door is on. is the

set of all staircases in the indoor space.

 denotes the door-to-door in-

door distance from the door to the door of the

staircases on the -th floor. Similarly,

 is the door-to-door indoor dis-

tance from the door of the staircases on the

-th floor to the door . Obviously, both

 and can

be directly gotten from the matrices and

 in short and constant time, respectively.

 returns the indoor walking distance

from the door of staircases on the -th floor

to the door of staircases on the -th floor in

staircase . By pre-calculation, can

be also gotten in short and constant time. And thus,

for the second pre-calculation method, with the help

of the array , any door-to-door indoor distance

 can be gotten in , where is the

number of all staircases in the indoor space. Since

is usually quite small and can be considered to be a

constant, the time complexity of computing

 can be also considered as . At the

same time, the time cost and the occupied main mem-

ory about door-to-door indoor distances in the pre-

processing stage are reduced greatly from

 to and from

 to , respectively. Unless

otherwise noted, the second pre-calculation method,

instead of the first one, is used in the USP algorithm.

4.2 Semantic Information Encoding

Φ(Pik , Pjl)

Pik .SM

Pik

SM.AIL SM.ATL

As shown in the second limitation in Section 4, to

further reduce the time overhead and the time com-

plexity of computing the semantic similarity

, we propose a specfic encoding style named

Sematic Label Encoding (SL-encoding for short),

which is a little similar to one-hot encoding. For the

corresponding semantic information of a po-

tential indoor semantic path , we use SL-encoding

to encode each tuple in and . An

example of SL-encoding is shown in Fig.4. Each tuple

Hong-Bo Yin et al.: Indoor Uncertain Semantic Trajectory Similarity Join 1451

(ILx, ILTx) ∈ AIL ILx.V

|IL| TLy.V

|TL| (TLy, TLTy) ∈ ATL

ILx ILx.V

ILTx TLy TLy.V

TLTy ILx.V

TLy.V AIL

AIL.V |IL|
ATL.V |TL|

ATL

 is encoded as a vector ,

whose size is . And a vector , whose size is

, is used to encode each tuple .

The corresponding position of in is set to

. The corresponding position of in

is set to . And other positions in and

 are all set to 0. Then is encoded as a

vector , whose size is . And another vec-

tor , whose size is , is used to encode

.

∀u ∈ [1, |IL|], AIL.V [u] = Σ
(ILx, ILTx)∈AIL

ILx.V [u],

∀v ∈ [1, |TL|], ATL.V [v] = Σ
(TLy, TLTy)∈ATL

TLy.V [v].

AIL ATLAfter and are encoded by SL-encoding,

Definition 3 can be redefined as Definition 7.

Φ(Pik , Pjl) β ∈ [0, 1]

Pik Pjl

Definition 7. (Semantic Similarity Metric

). Given a parameter and two po-
tential indoor semantic paths of different indoor un-
certain sematic trajectories and ,

Φ(Pik , Pjl) = β×
Σ

ILx1∈IL
min{Pik .SM.ILT (ILx1

), Pjl .SM.ILT (ILx1
)}

Σ
ILx2

∈IL
max{Pik .SM.ILT (ILx2

), Pjl .SM.ILT (ILx2
)}
+

(1− β)×
Σ

TLy1
∈TL

min{Pik .SM.TLT (TLy1
), Pjl .SM.TLT (TLy1

)}

Σ
TLy2∈TL

max{Pik .SM.TLT (TLy2
), Pjl .SM.TLT (TLy2

)}

= β×
Σ

u1∈[1,|IL|]
min{Pik .SM.AIL.V [u1], Pjl .SM.AIL.V [u1]}

Σ
u2∈[1,|IL|]

max{Pik .SM.AIL.V [u2], Pjl .SM.AIL.V [u2]}
+

(1− β)×
Σ

v1∈[1,|TL|]
min{Pik .SM.ATL.V [v1], Pjl .SM.ATL.V [v1]}

Σ
v2∈[1,|TL|]

max{Pik .SM.ATL.V [v2], Pjl .SM.ATL.V [v2]}
.

(1)

β

AIL ATL

Parameter is to balance the weight between the sim-
ilarities of s and s.

AIL ATL AIL.V
ATL.V

Pik .SM.AIL Pik .SM.ATL Pjl .SM.AIL

Pjl .SM.ATL

Φ(Pik , Pjl)

Φ(Pik , Pjl)

O(|IL|2 + |TL|2) O(|IL|+ |TL|)

IUST Join(P,Q)

O((|PT |max
2
+ |IL|2 + |TL|2)× |τ |max

2 × |P| × |Q|)
O((|PT |max

2
+ |IL|+ |TL|)× |τ |max

2 × |P| × |Q|)

After and are encoded into and

 by SL-encoding, respectively, it is quite obvi-

ous that , , ,

and all need to be scanned only once in

the calculation of the semantic similarity .

And thus, the time complexity of computing the se-

mantic similarity is reduced greatly from

 to . And because of

these, the time complexity of the USP algorithm com-

puting - can be reduced from

 to

.

AIL.V ATL.V
Iidx T idx AIL.V ATL.V

Iidx T idx

Φ(Pik , Pjl)
Iidx T idx

i
Iidx T idx i
AIL.V ATL.V

i AIL.V ATL.V

With consideration of that most positions in

 and are set 0, we propose two indexs

named and to index and ,

respectively. With the help of and , the

time complexity of computing the semantic similarity

 can be further reduced. As an example

shown in Fig.4, and are two vectors, each

position of which stores a pointer. The -th pointer in

 (resp.) points to the -th position in

 (resp.). And the information stored by

the -th position in (resp.) is not 0.

Φ(Pik , Pjl)
Iidx T idx

Φ(Pik , Pjl)= β×(uSumI/dSumI) + (1−β)×(uSumT/

dSumT) uSumI dSumI

uSumT dSumT

Pik .SM.Iidx Pjl .SM.Iidx

Iidx.size()

Tidx.size()
Iidx

T idx SumRestI()

SumRestT ()

As shown in Algorithm 3, the PUI algorithm

shows the process of calculating in detail

by using both and . Some variables are

firstly initialized (line 1), and we want to get

 finally. and can be gotten by

following lines 2–24. And in a similar manner,

 and can be gotten by following lines

25–48. Each element of and

is scanned one by one (lines 2–24). and

 in line 2, line 4, line 26 and line 28 are to

get the sizes of the corresponding vectors and

, respectively. The functions in line

21 and in line 45 are respectively de-

fined as:

Apple KFC OPPO Starbuck

0 0 0 0 0

IL:

(Nike, 64 Ts)

(Apple, 128 Ts)

Nike

0 0 0 0 0

0 0 0

+ + + + + +

= = ====

0 0 0 0 0

+ + + + + +

(Huawei, 256 Ts)

+

+

=

Huawei

1 2 4
Iidx


V

256 Ts

256 Ts

64 Ts

64 Ts128 Ts

128 Ts

...

...

...

...

...

...

P11 .SM.AIL ∆TFig.4. SL-encoding for in Table 3. is the sampling time interval of the indoor position system.

1452 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

Algorithm 3. PUI Algorithm

Pik Pjl

β ∈ [0, 1]

Input: two potential indoor semantic paths and , and the

 parameter defined in Definition 3 and Definition 7

Φ(Pik , Pjl) Pik Pjl
Output: , the semantic similarity between and

Ii← 1 Ij ← 1 uSumI ← 0 dSumI ← 01: , , ,

Ii ⩽ Pik .SM.Iidx.size()2: while do

IdxIi← Pik .SM.Iidx[Ii]3: 　　

Ij ⩽ Pjl .SM.Iidx.size()4: 　　while do

IdxIj ← Pjl .SM.Iidx[Ij]5: 　　　　

IdxIi > IdxIj6: 　　　　if then

dSumI ← dSumI + Pjl .SM.AIL.V [IdxIj]7: 　　　　　　

Ij ← Ij + 18: 　　　　　　

IdxIi = IdxIj9: 　　　　else if then

uSumI ← uSumI +min{Pik .SM.AIL.V [IdxIi],

Pjl .SM.AIL.V [IdxIj]}
10: 　　　　　　

dSumI ← dSumI +max{Pik .SM.AIL.V [IdxIi],

Pjl .SM.AIL.V [IdxIj]}
11: 　　　　　　

Ii← Ii+ 1 Ij ← Ij + 112: 　　　　　　 ,

13: 　　　　　　break

14: 　　　　else

dSumI ← dSumI + Pik .SM.AIL.V [IdxIi]15: 　　　　　　

Ii← Ii+ 116: 　　　　　　

17: 　　　　　　break

18: 　　　　end if

19: 　　end while

Ij = Pjl .SM.Iidx.size() + 120: 　　if then

dSumI ← dSumI + SumRestI(Pik .SM, Ii)21: 　　　　

22: 　　end if
23: end while

dSumI ← dSumI + SumRestI(Pjl .SM, Ij)24:

Ti← 1 Tj ← 1 uSumT ← 0 dSumT ← 025: , , ,

Ti ⩽ Pik .SM.T idx.size()26: while do

IdxT i← Pik .SM.T idx[Ti]27: 　　

Tj ⩽ Pjl .SM.T idx.size()28: 　　while do

IdxTj ← Pjl .SM.T idx[Tj]29: 　　　　

IdxT i > IdxTj30: 　　　　if then

dSumT ← dSumT + Pjl .SM.ATL.V [IdxTj]31: 　　　　　　

Tj ← Tj + 132: 　　　　　　

IdxT i = IdxTj33: 　　　　else if then

uSumT ← uSumT +min{Pik .SM.ATL.V [IdxT i],

Pjl .SM.ATL.V [IdxTj]}
34: 　　　　　　

dSumT ← dSumT +max{Pik .SM.ATL.V [IdxT i],

Pjl .SM.ATL.V [IdxTj]}
35: 　　　　　　

Ti← Ti+ 1 Tj ← Tj + 136: 　　　　　　 ,

37: 　　　　　　break

38: 　　　　else

dSumT ← dSumT + Pik .SM.ATL.V [IdxT i]39: 　　　　　　

Ti← Ti+ 140: 　　　　　　

41: 　　　　　　break

42: 　　　　end if

43: 　　end while

Tj = Pjl .SM.T idx.size() + 144: 　　if then

dSumT ← dSumT + SumRestT (Pik .SM, T i)45: 　　　　

46: 　　end if
47: end while

dSumT ← dSumT + SumRestT (Pjl .SM, Tj)48:

β × (uSumI/dSumI) + (1− β)× (uSumT/dSumT)49: return

SumRestI(SM, Ii) =
SM.Iidx.size()∑

z=Ii

SM.AIL.V [SM.Iidx[z]],

SumRestT (SM, Tj) =
SM.Tidx.size()∑

z=Tj

SM.ATL.V [SM.T idx[z]].

|Iidx|max |Tidx|max

Iidx T idx

|Iidx|max << |IL| |Tidx|max << |TL|
Iidx T idx

Pik .SM.Iidx Pjl .SM.Iidx Pik .SM.T idx

Pjl .SM.T idx

Φ(Pik , Pjl)

Φ(Pik , Pjl)

O(|IL|2 + |TL|2) O(|Iidx|max+

|Tidx|max)

IUST Join(P,Q)

O((|PT |max
2
+ |IL|2 + |TL|2)× |τ |max

2 × |P| × |Q|)
O((|PT |max

2
+ |Iidx|max+ |Tidx|max)× |τ |max

2 × |P|×
|Q|)

Φ(Pik , Pjl)

 and are used to denote the

maximal sizes of vectors and , respecti-

vely. Usually, , and .

With the help of indexs and , it is quite

clear that , , ,

and all need to be scanned only once by

the PUI Algorithm in the calculation of semantic sim-

ilarity . And thus, by using the PUI Algo-

rithm, the time complexity of computing is

further reduced from to

. Thus, the time complexity of computing

- can be also further reduced from

 to

. Unless otherwise noted, the PUI Algorithm is

embedded in line 13 of Algorithm 2 to accelerate the

calculation of .

4.3 Three Acceleration Strategies

As shown in the third limitation in Section 4, the

time overhead of computing the spatial proximity be-

tween a pair of given indoor uncertain sematic trajec-

tories is still quite high. To address this, we present

three acceleration strategies embedded in the USP al-

gorithm, which is shown in Algorithm 2, to further re-

duce the time overhead.

The first acceleration strategy is combined with

the inverted index 3IST to form a more effective fil-

tering-and-verification framework. And by the USP

algorithm following such a framework, more invalid

indoor uncertain sematic trajectory pairs can be

pruned at quite low computation cost.

V isitedState |P| × |Q|
V isitedState

∃(τi, τj) ∈ P×Q |τi.KTL() ∩ τj.KTL()| ⩾ 2

V isitedState

IUS(τi τj)

 is a matrix whose size is ,

and each position in is initialized to 0

(line 2 of Algorithm 2). It is quite likely that

 and . And

the existence of is to prevent the re-

peated calculations of the indoor uncertain semantic

trajectory similarity metric , in such a case

(lines 6–10).

IUS(τi, τj)If there is an upper bound of of less

Hong-Bo Yin et al.: Indoor Uncertain Semantic Trajectory Similarity Join 1453

θ

(τi, τj)

Part1(τi, τj)

Part1(τi, τj) O(|PT |max
2 × |τ |max

2
)

IUS(τi, τj)

than , a threshold in Definition 6, then the indoor

uncertain sematic trajectory pair can be direct-

ly pruned without the complicated calculation of

 (line 15). Since the time complexity of

 is still high up to .

In the follows, we will introduce how to derive the up-

per bounds of .

UPart1()

Part1()

First, we can get an upper bound of

 at quite low computation cost.

Pik PjlTheorem 1. Given and , two potential in-
door semantic paths of different indoor uncertain se-
matic trajectories,

Θ(Pik , Pjl) ⩾ |Pik .PT.ST ()− Pjl .PT.ST ()|.

Θ(Pik , Pjl)

Pik .PT Pjl .PT

sub()

Pik .PT Pjl .PT

T ()

Θ(Pik , Pjl)

Pik .PT [M] Pjl .PT [N]

sub(Pik .PT [M], Pjl .PT [N])

|Pik .PT [M].T ()− Pjl .PT [N].T ()|
Θ(Pik , Pjl)

Proof. From Definition 2, the definition of the

spatial dissimilarity metric , we can see

that each element pair of and is one-

to-one matched by the function . For the un-

matched elements of and , the sum of

the corresponding result is contained in the final

result of . And for the matched pair

 and , in the function

, the difference

 is also contained in

the final result of . And thus, Theorem 1

can be easily gotten from these. □
Θ′()Then, for the the spatial proximity metric

defined in Definition 4, we can get that

Θ′(Pik .PT, Pjl .PT)

= (1− Θ(Pik , Pjl)

Pik .PT.ST () + Pjl .PT.ST ()
)

⩽ 2×min{Pik .PT.ST (), Pjl .PT.ST ()}
Pik .PT.ST () + Pjl .PT.ST ()

.

∀Pa, Pb ∈ usT, Pa.PT.ST () = Pb.PT.ST ()

Σ
Pik

∈τi
Σ

Pjl
∈τj

(Pik .L× Pjl .L) = 1

Since

and , then we can get

that (lines 15 and 13 of Algorithm 2)

part1 = Part1(τi, τj)

= Σ
Pik

∈τi
Σ

Pjl
∈τj

(Pik .L× Pjl .L×

Θ′(Pik .PT, Pjl .PT))

⩽ (Σ
Pik

∈τi
Σ

Pjl
∈τj

(Pik .L× Pjl .L))×

2×min{Pi1 .PT.ST (), Pj1 .PT.ST ()}
Pi1 .PT.ST () + Pj1 .PT.ST ()

=
2×min{Pi1 .PT.ST (), Pj1 .PT.ST ()}

Pi1 .PT.ST () + Pj1 .PT.ST ()

= UPart1(τi, τj) = upart1.

Part2()Second, an upper bound of is also needed.

∀Pik , Pjl Φ(Pik , Pjl) ∈ [0, 1]Obviously, , and . Thus, we

can also get that

Part2(τi, τj) = Σ
Pik

∈τi
Σ

Pjl
∈τj

(Pik .L× Pjl .L× Φ(Pik , Pjl))

⩽ 1× Σ
Pik

∈τi
Σ

Pjl
∈τj

(Pik .L× Pjl .L) = 1.

τi τj Part1()

Part2()

IUS(τi, τj) = α× Part1(τi, τj)+(1− α)× Part2(τi, τj).

θ

(τi, τj)

Part1(τi, τj) IUS(τi, τj)

α× upart1 + (1− α)

Φ()

Part2(τi, τj)

O((|Iidx|max + |Tidx|max)× |τ |max
2
)

Part1(τi, τj) O(|PT |max
2 × |τ |max

2
)

Part2(τi, τj)

Part1(τi, τj)

IUS(τi, τj) α× upart1 + (1− α)× part2

Part1(τi, τj)

Last, for two indoor uncertain sematic trajecto-

ries and , the upper bounds of and

 are used to get two upper bounds of

And in the USP algorithm shown in Algorithm 2, if a

derived upper bound is less than , a threshold de-

fined in Definition 6, the pair can be directly

pruned without the complicated calculation of

. The first upper bound of is

 (line 12). By using the PUI algo-

rithm shown in Algorithm 3 to computing func-

tions, the time overhead of , i.e.,

, is much lower than

that of , i.e., . And

thus, if the condition in line 12 is not satisfied, we

choose to calculate (line 13), instead of

 (line 15), to get the second upper bound

of is (line

14). By using these two conditions in line 12 and line

14, many invalid indoor uncertain sematic trajectory

pairs can be directly pruned at quite low computa-

tion cost without calculating the exact result of

.

Part1(τi, τj)If the complicated calculation of can-

not be avoided (line 14), both the second and the

third acceleration strategies are embedded in line 15

of the USP algorithm and used to accelerate the cal-

culation.

Part1(τi, τj) Θ(Pik , Pjl) ∀Pik ∈ τi
∀Pjl ∈ τj

The second acceleration strategy is to reuse part

of the calculated matrix. To get the result of

, we need to get (and

) first.

Θ(P11 , Pjl)

Θ(P12 , Pjl) P11 P12

|P11 .PT | = 0

|Pjl .PT | = 0 ∀x ∈ {1,
2, . . . , |P11 .PT |} ∀y ∈ {1, 2, . . . , |Pjl .PT |}

(x+ 1)

(y + 1) x P11 .PT

y Pjl .PT

Fig.5(a) and Fig.5(b) show the matrices used in

the dynamic programming to compute and

, respectively. And and are shown

in Table 3. Take the matrix shown in Fig.5(a) for ex-

ample. It is assumed that in the first

column and in the first row.

 and , and

the label on the -th column and the label on

the -th row are the -th triple of and

the -th triple of , respectively. And the time

interval in each label is omitted for simplicity. The

content of each position in the matrix is calculated by

1454 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

following the sequence of arrows.

τi
∀Pik , Pik′ ∈ τi Pik .PT

Pik′ .PT

P11 .PT P12 .PT

Pjl .PT

Θ(P11 , Pjl) Θ(P12 , Pjl)

Θ(P11 , Pjl)

Θ(P12 , Pjl)

Θ(P11 , Pjl)

For an indoor uncertain sematic trajectory ,

, potential indoor paths and

 usually share many common triples. For ex-

ample, and listed in Table 3 share the

first eight triples. Then for a same potential indoor

path , in the matrices used in the dynamic pro-

gramming to compute and , it is

quite clear that the contents of the positions in shad-

ow as shown in Fig.5(a) and Fig.5(b) are completely

the same. In other words, after computing ,

in the calculation of , the contents of the

positions in shadow can be directly copied from the

matrix, which is used in the dynamic programming to

compute without any extra calculations.

Part1(τi, τj)

PT Pik ∈ τi
Pjl ∈ τj

Part1(τ1, τj) Pjl .PT

Θ(P11 , Pjl)

Pjl .PT

Θ(P12 , Pjl)

P11 .PT P12 .PT 1 + 8 = 9

Pjl .PT

Θ(P12 , Pjl)

Θ(P12 , Pjl) H20

D22 Pjl .PT

In order to make full use of such a useful proper-

ty in the calculation of , we propose a

novel index storage structure for matrices named IM

built on each corresponding of and

. As an example shown in Fig.5(c), in the cal-

culation of , IM for is constantly

updated. After the calculation of , IM for

 is initialized to 11 columns with pointers,

which are shown in the top half of Fig.5(c). In the

calculation of , since the first eight triples

are shared by and , the first

columns of IM for are directly inserted into

the matrix of . After the calculation of

, another two columns labeled with

and of the matrix are inserted into IM for

for the next use, which is shown in the lower right

hand corner of Fig.5(c).

Part1(τi, τj)

Part1(τi, τj)

α× part1 + (1− α)× part2 ⩾ θ

Part1(τi, τj) ⩾
(θ − (1− α)× part2)/α LB

UB Part1(τi, τj)

The third acceleration strategy is to early termi-

nate the calculation of . The calculation

of in line 15 of Algorithm 2 is to verify

whether in line 16. In

other words, we want to know whether

. We define a lower bound

and an upper bound of , which are

calculated as follows:

∀τ ′
i ⊆ τi and ∀τ ′

j ⊆ τj, LB = Σ
Pik

∈τ ′
i

Σ
Pjl

∈τ ′
j

(Pik .L× Pjl .L×

Θ′(Pik .PT, Pjl .PT)),

UB = LB + Σ
(Pik

,Pjl
)∈((τi×τj)/(τ ′

i×τ ′
j))
(Pik .L× Pjl .L)×

2×min{Pi1 .PT.ST (), Pj1 .PT.ST ()}
Pi1 .PT.ST () + Pj1 .PT.ST ()

.

Part1(τi, τj)

LB

UB part1

LB UB part1
LB ⩾ (θ − (1− α)× part2)/

α UB < (θ − (1− α)× part2)/α LB ⩾ (θ − (1−
α)× part2)/α

UB < (θ − (1− α)× part2)/α

Part1(τi, τj)

τ ′
i τ ′

j

UB

LB

In the process of calculating , the progres-

sively larger lower bound and the progressively

smaller upper bound of are constantly gen-

erated. In this process, we check whether there exists

a lower bound or an upper bound of me-

eting the condition that

 or . If

, then the condition in line 16 must be

satisfied. And if , then

the condition in line 16 must not be satisfied. And

thus, the calculation of can be early ter-

minated, and the condition in line 16 can be deter-

mined directly. If the potential indoor paths with

greater likelihoods are selected in and , the

tighter upper bound and the tighter lower bound

 can be generated, and the third acceleration

strategy will be more effective in reducing the time

overhead.

21 21 20 24 23 23 20 22 22 22

1

2



(a)

(b)

(c)




21 21 20 24 23 23 20 22 20

20

22




21 21 20 24 23 23 20 22 22 22

22





 






1

2




 




 






1
2






...

...

Θ(P11 , Pjl)
Θ(P12 , Pjl)

Pjl .PT

Fig.5. Reuse of calculated matrix. (a)Matrix used in the dy-
namic programming to compute . (b) Matrix used
in the dynamic programming to compute . (c) In-
dex storage structure for matrices IM for .

Hong-Bo Yin et al.: Indoor Uncertain Semantic Trajectory Similarity Join 1455

O((|PT |max
2
+ |Iidx|max + |Tidx|max)× |τ |max

2 × |P| × |Q|)
O((|PT |max

2 × |D|2 + |IL|2 + |TL|2)× |τ |max
2×

|P| × |Q|)

In summary, by combining the acceleration strate-

gies presented in Subsection 4.1 and Subsection 4.2,

the time complexity of the USP algorithm is only

, in-

stead of

, the time complexity of the straightforward

baseline TII algorithm. Besides, by using the three ac-

celeration strategies proposed in Subsection 4.3, lots

of unnecessary calculations can be easily avoided in

the USP algorithm at quite low computation cost.

5 Experimental Evalution

IUST Join(P,Q)

In this section, the performances of our USP algo-

rithm on processing - is evaluated in

detail.

5.1 Experimental Setup

5.1.1 Datasets

×

As far as we know, there is no real dataset being

public or available, which contains indoor trajectories

in a shopping mall. And thus, as what has been done

in most related work[21, 22], a real-world floorplan③ of

a shopping mall is used. Each floor with 96 rooms,

four hallways, and four staircases takes 136.8

m 136.8 m. We decompose the irregular hallways in-

to smaller but regular indoor partitions. By duplicat-

ing such a floor, a multi-floor indoor space is generat-

ed, where each two adjacent floors are connected by

four stairways. Then on each floor, there are 148

doors or virtual doors, and 109 indoor partitions in

total. The detection ranges of all partitioning devices

cover all entrances and exits of indoor partitions. In

order to generate indoor uncertain semantic trajecto-

ries with different average number of potential in-

door semantic paths, the distribution and the num-

ber of presence devices on each floor are varied.

About the semantic information of the room in such

indoor space, each room is randomly assigned to one

IL, and each IL is associated with some TLs. These

ILs and TLs are obtained from the online informa-

tion of multiple shopping malls.

In order to generate indoor uncertain semantic

trajectories in such indoor space, lots of trajectories

are generated first by following the most commonly

used method named Vita[23]. Then, according to the

P Q T

distribution of static positioning devices, these trajec-

tories are transformed into the corresponding indoor

trajectories. Finally, 2 000 indoor uncertain semantic

trajectories are generated. There are 4.1 potential in-

door semantic paths on average in each indoor uncer-

tain semantic trajectory. And the average number of

indoor partitions and doors in each potential indoor

path is 64.9. In the following experiments, the testing

datasets of indoor uncertain semantic trajectories, i.e.,

, , and , with different sizes are all randomly se-

lected from these 2 000 generated indoor uncertain se-

mantic trajectories.

5.1.2 Experimental Environment

All methods are implemented in C++ and in a

main memory fashion. All evaluations are conducted

on a PC with a 3.60 GHz Intel® CoreTM i9-9900K

CPU and 32 GB RAM. Each experiment is repeated

over three times, and the average result is reported.

The parameter settings are listed in Table 4.

Table 4. Parameter Settings

Variable Range Default

α [0.1, 0.9] 0.3

F [2, 8] 7.0

I2T [1, 9] 5.0

|P| [50, 200] 200.0

|Q| [50, 200] 200.0

|T| [50, 200] 200.0

|IL| = |TL| [2 000, 10 000] 10 000.0

5.2 Performance Evaluation for

Algorithm USP

5.2.1 Impacts of the Number of Indoor

Uncertain Semantic Trajectories

IUST Join(P,Q) |P| |Q|
|P| |Q| P

Q

|P| |Q|

We first evaluate the total execution time of the

USP algorithm and the TII algorithm in processing a

query - w.r.t. varying or from

50 to 200. and are the sizes of the set and

, respectively. The results are reported in Fig.6. The

results show that the total execution time of the TII

algorithm increases nearly linearly with the increase

of or . And the USP algorithm is obviously

faster than the TII algorithm. By using the USP algo-

rithm, instead of the TII algorithm, at least 98.5% of

the total execution time can be easily saved. And the

1456 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

③https://www.deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86 396 406, Nov. 2024.

https://www.deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
https://www.deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
https://www.deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
https://www.deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
https://www.deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
https://www.deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
https://www.deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
https://www.deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
https://www.deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
https://www.deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
https://www.deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
https://www.deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
https://www.deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
https://www.deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
https://www.deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
https://www.deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
https://www.deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406

|P| |Q|

P Q

P
P

|P|

acceleration gets more obvious with the decrease of

 or . Besides, there is a key point needing fur-

ther discussion in Fig.6(a). As illustrated in Subsec-

tion 5.1.1, the sets (resp.) with different sizes are

all randomly selected from 2 000 generated indoor un-

certain semantic trajectories. And the set with size

of 100 is not necessarily a subset of the set with

size of 150. Thus as shown in Fig.6(a), the random-

ness of testing datasets most likely leads to that the

total execution time only increases a little after is

changed from 100 to 150.

IUST Join(P,Q)

TotalPairs

P×Q TotalPairs = |P| × |Q|
FilteredPairs

In the process of an - query, the

symbol represents the number of all in-

door uncertain semantic trajectory pairs in the candi-

date result set , i.e., .

And the symbol represents the num-

ber of invalid indoor uncertain semantic trajectory

pairs pruned by using the inverted index 3IST. Since

TotalPairs

F ilteredPairs

F ilteredPairs

TotalPairs

IUST Join(P,Q)

|P| |Q|

|P| |Q|

the inverted index 3IST is embedded in both the USP

algorithm and the TII algorithm, both

and are the same in the USP algo-

rithm and the TII algorithm. Then,

and of the USP algorithm are evaluated

in processing a query - w.r.t. vary-

ing or from 50 to 200, and the results are

shown in Fig.7. By just using the inverted index

3IST, it is quite obvious that most invalid pairs of in-

door uncertain semantic trajectories are pruned at

quite low computation cost. Only at most 1.3% of all

potential indoor uncertain semantic trajectory pairs

left need to be further checked. Besides for 3IST, with

the variation of or , the pruning ratio of in-

valid indoor uncertain semantic trajectory pairs is

quite stable.

After that, we want to analyze the total execu-

tion time of the USP algorithm and the TII algo-

50 100 150 200
0

2

4

6

8

10

2 378.2

4 918.0
5 221.6

8 607.8

4.5 11.9 33.2 121.5

||

TII USP TII USP

(a)

50 100 150 200

||

(b)

2 113.8

3 709.6

5 647.0

8 607.8

2.8 10.7 32.1 121.5

T
o
ta

l
E
x
e
c
u
ti
o
n
 T

im
e
 (

s)
103

0

2

4

6

8

10

T
o
ta

l
E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

103

|P| |Q| |P| |Q|Fig.6. Evaluation of the total execution time: varying or . (a) Varying . (b) Varying .

50 100 150 200

||

(a)





50 100 150 200

||

(b)

0

1

2

3

4

5

10 000

20 000

30 000

40 000

9 870

19 729

29 624

39 470





10 000

20 000

30 000

40 000

9 900

19 773

29 618

39 470

104104

N
u
m

b
e
r

o
f
T
ra

je
c
to

ry
 P

a
ir
s

0

1

2

3

4

5

N
u
m

b
e
r

o
f
T
ra

je
c
to

ry
 P

a
ir
s

|P| |Q| |P| |Q|Fig.7. Evaluation of the inverted index 3IST: varying or . (a) Varying . (b) Varying .

Hong-Bo Yin et al.: Indoor Uncertain Semantic Trajectory Similarity Join 1457

IUST Join(P,Q)

Θ() Φ()

Θ() Φ()

Θ()

Φ()

|P| |Q|

Θ()

Θ()

Φ()

rithm in detail. As defined in Definition 4 and Defini-

tion 5, to process an - query, many

times of and functions need to be executed in

both the USP algorithm and the TII algorithm. We

divide the total execution time of the USP algorithm

or the TII algorithm into three main parts, i.e., the

execution time of functions, functions, and

all the other parts. For both the USP algorithm and

the TII algorithm, we evaluate the corresponding ra-

tios of the the execution time of all functions, the

execution time of all functions and the execution

time of all the other parts to the total execution time

w.r.t. varying or , and the results are reported

in Fig.8. For both the USP algorithm and the TII al-

gorithm, the execution of functions consumes ex-

tremely large part of the total execution time. This

indicates that the calculation of is quite time-con-

suming. The execution time of all the other parts is

always a little longer than that of . For the TII al-

gorithm, the corresponding ratios of the three main

Φ()

Θ()

|P| |Q|
Θ()

|P| |Q|

Θ()

parts are all relatively stable. And the execution time

of and all the other parts only take up less than

0.1% of the total execution time. For the USP algo-

rithm, the corresponding ratio of functions gets

much higher with the increase of or . Thus, we

have reason to suspect that much more functions

need to be executed in the USP algorithm with the

increase of or . Such a guess will be verified in

the following experiments. For the execution time of

 functions, the corresponding ratio in the execu-

tion of the TII algorithm is always a little higher than

that in the execution of the USP algorithm.

Θ()

Θ()

|P| |Q|

To further figure out why the USP algorithm on-

ly needs no more than 1.5% of the total execution

time that the TII algorithm needs, and for the TII al-

gorithm, why the corresponding ratio of is al-

ways a little higher than that in the execution of the

USP algorithm, the number of the executed func-

tions is evaluated w.r.t. varying or , and the

results are reported in Fig.9. It can be easily seen that

99.929% 99.932% 99.914% 99.933%

0.014% 0.015% 0.017% 0.015%

0.057% 0.053% 0.069% 0.052%

R
a
ti
o
 (

%
) Others

99.872% 99.913% 99.917% 99.933%

0.014% 0.016% 0.016% 0.015%

0.114%
0.071% 0.067% 0.052%

85.496% 89.871% 94.478% 97.978%

0.018% 0.014%
0.006%

0.003%

14.486% 10.115%
5.516%

2.020%

58.141%
85.894% 94.349% 97.978%

0.026%
0.013%

0.006%
0.003%

41.832%

14.093%
5.644%

2.020%

102

101

100

10-1

10-2

R
a
ti
o
 (

%
)

102

101

100

10-1

10-2

R
a
ti
o
 (

%
)

102

101

100

10-1

10-2

10-3

R
a
ti
o
 (

%
)

102

101

100

10-1

10-2

10-3

50 100 150 200

||

(a)

50 100 150 200

||

(b)

50 100 150 200

||

(c)

50 100 150 200

||

(d)

Q F
OthersQ F

OthersQ F OthersQ F

|P| |Q| |P| |Q|
|P| |Q|

Fig.8. Evaluation of three ratios: varying or . (a) The TII algorithm: varying . (b) The TII algorithm: varying . (c) The
USP algorithm: varying . (d) The USP algorithm: varying .

1458 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

Θ()

Θ()

Θ()

|P| |Q| Θ()

|P| |Q| Θ()

Fig.6(a) and Fig.9(a) are quite similar, and so do

Fig.6(b) and Fig.9(b). This indicates that for both the

TII algorithm and the USP algorithm, the number of

the executed functions determines the total exe-

cution time to a great extent. And much fewer

functions needing to be executed make the USP algo-

rithm need much less execution time than the TII al-

gorithm. Besides, for the three acceleration strategies

presented in Subsection 4.3, though their abilities of

avoiding functions to be executed are always re-

markable, their such abilities decrease a little with the

increase of or . Much more functions need

to be executed in the USP algorithm with the in-

crease of or . In addition, how many func-

tions to be executed can be avoided by using either of

the three acceleration strategies presented in Subsec-

tion 4.3 will be studied in detail by using extensive

experiments later in Subsection 5.2.4.

5.2.2 Impacts of Pre-Calculation for Door-to-

Door Indoor Distances

Θ()

F

The calculation of function is time-consuming,

and we find that there are lots of repeated calcula-

tions of door-to-door indoor distances. Thus, we pro-

pose the first and the second pre-calculation methods

in Subsection 3.3 and Subsection 4.1, respectively, to

make door-to-door indoor distances pre-calculated to

reduce the time cost. For these two methods, we eval-

uate the pre-calculation time w.r.t. the various total

number of floors in the shopping mall. From the

results shown in Fig.10, we find the first method al-

ways needs more pre-calculation time than the sec-

ond one. In addition, the pre-calculation time of the

O(Davg
3×

F 3) O(Davg
3 × F)

first one grows quite faster and that of the second one

grows nearly linearly. These phenomena are matched

with the corresponding time complexities

 and , respectively.

In the following experiment, it is assumed that the

pre-calculation time is also considered in the process

of IUST-Join. The following four exection time met-

rics are used.

USP● : the exection time of the USP algorithm,

where part of door-to-door indoor distances have been

pre-calculated by the second pre-calculation method;

USP_A● : the exection time of the USP algo-

rithm, where all door-to-door indoor distances have

been pre-calculated by the first pre-calculation

method;

USP&SP USP● : the sum of and the pre-calcu-

lation time of the second pre-calculation method;

USP_A&FP USP_A● : the sum of and the pre-

calculation time of the first pre-calculation method.

0

2

4

6

8

10

2 232

4 712

5 664

8 404

1 2 9 36
0

2

4

6

8

10

1 936

3 848

6 028

8 404

1 2 9 36

50 100 150 200
||
(a)

TII USP TII USP

50 100 150 200
||

(b)

N
u
m

b
e
r

o
f
E
x
e
c
u
te

d
 Q

(
)

F
u
n
c
ti
o
n
s

N
u
m

b
e
r

o
f
E
x
e
c
u
te

d
 Q

(
)

F
u
n
c
ti
o
n
s

103 103

Θ() |P| |Q| |P| |Q|Fig.9. Evaluation of the number of the executed functions: varying or . (a) Varying . (b) Varying .

2 3 4 5 6 7 8

1.2

0.9

0.6

0.3

0.0

1.5



First Second

P
re
-
C

a
lc

u
la

ti
o
n
 T

im
e
 (

s)

103

FFig.10. Evaluation of the pre-calculation time: varying .

Hong-Bo Yin et al.: Indoor Uncertain Semantic Trajectory Similarity Join 1459

F

IUST Join(P,Q) |P| |Q|

USP_A USP

The total number of floors is fixed as 7. Then

we evaluate the execution time on processing an

- query w.r.t. varying or from

50 to 200, and the results are reported in Fig.11. It

can be found that by using the first pre-calculation

method to make all door-to-door indoor distances pre-

calculated, is a little less than , where

only part of the door-to-door indoor distances have

been pre-calculated. However, when the correspond-

ing pre-calculation time is also considered as part of

the total exection time, for one IUST-Join query, us-

ing the USP algorithm with part of door-to-door in-

door distances pre-calculated by the second pre-calcu-

lation method is much more time-saving than using

the USP algorithm with all door-to-door indoor dis-

tances pre-calculated by the first pre-calculation

method. This means that if a limited number of

IUST-Join queries need to be processed, the USP al-

gorithm is more preferred.

IUST

Join(P,Q) |P| = 50 |Q| = 200

We also try to use the USP algorithm to process

one IUST-Join query, where none of door-to-door in-

door distances has been pre-calculated. This algo-

rithm is used to process the same query -

, where and . However,

this algorithm is too time-consuming to get the final

result in five days. Thus, we choose to stop the exper-

iment. To conclude, considering the consumed time,

the USP algorithm is completely infeasible when the

door-to-door indoor distances are not pre-calculated.

5.2.3 Impacts of Semantic Information Encoding

In the following experiments, we evaluate the fol-

lowing three methods.

Φ()

● USP. It is the USP algorithm introduced de-

tailedly in Section 4. And each semantic similarity

 function is calculated by using the PUI algo-

rithm, i.e., Algorithm 3.

Φ()

● USP\SL. It is the USP algorithm where the se-

mantic information of indoor uncertain semantic tra-

jectories is not encoded by SL-encoding, and each se-

mantic similarity function is computed by using a

naive method.

Φ()

● USP\PUT. It is the USP algorithm where the

semantic information of indoor uncertain semantic

trajectories is encoded by SL-encoding, and each se-

mantic similarity function is calculated by follow-

ing (1).

Φ() I2T

Φ()

O(|Iidx|max + |Tidx|max)

I2T

I2T

|IL| |TL|

As introduced in Subsection 2.2, each room re-

lates to only one IL, and each IL is associated with a

set of TLs. In this experiment, we evaluate the aver-

age execution time of a single semantic similarity cal-

culation w.r.t. varying , i.e., the number of

TLs associated with each IL ranges from 1 to 9, and

the results are shown in Fig.12(a). Obviously, the

PUI Algorithm is the fastest algorithm in computing

the semantic similarity . And by using the PUI

Algorithm, instead of the naive method in USP\SL,

up to 88.8% time can be saved in the semantic simi-

larity calculations. As analyzed in Subsection 4.2,

such a result is matched with that the time complexi-

ty of the PUI algorithm, i.e., .

And the time complexity of the PUI Algorithm is the

lowest. With the increase of , more TLs need to

be processed in the semantic similarity calculations.

Thus both USP and USP\SL are slower in semantic

similarity calculations. However, with the variation of

, USP\PUI performs quite stably. This is because

two vectors, whose sizes are and , respective-

322.3 329.7 351.0

439.4

1 058.3 1 059.8 1 064.2 1 081.2



_ _

 

_ _



320.7 328.6 350.0

439.4

1 058.0 1 059.8 1 064.5 1 081.2
1.2

1.0

0.8

0.6

0.4

0.2

0.0

103

T
o
ta

l
E
x
e
c
u
ti
o
n
 T

im
e
 (

s)















103

T
o
ta

l
E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

50 100 150 200

||

(a)

50 100 150 200

||

(b)

|P| |Q| |P| |Q|Fig.11. Evaluation of two pre-calculation methods: varying or . (a) Varying . (b) Varying .

1460 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

AIL ATL

I2T

Φ()

|IL| |TL|

ly, are used to encode and , respectively,

and the calculation of (1) is not sensitive to .

Thus in computing the semantic similarity ,

USP\PUI is sure to be sensitive to and ,

which is studied below.

Φ()

|IL| |TL|

Φ()

|IL| |TL|
O(|IL|+ |TL|)

|IL| |TL|
Φ()

|IL| |TL|

In this experiment, the average execution time of

a single semantic similarity calculation is also

evaluated w.r.t. varying and at the same

time, and the results are shown in Fig.12(b). The exe-

cution time of USP\PUI in computing the semantic

similarity grows nearly linearly with the increase

of and , which is matched with the corre-

sponding time complexity . And it is

obvious that both USP and USP\SL perform relative-

ly stably with the variation of and . In com-

puting the semantic similarity , though less execu-

tion time is needed by USP\PUI with the decrease of

 and , USP\PUI still consumes more time

than both USP and USP\SL. This is because for

|IL| |TL|
USP\PUI, much more calculations are needed in all

positions of and . And by using the PUI Al-

gorithm, instead of the naive method in USP\SL, up

to 83.7% time can be saved in the semantic similari-

ty calculations.

I2T |IL| |TL|

Φ()

Θ() Φ()

Φ()
I2T |IL| |TL|

Then we evaluate the total execution time of USP

and USP\SL in processing IUST-Join w.r.t. varying

, , and , and the results are reported in

Fig.13(a) and Fig.13(b), respectively. We can see that

by using the PUI algorithm instead of the naive

method, though the execution time of computing the

semantic similarity is reduced greatly, the re-

duced execution time in processing IUST-Join is quite

limited. To find out the reason, we divide the total

execution time into three main parts, i.e., the execu-

tion time of functions, functions and all the

other parts. Then the corresponding ratio of the exe-

cution time of functions to the total execution

time is evaluated w.r.t. varying , , and .

1 3 5 7 9



(a)

USP USP\SL

USP\PUI

USP USP\SL

USP\PUI

2 4 6 8 10

(b)

||=||

10-3

10-4

10-5

10-6

10-7

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s)

10-3

10-4

10-5

10-6

10-7

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s)

2.810-4

2.310-6

5.810-5
1.210-4 1.710-4 2.310-4 2.910-4

1.010-6 1.410-6 1.610-6 1.810-6

3.910-6
6.910-6 6.810-6

1.110-6 1.210-6 1.310-6 1.410-6
1.410-6

6.810-6 6.910-6
6.610-6 7.110-6

1.010-5
1.610-5

6.610-7

2.810-42.910-4 2.910-4
2.910-4

103

Φ() I2T |IL| |TL|Fig.12. Evaluation of the average execution time of a single function. (a) Varying . (b) Varying and .

USP USP\SL

USP USP\SL

1

150

120

90

60

30

0
3 5 7 9



(a)

2 4 6 8 10

(b)

103

T
o
ta

l
E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

150

120

90

60

30

0

T
o
ta

l
E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

||=||

I2T |IL| |TL|Fig.13. Evaluation of the total execution time. (a) Varying . (b) Varying and .

Hong-Bo Yin et al.: Indoor Uncertain Semantic Trajectory Similarity Join 1461

Φ()

Θ()

And the results are reported in Fig.14(a) and

Fig.14(b), respectively. It is quite clear that for ei-

ther the PUI algorithm or the naive method, the exe-

cution time of functions is far less than the total

execution time, which is also confirmed by the results

shown in Fig.8. In other words, if we want to reduce

the execution time of processing IUST-Join greatly,

more attention may need to be put in reducing the

execution time of functions.

5.2.4 Impacts of Three Acceleration Strategies

In the following experiments, we evaluate the fol-

lowing four methods.

● USP: the USP algorithm, which is intorduced

detailedly in Section 4;

● USP \First: the USP algorithm, but without us-

ing the first acceleration strategy presented in Subsec-

tion 4.3;

● USP \Second: the USP algorithm, but without

using the second acceleration strategy presented in

Subsection 4.3;

● USP\Third: the USP algorithm, but without us-

ing the third acceleration strategy presented in Sub-

section 4.3.

Θ()

α
α

Θ()

In the first experiment, the total execution time

and the number of executed functions of these

four methods are evaluated in processing IUST-Join,

w.r.t. varying the parameter from 0.1 to 0.9, where

the parameter is used in Definition 4. The results

are shown in Fig.15. The trends in Figs.15(a) and

15(b) are quite similar, which shows that the number

of functions needing to be executed determines

the total execution time to a great extent. With the

USP USP\SL USP USP\SL

1 3

0.10

0.08

0.06

0.04

0.02

0.00
5 7 9



(a)

R
a
ti
o
 (

%
)

0.10

0.08

0.06

0.04

0.02

0.00

R
a
ti
o
 (

%
)

2 4 6 8 10

(b)

103

||=||

Φ() I2T
|IL| |TL|

Fig.14. Evaluation of the corresponding ratio of the execution time functions to the total execution time. (a) Varying .
(b) Varying and .

0.1 0.3 0.5 0.7 0.9



0.1 0.3 0.5 0.7 0.9



(b)

20

15

10

5

0

(a)

USP
USP\First
USP\Second
USP\Third

USP
USP\First
USP\Second
USP\Third

6

5

4

3

2

1

0

T
o
ta

l
E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

N
u
m

b
e
r

o
f
E
x
e
c
u
te

d
 Q

(
)

F
u
n
c
ti
o
n
s

103 102

Θ() α
Θ()

Fig.15. Evaluation of the total execution time and the number of executed functions: varying . (a) Total execution time.
(b) Number of executed functions.

1462 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

α

Θ()

Θ()

Θ()

Θ()

Θ()

increase of , the importance of the spatial proximity

between two indoor uncertain semantic trajectories

increases in terms of the similarity metric IUS. And

thus, for the given IUST-Join, more functions

need to be executed in these four methods, which is

proved by Fig.15(b). Through analyzing the data, we

can get that by using the first and the third accelera-

tion strategies, at least 78.9% and 71.0% of the exe-

cuted functions can be avoided, and 89.9% and

79.7% of the total execution time can be easily saved

on average, respectively. In order to reduce the execu-

tion time of functions, the second acceleration

strategy is to reuse part of the calculated matrix. And

thus, for USP and USP\Second, the numbers of

functions needing to be executed are completely the

same. The results show that by using the second ac-

celeration strategy, 20.9% of the total execution time

can be saved on average. And the acceleration effect

of the second acceleration strategy on the execution

time of functions is studied in the follows.

Θ()
α

Θ()
α

We evaluate the average execution time of a sin-

gle function of USP and USP\Second w.r.t. vary-

ing from 0.1 to 0.9, and the results are reported in

Fig.16. By reusing part of the calculated matrix, on

average 20.5% of the average execution time of a sin-

gle function can be reduced. And with the de-

crease of , the acceleration effect of using the sec-

ond acceleration strategy is much more obvious.

0

1

2

3

4

5

6

4.05

3.31

3.88

4.63
4.29

5.73

4.69 4.63

5.23
5.09

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s)

0.1 0.3 0.5 0.7 0.9



USP USP\Second

Θ() α
Fig.16. Evaluation of the average execution time of a single

 function: varying .

6 Related Work

Indoor Space Data Model. Though indoor space

has smaller extents, distinct entities, such as doors,

walls, different kinds of rooms, hallways, and staircas-

Gacc

es, altogether form much more complex indoor topolo-

gy that constrains and enables the movements. And

thus, before the execution of queries in indoor space,

the conversion from the complex indoor space to an

indoor space data model is the most fundamental op-

eration. 3D models for indoor space were proposed by

[24], and they focus on topological relationships be-

tween indoor partitions. However, these models are

not able to support indoor distance calculations. In-

doorGML[25] and CityGML④ are two methods where

indoor space is described in XML. Recently, much

more attention is attracted by mapping the indoor

space to a graph, where the door-to-door graph[15] and

the extended accessibility base graph[16] are two com-

monly used methods. Graph algorithms can be adopt-

ed to search on such a graph to support various in-

door spatial queries, such as the indoor distance cal-

culation between two indoor positions. For the door-

to-door graph, each door is mapped to a graph vertex.

And there is a weighted edge between two vertexs if

and only if the corresponding doors belong to a same

indoor partition. The indoor distance between these

two doors is the weight on the corresponding edge.

For the extended accessibility base graph, each in-

door partition is represented as a graph vertex. And

there is an edge between two indoor partitions if and

only if these two indoor partitions share a same door.

In this paper, we choose to map the complex indoor

space to the extended accessibility base graph ,

since most recent work[16, 17] has adopted this method.

k

Queries in Indoor Space. Among location-based

services, route planning is always the most popular

and useful one. Recently, route planning in various in-

door venues such as airports, railway stations, and

shopping malls is increasingly needed and attracts

more attention. Some work has been done to support

various indoor navigations with different qualifica-

tions and qualifications, such as [17, 21]. As two kinds

of primitive, yet quite essential indoor queries, near-

est neighbor (NN) queries[16] and range queries[16, 26]

are to find the needed static indoor POIs (points of

interest). Besides, there are also some studies on on-

line indoor moving objects, such as distance-aware

spatial joins[27], snapshot NN search[15, 28], and con-

tinuous range monitoring[29]. Among them, the dis-

tance-aware spatial join is to find all such pairs of in-

door moving objects, i.e., the distance between each

pair of indoor moving objects is within a given dis-

tance. And thus, the distance-aware spatial join is

completely different from IUST-Join firstly defined in

Hong-Bo Yin et al.: Indoor Uncertain Semantic Trajectory Similarity Join 1463

④http://www.citygml.org/, Nov. 2024.

http://www.citygml.org/

this paper. IUST-Join can be used in a number of es-

sential indoor applications, such as friend recommen-

dation based on similar shopping interests, geo-text

data cleaning, keyword-aware indoor route recommen-

dation, trajectory near-duplicate detection, and so on.

Therefore, we choose to detailedly study and efficient-

ly process IUST-Join in this paper.

7 Conclusions

In this paper, we proposed the highly-efficient

USP algorithm to process a new essential query

named IUST-Join. The results of extensive experi-

ments showed the effectiveness and efficiency of the

USP algorithm on processing IUST-Join. By just us-

ing the inverted index 3IST embedded in the USP al-

gorithm, as invalid pairs, at least 98.7% of all poten-

tial indoor uncertain semantic trajectory pairs can be

pruned at quite low computation cost. Besides, by us-

ing our proposed USP algorithm to process IUST-

Join, instead of the well-designed baseline TII algo-

rithm, at least 98.5% of the execution time can be

easily saved. In future work, we will do more work on

how to efficiently process other useful queries on in-

door uncertain semantic trajectories.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Klepeis N E, Nelson W C, Ott W R, Robinson J P, Tsang

A M, Switzer P, Behar J V, Hern S C, Engelmann W H.

The National Human Activity Pattern Survey (NHAPS):

A resource for assessing exposure to environmental pollu-

tants. Journal of Exposure Science & Environmental Epi-

demiology, 2001, 11(3): 231–252. DOI: 10.1038/sj.jea.

7500165.

[1]

 Li F, Zhao C, Ding G, Gong J, Liu C, Zhao F. A reliable

and accurate indoor localization method using phone iner-

tial sensors. In Proc. the 2012 ACM Conference on Ubiq-

uitous Computing, Sept. 2012, pp.421–430. DOI: 10.1145/

2370216.2370280.

[2]

 Werner M. Indoor Location-Based Services -Prerequisites

and Foundations. Springer, 2014. DOI: 10.1007/978-3-319-

10699-1.

[3]

 Baba A I, Jaeger M, Lu H, Pedersen T B, Ku W S, Xie

X. Learning-based cleansing for indoor RFID data. In

Proc. the 2016 International Conference on Management

of Data, Jun. 2016, pp.925–936. DOI: 10.1145/2882903.

2882907.

[4]

 Niedermayer J, Züfle A, Emrich T, Renz M, Mamoulis N,

Chen L, Kriegel H P. Probabilistic nearest neighbor

queries on uncertain moving object trajectories. Proceed-

ings of the VLDB Endowment, 2013, 7(3): 205–216. DOI:

[5]

10.14778/2732232.2732239.

 Zhang C, Zhang K, Yuan Q, Peng H, Zheng Y, Hanratty

T, Wang S, Han J. Regions, periods, activities: Uncover-

ing urban dynamics via cross-modal representation learn-

ing. In Proc. the 26th Int. Conf. World Wide Web, Apr.

2017, pp.361–370. DOI: 10.1145/3038912.3052601.

[6]

 Xie X, Mei B, Chen J, Du X, Jensen C S. Elite: An elas-

tic infrastructure for big spatiotemporal trajectories. The

VLDB Journal, 2016, 25(4): 473–493. DOI: 10.1007/

s00778-016-0425-6.

[7]

 Chen L, Gao Y, Fang Z, Miao X, Jensen C S, Guo C. Re-

al-time distributed co-movement pattern detection on

streaming trajectories. Proceedings of the VLDB Endow-

ment, 2019, 12(10): 1208–1220. DOI: 10.14778/3339490.

3339502.

[8]

 Fang Z, Chen L, Gao Y, Pan L, Jensen C S. Dragoon: A

hybrid and efficient big trajectory management system for

offline and online analytics. The VLDB Journal, 2021,

30(2): 287–310. DOI: 10.1007/s00778-021-00652-x.

[9]

 Fang Z, Pan L, Chen L, Du Y, Gao Y. MDTP: A multi-

source deep traffic prediction framework over spatio-tem-

poral trajectory data. Proceedings of the VLDB Endow-

ment, 2021, 14(8): 1289–1297. DOI: 10.14778/3457390.

3457394.

[10]

 Shang S, Chen L, Wei Z, Jensen C S, Zheng K, Kalnis P.

Trajectory similarity Join in spatial networks. Proceed-

ings of the VLDB Endowment, 2017, 10(11): 1178–1189.
DOI: 10.14778/3137628.3137630.

[11]

 Shang Z, Li G, Bao Z. DITA: Distributed in-memory tra-

jectory analytics. In Proc. the 2018 International Confer-

ence on Management of Data, Jun. 2018, pp.725-740.

DOI: 10.1145/3183713.3183743.

[12]

 Faloutsos C, Ranganathan M, Manolopoulos Y. Fast sub-

sequence matching in time-series databases. In Proc. the

1994 ACM SIGMOD Int. Conf. Management of Data,

May 1994, pp.419–429. DOI: 10.1145/191839.191925.

[13]

 Yuan H, Li G. Distributed in-memory trajectory similari-

ty search and join on road network. In Proc. the 35th

IEEE International Conference on Data Engineering, Apr.

2019, pp.1262–1273. DOI: 10.1109/ICDE.2019.00115.

[14]

 Yang B, Lu H, Jensen C S. Probabilistic threshold k near-

est neighbor queries over moving objects in symbolic in-

door space. In Proc. the 13th International Conference on

Extending Database Technology, Mar. 2010, pp.335–346.
DOI: 10.1145/1739041.1739083.

[15]

 Lu H, Cao X, Jensen C S. A foundation for efficient in-

door distance-aware query processing. In Proc. the 28th

IEEE International Conference on Data Engineering, Apr.

2012, pp.438–449. DOI: 10.1109/ICDE.2012.44.

[16]

 Shao Z, Cheema M A, Taniar D, Lu H, Yang S. Efficient-

ly processing spatial and keyword queries in indoor

venues. IEEE Trans. Knowledge and Data Engineering,

2021, 33(9): 3229–3244. DOI: 10.1109/TKDE.2020.2964206.

[17]

 Dijkstra E W. A note on two problems in connexion with

graphs. Numerische Mathematik, 1959, 1(1): 269–271.
DOI: 10.1007/BF01386390.

[18]

 Liu S, Li G, Feng J. A prefix-filter based method for spa-

tio-textual similarity join. IEEE Trans. Knowledge and

Data Engineering, 2014, 26(10): 2354–2367. DOI: 10.1109/

[19]

1464 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

https://doi.org/10.1038/sj.jea.7500165
https://doi.org/10.1038/sj.jea.7500165
https://doi.org/10.1145/2370216.2370280
https://doi.org/10.1145/2370216.2370280
https://doi.org/10.1007/978-3-319-10699-1
https://doi.org/10.1007/978-3-319-10699-1
https://doi.org/10.1007/978-3-319-10699-1
https://doi.org/10.1007/978-3-319-10699-1
https://doi.org/10.1007/978-3-319-10699-1
https://doi.org/10.1007/978-3-319-10699-1
https://doi.org/10.1007/978-3-319-10699-1
https://doi.org/10.1007/978-3-319-10699-1
https://doi.org/10.1007/978-3-319-10699-1
https://doi.org/10.1145/2882903.2882907
https://doi.org/10.1145/2882903.2882907
https://doi.org/10.14778/2732232.2732239
https://doi.org/10.1145/3038912.3052601
https://doi.org/10.1145/3038912.3052601
https://doi.org/10.1145/3038912.3052601
https://doi.org/10.1007/s00778-016-0425-6
https://doi.org/10.1007/s00778-016-0425-6
https://doi.org/10.1007/s00778-016-0425-6
https://doi.org/10.1007/s00778-016-0425-6
https://doi.org/10.1007/s00778-016-0425-6
https://doi.org/10.1007/s00778-016-0425-6
https://doi.org/10.1007/s00778-016-0425-6
https://doi.org/10.1007/s00778-016-0425-6
https://doi.org/10.14778/3339490.3339502
https://doi.org/10.14778/3339490.3339502
https://doi.org/10.1007/s00778-021-00652-x
https://doi.org/10.1007/s00778-021-00652-x
https://doi.org/10.1007/s00778-021-00652-x
https://doi.org/10.1007/s00778-021-00652-x
https://doi.org/10.1007/s00778-021-00652-x
https://doi.org/10.1007/s00778-021-00652-x
https://doi.org/10.1007/s00778-021-00652-x
https://doi.org/10.14778/3457390.3457394
https://doi.org/10.14778/3457390.3457394
https://doi.org/10.14778/3137628.3137630
https://doi.org/10.1145/3183713.3183743
https://doi.org/10.1145/191839.191925
https://doi.org/10.1109/ICDE.2019.00115
https://doi.org/10.1145/1739041.1739083
https://doi.org/10.1109/ICDE.2012.44
https://doi.org/10.1109/TKDE.2020.2964206
https://doi.org/10.1007/BF01386390
https://doi.org/10.1109/TKDE.2013.83

TKDE.2013.83.

 Chen L, Shang S, Jensen C S, Yao B, Kalnis P. Parallel

semantic trajectory similarity join. In Proc. the 36th

IEEE International Conference on Data Engineering, Apr.

2020, pp.997–1008. DOI: 10.1109/ICDE48307.2020.00091.

[20]

 Liu T, Li H, Lu H, Cheema M A, Shou L. Towards

crowd-aware indoor path planning. Proceedings of the

VLDB Endowment, 2021, 14(8): 1365–1377. DOI: 10.

14778/3457390.3457401.

[21]

 Liu T, Feng Z, Li H, Lu H, Cheema M A, Cheng H, Xu J.

Shortest path queries for indoor venues with temporal

variations. In Proc. the 36th IEEE International Confer-

ence on Data Engineering, Apr. 2020, pp.2014–2017. DOI:

10.1109/ICDE48307.2020.00227.

[22]

 Li H, Lu H, Chen X, Chen G, Chen K, Shou L. Vita: A

versatile toolkit for generating indoor mobility data for re-

al-world buildings. Proceedings of the VLDB Endowment,

2016, 9(13): 1453–1456. DOI: 10.14778/3007263.3007282.

[23]

 Lee J. A spatial access-oriented implementation of a 3-D

GIS topological data model for urban entities. GeoInfor-

matica, 2004, 8(3): 237–264. DOI: 10.1023/B:GEIN.

0000034820.93914.d0.

[24]

 Kim J S, Yoo S J, Li K J. Integrating IndoorGML and

CityGML for indoor space. In Proc. Int. Symp. Web and

Wireless Geographical Information Systems, Apr. 2014,

pp.184–196. DOI: 10.1007/978-3-642-55334-9_12.

[25]

 Yuan W, Schneider M. Supporting continuous range

queries in indoor space. In Proc. the 11th International

Conference on Mobile Data Management, May 2010,

pp.209–214. DOI: 10.1109/MDM.2010.21.

[26]

 Xie X, Lu H, Pedersen T B. Distance-aware join for in-

door moving objects. IEEE Trans. Knowledge and Data

Engineering, 2015, 27(2): 428–442. DOI: 10.1109/TKDE.

2014.2330834.

[27]

 Xie X, Lu H, Pedersen T B. Efficient distance-aware

query evaluation on indoor moving objects. In Proc. the

29th IEEE International Conference on Data Engineering,

Apr. 2013, pp.434–445. DOI: 10.1109/ICDE.2013.6544845.

[28]

 Yang B, Lu H, Jensen C S. Scalable continuous range

monitoring of moving objects in symbolic indoor space. In

Proc. the 18th ACM Conference on Information and

Knowledge Management, Nov. 2009, pp.671–680. DOI: 10.

1145/1645953.1646039.

[29]

Hong-Bo Yin received his B.S. de-

gree in computer science and technolo-

gy from Harbin Institute of Technolo-

gy, Harbin, in 2018. He is currently

working toward his Ph.D. degree in

the Faculty of Computing, Harbin In-

stitute of Technology, Harbin. His re-

search interests include trajectory compression and

query processing on trajectories.

Dong-Hua Yang received his B.S.

M.S. and Ph.D. degrees from Harbin

Institute of Technology, Harbin, in

1999, 2003, and 2008, respectively. He

is a vice professor of the Faculty of

Computing and the Center of Analy-

sis, Measurement and Computing,

Harbin Institute of Technology, Harbin. His research in-

terests include big data management and analytics.

Kai-Qi Zhang received his B.S. and

Ph.D. degrees in computer science

from Harbin Institute of Technology,

Harbin, in 2013 and 2020, respectively.

He is currently a lecturer in the Facul-

ty of Computing, Harbin Institute of

Technology, Harbin. His main re-

search interests include query processing, massive data

management, and data-intensive computing.

Hong Gao received her B.S. and

M.S. degrees in computer science from

Heilongjiang University, Harbin, in

1988 and 1991, respectively. And she

received her Ph.D. degree in comput-

er science from Harbin Institute of

Technology, Harbin, in 2004. She is

currently a professor with the Center of Analysis, Mea-

surement and Computing, Harbin Institute of Technolo-

gy, Harbin. Her research interests include query process-

ing, sensor networks, and massive data management.

Jian-Zhong Li received his B.S. de-

gree from Heilongjiang University,

Harbin, in 1975. He is currently a pro-

fessor in Faculty of Computer Science

and Control Engineering, Shenzhen In-

stitute of Advanced Technology, Chi-

nese Academy of Sciences, Shenzhen.

His research interests include data management systems,

sensor networks, and data intensive computing.

Hong-Bo Yin et al.: Indoor Uncertain Semantic Trajectory Similarity Join 1465

https://doi.org/10.1109/TKDE.2013.83
https://doi.org/10.1109/ICDE48307.2020.00091
https://doi.org/10.14778/3457390.3457401
https://doi.org/10.14778/3457390.3457401
https://doi.org/10.1109/ICDE48307.2020.00227
https://doi.org/10.14778/3007263.3007282
https://doi.org/10.1023/B:GEIN.0000034820.93914.d0
https://doi.org/10.1023/B:GEIN.0000034820.93914.d0
https://doi.org/10.1007/978-3-642-55334-9_12
https://doi.org/10.1007/978-3-642-55334-9_12
https://doi.org/10.1007/978-3-642-55334-9_12
https://doi.org/10.1007/978-3-642-55334-9_12
https://doi.org/10.1007/978-3-642-55334-9_12
https://doi.org/10.1007/978-3-642-55334-9_12
https://doi.org/10.1007/978-3-642-55334-9_12
https://doi.org/10.1007/978-3-642-55334-9_12
https://doi.org/10.1007/978-3-642-55334-9_12
https://doi.org/10.1007/978-3-642-55334-9_12
https://doi.org/10.1007/978-3-642-55334-9_12
https://doi.org/10.1109/MDM.2010.21
https://doi.org/10.1109/TKDE.2014.2330834
https://doi.org/10.1109/TKDE.2014.2330834
https://doi.org/10.1109/ICDE.2013.6544845
https://doi.org/10.1145/1645953.1646039
https://doi.org/10.1145/1645953.1646039

	1 Introduction
	2 Preliminaries and Problem Statement
	2.1 Extended Accessibility Base Graph
	2.2 Indoor Uncertain Sematic Trajectory
	2.3 Indoor Uncertain Semantic Trajectory Similarity Metric IUS
	2.4 Problem Definition of IUST-Join

	3 Baseline the TII Algorithm
	3.1 Inverted Index 3IST
	3.2 TII Algorithm
	3.3 Two Efficient Acceleration Strategies Embedded in Algorithm TII
	3.4 Complexity Analysis of Algorithm TII

	4 Algorithm USP
	4.1 The Second Pre-Calculation Method
	4.2 Semantic Information Encoding
	4.3 Three Acceleration Strategies

	5 Experimental Evalution
	5.1 Experimental Setup
	5.1.1 Datasets
	5.1.2 Experimental Environment

	5.2 Performance Evaluation for Algorithm USP
	5.2.1 Impacts of the Number of Indoor Uncertain Semantic Trajectories
	5.2.2 Impacts of Pre-Calculation for Door-to-Door Indoor Distances
	5.2.3 Impacts of Semantic Information Encoding
	5.2.4 Impacts of Three Acceleration Strategies

	6 Related Work
	7 Conclusions
	Conflict of Interest
	References

