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Abstract    With the widespread deployment of indoor positioning systems, an unprecedented scale of indoor trajectories

is being produced. By considering the inherent uncertainties and the text information contained in such an indoor trajecto-

ry, a new definition named Indoor Uncertain Semantic Trajectory is defined in this paper. In this paper, we focus on a new

primitive, yet quite essential query named Indoor Uncertain Semantic Trajectory Similarity Join (IUST-Join for short),

which is to match all similar pairs of indoor uncertain semantic trajectories from two sets. IUST-Join targets a number of

essential indoor applications. With these applications in mind, we provide a purposeful definition of an indoor uncertain

semantic trajectory similarity metric named IUS. To process IUST-Join more efficiently, both an inverted index on indoor

uncertain semantic trajectories named 3IST and the first acceleration strategy are proposed to form a filtering-and-verifi-

cation framework, where most invalid pairs of indoor uncertain semantic trajectories are pruned at quite low computation

cost. And based on this filtering-and-verification framework, we present a highly-efficient algorithm named Indoor Uncer-

tain Semantic Trajectory Similarity Join Processing (USP for short). In addition, lots of novel and effective acceleration

strategies are proposed and embedded in the USP algorithm. Thanks to these techniques, both the time complexity and

the time overhead of the USP algorithm are further reduced. The results of extensive experiments demonstrate the superi-

or performance of the proposed work.

Keywords    filtering-and-verification framework, indoor uncertain semantic trajectory, inverted index, trajectory simi-

larity join

 
 

1    Introduction

For  people  in  different  countries  and  continents,

approximately  87%  of  our  lives  are  spent  in  indoor

space,  such  as  shopping  malls,  airports,  and  office

buildings, which is disclosed by multiple studies[1]. For

example, there are over 100 million passengers board-

ing at Beijing Capital International Airport in 2018①.

Thus,  quite  a few movements of  individuals  are con-

tained  in  such  indoor  space.  What  is  more,  the  past

few years  have  witnessed  the  great  breakthroughs  in

indoor position technologies[2] and the widespread de-

ployment of indoor positioning systems. Driven by the

above  key  factors,  an  unprecedented  scale  of  indoor

trajectories  is  being  produced.  Such  indoor  trajecto-

ries can serve as a foundation for a wide variety of in-

door applications, which are expected to boom in the

coming years②[3].

In  indoor  space,  an  indoor  positioning  system  is

commonly used to track the positions of indoor mov-
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U1 χ1 = [(p26, t1, t101), (p21, t257,

t260), (p24, t270, t274), (p23, t338, t341),(p22, t350, t354), (p22,

t482, t485)] (p, ts, te)

U1

p

[ts, te]

ing  users  to  generate  indoor  trajectories[4].  The  posi-

tions of an indoor moving user are captured by the in-

door  positioning  system  when  it  is  in  the  detection

ranges  of  static  positioning  devices  (e.g.  RFID  sen-

sors or bluetooth base stations) distributed in indoor

space[5] as shown in Fig.1. It is a relatively simple ex-

ample of a shopping mall with one floor, and this ex-

ample  is  used  for  illustration  throughout  this  paper.

For an indoor moving user, a sequence of static posi-

tioning  devices  ordered  by  the  timestamps  is  called

the  indoor  trajectory  generated  by  the  indoor  posi-

tioning  system.  For  example,  the  generated  indoor

trajectory  of  user  is 

 

.  And  each  tuple  in  such  an  in-

door trajectory records that  was under the detec-

tion  range  of  the  static  positioning  device  in  the

closed time interval .

χ1

There  are  inherent  uncertainties  in  indoor  trajec-

tories  generated  by  using  such  an  indoor  positioning

system. In general,  because  of  the limited number of

static  positioning  devices,  the  whole  indoor  space  is

unable  to  be  entirely  covered  by  detection  ranges  of

all  static  positioning devices.  Due to the discreteness

of  detection  ranges,  the  positions  of  an  indoor  mov-

ing  user  between  two  successive  tracking  events  are

not  avaliable[5].  And  combined  with  the  quite  com-

plex indoor topology, more than one potential indoor

path  may  be  inferred.  Let  us  take  the  generated  in-

door  trajectory  for  example.  In  the open time in-

(t274, t338) U1

H20 R23

p24 p23

(t354, t482) U1 H20

R22 2× 2 = 4

U1 χ1

terval ,  user  might  go  through  hallway

 or  room  from  the  detection  range  of  static

positioning device  to that of . And in the open

time interval ,  might be in hallway 

or  room .  Thus,  we  can  infer  potential

indoor paths of user  from indoor trajectory .

PT χ1

R21 R22 R23

U1

As shown in multiple studies[6], knowledge extrac-

tion  from mobility  data  can  be  significantly  promot-

ed by considering the semantic information contained

in  mobility  data.  From a  semantic  trajectory  (i.e.,  a

text-embedded  trajectory),  we  can  know  not  only

where and when the indoor moving user has been, but

also what this user has done. For example, one poten-

tial  indoor  path  of  indoor  trajectory  passes

rooms ,  and ,  which  are  labeled  with

“Huawei”, “Apple”,  and “Nike”,  respectively.  From

this,  we  can  say  that  user  might  like  consumer

electronics and sportswear.

By  combining  the  inherent  uncertainties  in  in-

door  trajectories  and  semantic  information  in  poten-

tial indoor paths, we present a new definition named

Indoor Uncertain Semantic Trajectory. And given an

indoor trajectory and the indoor topology,  the corre-

sponding indoor uncertain sematic trajectory encodes

all potential indoor semantic paths of the indoor mov-

ing user, where each potential indoor semantic path is

a  sequence  of  rooms,  doors,  hallways,  and  staircases

ordered  by  the  corresponding  timestamps.  And  each

potential indoor semantic path is associated with the

corresponding sematic information and a likelihood.
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Fig.1.  Example of indoor space and static positioning device deployment.
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With  the  increasing  use  of  GPS-enabled  devices,

massive  outdoor  trajectories  are  continuously  grow-

ing at a high speed[7]. And nowadays, the analysis and

the  application  of  outdoor  trajectories  are  attracting

more  and  more  people's  attention,  such  as  [8–10].

Trajectory  similarity  join  on  outdoor  trajectories,

which serves as a primitive, yet quite essential query,

has been widely studied[11, 12]. In this paper, we study

a  new  essential  query  named  Indoor  Uncertain  Se-

mantic  Trajectory  Similarity  Join  (IUST-Join  for

short).  Given  two  sets  of  indoor  uncertain  semantic

trajectories  and , IUST-Join is to find all pairs of

indoor uncertain semantic trajectories from  and 

with spatio-textual similarity exceeding the given sim-

ilarity threshold . IUST-Join can serve as a quite es-

sential  query  in  a  number  of  indoor  application  sce-

narios, such as friend recommendation based on simi-

lar  shopping  interests,  keyword-aware  indoor  route

recommendation,  trajectory  near-duplicate  detection,

geo-text data cleaning, and so on.

Though various  trajectory  similarity  metrics[11, 13]

have been proposed, there is no “best” trajectory sim-

ilarity metric superior to all the others in terms of ac-

curacy, which has been proved through plenty of ex-

periments[14]. Each trajectory similarity metric has its

advantages and disadvantages, and how to choose the

most suitable one depends on the application scenar-

ios.  With  the  application  scenarios  of  IUST-Join  in

mind, we provide a purposeful definition of an indoor

uncertain semantic trajectory similarity metric named

IUS, where both spatial proximity and semantic simi-

larity  are  considered  to  determine  how  much  these

two indoor uncertain semantic trajectories are similar

to each other. The indoor distance between two posi-

tions is defined as the shortest walking Euclidean dis-

tance  in  the  indoor  space  by  considering  the  indoor

topology[15].  And for IUS, it is the first time that in-

door  distances  are  used  to  measure  the  spatial  prox-

imity between each pair of indoor uncertain semantic

trajectories.

In the computation, IUST-Join is far more compli-

cated  than  trajectory  similarity  join  on  outdoor  tra-

jectories.  Since  for  each  pair  of  indoor  uncertain  se-

mantic trajectories, to get their spatial proximity, the

spatial  proximities  between  all  pairs  of  potential

paths all need to be calculated. What is more, seman-

tic information of indoor uncertain semantic trajecto-

ries also needs to be considered in calculating the sim-

ilarity  between  each  pair  of  indoor  uncertain  seman-

tic trajectories. In addition, because of the pretty high

time  complexity  and  time  overhead,  using  a  brute

force approach to process IUST-Join is totally infeasi-

ble.  To  address  this,  we  propose  the  USP  algorithm

with lots of novel and effective acceleration strategies

embedded, which can reduce the time complexity and

accelerate the processing of IUST-Join greatly.

To  sum  up,  the  main  contributions  of  our  work

are listed as follows.

● By  considering  the  inherent  uncertainties  and

the text  information contained in indoor trajectories,

a  new  definition  named  Indoor  Uncertain  Semantic

Trajectory is proposed.

● We are the first to define and formalize a primi-

tive,  yet  quite  essential  similarity  join  query  on  in-

door  uncertain  semantic  trajectories,  which is  named

IUST-Join.  IUST-Join  targets  a  number  of  essential

indoor  applications.  And  with  these  applications  in

mind,  we  provide  a  purposeful  definition  of  the  in-

door  uncertain  semantic  trajectory  similarity  metric

named IUS.

● To  accelerate  the  computation  of  IUST -Join,

both an inverted index on indoor uncertain semantic

trajectories  named  3IST  and  the  first  acceleration

strategy are proposed to form a filtering-and-verifica-

tion  framework.  By  using  this  framework,  most  in-

valid  pairs  of  indoor  uncertain  semantic  trajectories

can be pruned at quite low computation cost.

● Based  on  this  filtering -and-verification  frame-

work,  we  present  the  USP  algorithm,  a  highly-effi-

cient algorithm in processing IUST-Join. In addition,

lots  of  novel  and  effective  acceleration  strategies  are

proposed  and  embedded  in  the  USP  algorithm.

Thanks  to  these,  both  the  time  complexity  and  the

time  overhead  of  processing  IUST-Join  are  reduced

greatly.

● Extensive  comparison  experiments  have  been

done,  and  the  results  demonstrate  superior  perfor-

mance  of  our  proposed  methods.  Besides,  it  is  con-

firmed that by using our proposed USP algorithm, in-

stead  of  the  well-designed  baseline  TII  algorithm,  to

process  IUST-Join,  at  least  98.5%  of  the  execution

time can be easily saved.

The rest of this paper is organized as follows. Sec-

tion 2 provides  the  formal  definitions  of  the  new  es-

sential  query  IUST-Join  and some basic  conceptions.

To  process  IUST-Join, Section 3 introduces  a  base-

line  method named the TII  algorithm. And the USP

algorithm with lots of novel and effective acceleration

strategies  embedded  is  introduced  detailedly  in Sec-

tion 4. Section 5 reports the experimental results and

Hong-Bo Yin et al.: Indoor Uncertain Semantic Trajectory Similarity Join 1443



analysis. Section 6 reviews related work, and Section 7

concludes this work. 

2    Preliminaries and Problem Statement

In  this  section,  how  to  map  the  indoor  space  to

the  extended  accessibility  base  graph,  a  mainstream

method  showing  the  complex  indoor  topology,  is  in-

troduced first. Then, the concept of the indoor uncer-

tain sematic trajectory is defined. After that, we pro-

pose an indoor uncertain semantic trajectory similari-

ty metric named IUS. Last, based on IUS, a new es-

sential query named IUST-Join is formally defined.

Table 1 lists  some key notations used throughout

this paper.
 
 

Table  1.    Key Notations

Symbol Meaning

IP Set of all indoor partitions

R ⊆ IP Set of all rooms

D Set of all doors

P Set of all static positioning devices

S Set of all staircases

IL Set of all identity labels

TL Set of all thematic labels

IP ∈ IP An indoor partition

D ∈ D A door

p ∈ P A static positioning device

R ∈ R A room

S ∈ S A staircase

H ∈ IP A hallway

[ts, te] ts teClosed time interval from  to 

(ts, te) ts teOpen time interval from  to 

∆T Sampling time interval

U An indoor moving user

F Total number of floors
  

2.1    Extended Accessibility Base Graph

Gacc

Recently, mapping the complex indoor space to an

extended accessibility base graph  and using such

a graph to process various queries in indoor space at-

tract much more attention, and are adopted by most

work[16, 17].

IP ∈ IP

Dk ∈ D
Dk.IP () {IPk1

∈ IP, IPk2
∈ IP}

IPk1
IPk2

Dk IPi ∈ IP

Some  notations  and  functions  to  be  used  in  the

follows  are  introduced  first.  An  indoor  partition

 is  used  to  indicate  a  hallway,  a  room  or  a

staircase. And each indoor partition is numbered dif-

ferently  in Fig.1.  Given  a  door ,  the  function

 returns  a  set ,  where

an indoor moving user can enter the indoor partition

 or  through .  And given ,  func-

IPi.D()

IPi

IPi.D() = {Dk ∈ D|IPi ∈ Dk.IP ()}
D24.IP () = {H20, R23} H20.D() = {D2,

D21, D22, D23, D24}

tion  gives  a  set  of  doors,  through  each  of

which  an  indoor  moving  user  can  directly  enter .

In  other  words, .

In Fig.1,  and 

.

Gacc = (V, E, E2D,

FD2D) vi ∈ V

IPi ∈ IP
ei, j ∈ E vi vj ∈ V

IPi IPj ∈ IP (i ̸= j)

E2D(ei, j) = IPi.D() ∩ IPi.D()

Gacc

Gacc

v40 v41 v50
H40 R41 S50

e20,23 v20 v23

H20 R23

D23 D24

The  extended  accessibility  base  graph  is  a  con-

nected  and  undirected  graph 

.  A  vertex  represents  the  corresponding

indoor  partition .  And  there  is  an  edge

 between two vertexs  and  iff an in-

door  moving  user  can  directly  move  between  the  in-

door partitions  and  through each

door  in  the  set .  Be-

sides,  can  be  easily  changed  to  be  a  directed

graph when some doors only permit the movements in

one direction, such as the security check points in an

airport. Fig.2 shows  the  corresponding  extended  ac-

cessibility base graph  of the indoor space shown

in Fig.1.  The  vertexs ,  and  represent  the

hallway , the room , and the staircase , re-

spectively.  The  edge  between  and  de-

notes  that  an  indoor  moving  user  can  directly  move

between  the  hallway  and  the  room  through

the door  or .
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Gacc V E

E2D

FD2D

Gacc ∀Di, Dj ∈ D(i ̸= j)

Di Dj

The above introduces that the indoor topology in-

formation  is  integrated  in  by  using ,  and

. Besides, to support distance-aware indoor que-

ries  (e.g.  nearest  neighbor  queries  or  shortest  dis-

tance queries),  some necessary indoor distances 

also need to be integrated into . ,

and the intra-partition door-to-door distance between

 and  is  calculated  according  to  the  following

two cases:
 

FD2D (Di, Dj, IPk)=


|Di, Dj|IPk

,
if IPk ∈ (Di.IP () ∩Dj.IP ()) ,
∞, otherwise,

IPk ∈ (Di.IP () ∩Dj.IP ()) Di

Dj

where  means  that  and

 are  the  different  doors  of  the  same  indoor  parti-
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IPk |Di, Dj|IPk

Di Dj

IPk

FD2D Gacc

Ds Dt

Ds Gacc

tion .  And  is  the  indoor  distance  be-

tween  doors  and  within  the  indoor  partition

,  where  the  indoor  distance  is  the  shortest  walk-

ing Euclidean distance in the indoor space. Thanks to

the  existence  of ,  is  able  to  support  dis-

tance-aware  queries.  For  example,  when  we  want  to

get  the  mininum  walking  distance  from  the  source

door  to the destination door ,  we can keep all

unvisited  doors  in  a  priority  queue,  and  expand  the

search from  on the graph  in a way similar to

the classical Dijkstra Algorithm[18]. 

2.2    Indoor Uncertain Sematic Trajectory

pk.DR()

pk ∈ P

p2

pi pi.D()

pi.DR()

pj pj.IP ()

pj p2

p21 p50 p2.D() = D2

p24.D() = D24 p16 p26 p35

p16.IP () = R11 p26.IP () = H20

As illustrated in Section 1, the positions of an in-

door moving user are captured by the indoor position-

ing system when it enters the detection ranges of stat-

ic  positioning devices.  denotes  the  detection

range  of  a  static  positioning  device .  In Fig.1,

the detection range of each static positioning device is

in green. Based on the positions in the indoor space,

static  positioning  devices  can  be  distinguished  into

two categories,  i.e.,  partitioning devices and presence

devices.  For  all  partitioning  devices,  their  detection

ranges  altogether  cover  all  entrances  and exits  of  in-

door  partitions,  which  means  that  an  indoor  moving

user cannot be undetected by any partitioning device

when it moves into another indoor partition. For par-

titioning  devices  whose  detection  ranges  altogether

cover  a  door  or  a  virtual  door,  they  are  all  set  to  a

same  notation.  For  instance,  three  partitioning  de-

vices are all named  in Fig.1. For a partitioning de-

vice ,  denotes the corresponding door or vir-

tual door which  covers. Different from parti-

tioning  devices,  presence  devices  simply  serve  to

record the presence of some indoor moving user in an

indoor partition.  Given a presence device , 

denotes the indoor partition where  is. In Fig.1, ,

,  and  are  all  partitioning devices. 

and .  And , ,  and  are  called

presence  devices.  and .

It  is  assumed  that  all  static  positioning  devices  de-

tect and report the positions of moving users simulta-

neously and periodically at a relatively high sampling

rate (i.e., the sampling time interval is quite short).

(U, p, t)

U

p t

Typically,  a  raw  detection  reading  of  static  posi-

tioning devices is a triple , which means that

indoor moving user  was under the detection range

of  static  positioning  device  at  timestamp .  In  the

process of generating indoor trajectories, all such raw

(U, p, ts, te)

U

p

[ts, te]

Ui

Ui

Ui

Ui

χi = [(pi1 , ts1, te1), (pi2 , ts2, te2), . . . , (pin , tsn, ten) ]

U1

χ1 = [ (p26, t1, t101), (p21, t257, t260), (p24,

t270, t274), (p23, t338, t341), (p22, t350, t354), (p22, t482, t485)]

[t1, t101] [t257, t260] [t270, t274]

[t338, t341] [t350, t354] [t482, t485] U1

U1

detection  readings  are  converted  into  multiple  track-

ing events in the form of . Such a track-

ing event means that indoor moving user  is under

the  detection  range  of  static  positioning  device  in

closed time interval .  All  such tracking events

are  stored  in  the  user  tracking  table  (UTT).  For  all

the tracking events of indoor moving user  in UTT,

in  the  corresponding  closed  time  intervals,  is  de-

fined  to  be  in  the  detected  state;  otherwise,  is  in

the  undetected  state.  The  sequence  of  all  tracking

events in UTT with the same user  ordered by the

timestamps  is  called  the  indoor  trajectory

.

Table 2 shows  an  example  of  UTT.  User '  indoor

trajectory  is 

.

In  closed  time  intervals , , ,

, , and ,  is in the detect-

ed state; otherwise,  is in the undetected state.
 
 

Table  2.    User Tracking Table

U p ts te

U1 p26 t1 t101

U1 p21 t257 t260

U1 p24 t270 t274

U1 p23 t338 t341

U1 p22 t350 t354

U1 p22 t482 t485

...
...

...
...

 

As  the  analysis  shown  in Section 1,  there  are  in-

herent  uncertainties  in  indoor  trajectories  generated

by using  such an indoor  positioning  system.  Besides,

from a semantic trajectory (i.e., text-embedded trajec-

tory), we can know not only where and when the in-

door moving user has been, but also what he/she has

done.  By combining  the  inherent  uncertainties  in  in-

door  trajectories  and  semantic  information  in  poten-

tial indoor paths, we present a new definition named

Indoor  Uncertain  Semantic  Trajectory,  which  is  for-

mally defined as follows.

τi χi

Ui

Gacc

χi τi = {Pik |k = 1, 2, 3, . . .}
Ui

Pik = (PT, SM, L)

PT

SM

Definition 1. (Indoor Uncertain Sematic Trajecto-

ry ). Given  an  indoor  trajectory  of  the  indoor
moving  user  and  the  extended  accessibility  base
graph , the corresponding indoor uncertain semat-
ic trajectory of  is , which
encodes all potential indoor semantic paths of . As
a potential indoor semantic path, 
consists of a potential indoor path  and the corre-
sponding  semantic  information  with  the  corre-
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Lsponding likelihood .
Pik .PT =

[(κ1, [ts1, te1]), (κ1.5, (te1, ts2)), (κ2, [ts2, te2]), . . . ,

(κn, [tsn, ten])]

κj ∈ (IP ∪ D) κj+0.5 ∈ IP (κj, tsj,

tej) Ui Ui

κj

[tsj, tej] (κj+0.5, tej, tsj+1)

Ui Ui

κj+0.5

(tej, tsj+1)

τ1 = {P1k |k = 1, 2, 3, 4}
χ1

U1 (t274, t338)

P11 .PT U1

R23 (t274, t338) [t270, t274] U1

U1 D24

In Definition 1, each potential indoor path 

 is a sequence of rooms, doors, hallways,

and  staircases  ordered  by  the  corresponding  times-

tamps, where  and . 

 means that  is in the detected state, and  is

in  the  indoor  partition  or  near  the  door  in  the

closed  time  interval .  And 

means that  is in the undetected state, and  is in the

indoor  partition  in  the  open  time  interval

. Table 3 shows  the  corresponding  indoor

uncertain sematic  trajectory 

of  the  indoor  trajectory .  The  indoor  moving  user

 is  in  the  undetected  state  in .  And  for

the  potential  indoor  path ,  is  in  the  room

 in . In ,  is in the detected

state, and  is sure to be near the door .

P
k
.SM Pik .PT

Rm.IL()

Rm IL.TLs()

IL

R22.IL() =

.TLs() =

{ . . .}

To introduce the corresponding semantic informa-

tion  of a potential indoor path , the se-

matic  information  contained  in  indoor  partitions  is

defined first. There are two types of sematic labels as-

sociated with each room, i.e.,  identity  label  (IL)  and

thematic  label  (TL).  Each  room  relates  to  only  one

IL,  and  each  IL  is  associated  with  a  set  of  TLs.  IL

refers to the specific name of a room, and TL is a tag

relevant  to  a  given  IL.  denotes  the  corre-

sponding  IL  of  the  room ,  and  returns

the corresponding TL set of the given . For exam-

ple,  in Fig.1 and Fig.3,  Apple,  a  famous

consumer  electronics  company.  And  Apple

laptop, smartphone, smartwatch, .  Since the se-

Ui

Ui Pik .SM Pik .SM

AIL ATL

matic information about passesd rooms can reflect the

interests of ,  all  ILs and TLs with the correspond-

ing lengthes of the time intervals about rooms, where

the  user  has  been,  are  stored  in . 

consists of  and , which are formally defined

as follows.
 

Pik .SM.AIL = {(ILx ∈ IL, ILTx)|ILTx =

Σ
(κj , tsj , tej)∈Pik

.PT
(tej − tsj)× ILx.Match(κj)+

Σ
(κj+0.5, tej , tsj+1)∈Pik

.PT
(tsj+1−tej)×ILx.Match(κj+0.5)},

 

Pik .SM.ATL = {(TLy ∈ TL, TLTy)|TLTy =

Σ
(ILx, ILTx)∈Pik

.SM.AIL

ILTx × TLy.Map(ILx)

ILx.TLs().size()
},

Input ∈ R Input.IL() = ILx ILx.Match

(Input) = 1 ILx.Match(Input) = 0 ILx.

TLs().size()

ILx.TLs() TLy ∈ ILx.TLs()

TLy.Map(ILx) = 1 TLy.Map(ILx) = 0

P11

P11 .SM.AIL = {(R21.IL(), t257 − t1), (R23.IL(),

t338 − t274), (R22.IL(), t482 − t354)} = ∆T

∆T ∆T ∆T

SM.ATL

where if  and , 

;  otherwise, . 

is  to  get  the  number  of  distinct  TLs  in

the  TL  set .  And  if ,

; otherwise, . For

the potential indoor semantic path  shown in Ta-

ble 3, 

 {(Huawei, 256 ),

(Nike,  64 ),  (Apple,  128 )},  where  is  the

sampling time interval of the indoor position system.

Owing  to  the  limitation  of  the  scope,  is

omitted in Table 3.

Pik .PT Pik .L =

l(κ1.5, te1, ts2)×l(κ2.5, te2, ts3)× . . . × l(κn−0.5, ten−1,

tsn) l(κj+0.5, tej, tsj+1)

κj+0.5

(tej, tsj+1)

The corresponding likelihood of  is 

. The function  returns the like-

lihood that the user is in the indoor partition  in

the open time interval .
 

 

τ1Table  3.    Indoor Uncertain Sematic Trajectory 

Time
Interval

P11 .PT P12 .PT P13 .PT P14 .PT

[t1, t257) R21 R21 R21 R21

[t257, t260] D21 D21 D21 D21

(t260, t270) H20 H20 H20 H20

[t270, t274] D24 D24 D24 D24

(t274, t338) R23 R23 H20 H20

[t338, t341] D23 D23 D23 D23

(t341, t350) H20 H20 H20 H20

[t350, t354] D22 D22 D22 D22

(t354, t482) R22 H20 R22 H20

[t482, t485] D22 D22 D22 D22

L l(R23, t274, t338)×
l(R22, t354, t482)

l(R23, t274, t338)×
l(H20, t354, t482)

l(H20, t274, t338)×
l(R22, t354, t482)

l(H20, t274, t338)×
l(H20, t354, t482)

SM.AIL ∆T
∆T ∆T

{(Huawei, 256 ),
(Nike, 64 ), (Apple, 128 )}

∆T
∆T

{(Huawei, 256 ),
(Nike, 64 )}

∆T
∆T

{(Huawei, 256 ),
(Apple, 128 )}

∆T{(Huawei, 256 )}
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2.3    Indoor  Uncertain  Semantic  Trajectory

Similarity Metric IUS

As  introduced  in Section 1,  IUST-Join  can  serve

as a quite essential query in a number of indoor appli-

cation scenarios, such as friend recommendation based

on  similar  shopping  interests,  keyword-aware  indoor

route  recommendation,  trajectory  near-duplicate  de-

tection,  geo-text  data  cleaning,  and so  on.  And with

these  applications  in  mind,  we  provide  a  purposeful

definition  of  an  indoor  uncertain  semantic  trajectory

similarity metric named IUS for IUST-Join. Both spa-

tial proximity and semantic similarity need to be con-

sidered in IUS to determine how much two given in-

door  uncertain  semantic  trajectories  are  similar  to

each other. Before we define IUS, some needed defini-

tions are formally defined first as follows.

Pik .PT = [(κ1, [ts1,

te1]), (κ1.5, (te1, ts2)), (κ2, [ts2, te2]), . . . , (κn, [tsn, ten])]

(2n− 1) Pik .PT [f ].T ()

Pik .PT [f ]

Given  a  potential  indoor  path 

with  triples.  returns the length

of 's corresponding time interval, i.e.,
 

∀x ∈ [1, n], Pik .PT [2x].T () = tsx+1 − tex,

Pik .PT [2x− 1].T () = tex − tsx.

ST () is  to  get  the  sum  length  of  all  time  intervals,

and is formally defined as:
 

Pik .PT.ST () =
2n−1

Σ
f=1

Pik .PT [f ].T ().

Pik .rest().PT Pik .PT

(κn, tsn, ten)

 denotes  without  the  last  triple

, i.e.,
 

Pik .rest().PT =[(κ1, [ts1, te1]), (κ1.5, (te1, ts2)), . . . ,

(κn−0.5, (ten−1, tsn))].

P11 .PT = [(R21, [t1,

t257]), (D21, (t257, t260)), . . . , (R22, (t354, t482)), (D22, [t482,

t485])] P11 .PT [1].T () = t257 − t1 =

256∆T P11 .PT [2].T () = t260 − t257 = 3∆T
P11 .PT.ST () = (t257 − t1) + (t260 − t257) + . . . + (t485−

For  the  potential  indoor  path 

  

 shown  in Table 3, 

 and .

t482) = 484∆T P11 .rest().PT = [(R21, [t1, t257]),

(D21, (t257, t260)), . . . , (R22, (t354, t482))]

. And 

.

d(Dx, Dy)

Dx Dy

d(Dx, Dy)

iD(Pik .PT [a], Pjl .PT [b])

Pik .PT [a] Pjl .PT [b]

The  door-to-door  indoor  distance  is

the  shortest  walking  Euclidean  distance  between

two doors  and  in the indoor space by consider-

ing  the  indoor  topology.  And  based  on ,

,  the  indoor  distance  between

 and , is formally defined as:

 

iD(Pik .PT [a], Pjl .PT [b]) =

d(Pik .PT [a], Pjl .PT [b]),

if Pik .PT [a] ∈ D and Pjl .PT [b] ∈ D

min
{

d(Pik .PT [a], Dy)|
Dy ∈ Pjl .PT [b].D()

}
,

if Pik .PT [a] ∈ D and Pjl .PT [b] ∈ IP

min
{

d(Dx, Pjl .PT [b])|
Dx ∈ Pik .PT [a].D()

}
,

if Pik .PT [a] ∈ IP and Pjl .PT [b] ∈ D

min
{

d(Dx, Dy)|Dx ∈ Pjl .PT [b].D()∧
Dy ∈ Pjl .PT [b].D()

}
,

if Pik .PT [a] ∈ IP and Pjl .PT [b] ∈ IP

.

iD(R22, R23) = iD(D22, R23) = min{ d(D22,

D23), d(D22, D24)} = d(D22, D23) MaxDist

In Fig.1,  

. ,  a  con-

stant, is the maximum door-to-door indoor distance in

the given indoor space, i.e.,
 

MaxDist = max{d(Dx, Dy)|Dx, Dy ∈ D}.

Θ(Pik , Pjl)

Pik

Pjl

Then  based  on  the  above  definitions,  we  propose

,  which  measures  the  spatial  dissimilarity

between two potential indoor semantic paths  and

 in indoor distances. It is formally defined as follows.

Θ(Pik , Pjl)

Pik Pjl

Pik .PT Pjl .PT M N

Definition  2. (Spatial  Dissimilarity  Metric

). Given  two  potential  indoor  semantic
paths  and ,  and  the  numbers  of  triples  in

 and  are  and , respectively.
 

Θ(Pik , Pjl) =

Pjl .PT.ST (), if Pik .PT.ST () = 0

Pik .PT.ST (), if Pjl .PT.ST () = 0

min



sub(Pik .PT [M ], Pjl .PT [N ])+

Θ(Pik .rest(), Pjl .rest()),

Pik .PT [M ].T ()+
Θ(Pik .rest(), Pjl),

Pjl .PT [N ].T ()+
Θ(Pik , Pjl .rest())


, otherwise,

.

 

13

21

22

23

32

41

…

Apple

Huawei

KFC

Nike

OPPO

Starbuck

…

Coffee

Laptop

Smartphone

Sneakers

Sportswear

Fried Chicken

…

Room IL TL

Fig.3.  Labels mappings of rooms.
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sub(Pik .PT [M ], Pjl .PT [N ]) = |Pik .PT [M ].T () −

Pjl .PT [N ].T ()|+ iD(Pik .PT [M ], Pjl .PT [N ])

MaxDist
×

min{Pik .PT [M ].T (), Pjl .PT [N ].T ()}.

Φ()

To  measure  the  semantic  similarity  between  two

potential indoor semantic paths, not only ILs, but al-

so TLs are considered. Since there may be also great

similarity  between  rooms  with  different  ILs,  such  as

“Huawei” and “Apple”. ,  measuring the semantic

similarity  between  two  potential  indoor  semantic

paths, is formally defined as follows.

Φ(Pik , Pjl)

Pik Pjl

Definition  3. (Semantic  Similarity  Metric

). Given  two  potential  indoor  semantic
paths  and ,
 

Φ(Pik , Pjl) = β×
Σ

ILx1∈IL
min{Pik .SM.ILT (ILx1

), Pjl .SM.ILT (ILx1
)}

Σ
ILx2

∈IL
max{Pik .SM.ILT (ILx2

), Pjl .SM.ILT (ILx2
)}
+

(1− β) ×
Σ

TLy1
∈TL

min{Pik .SM.TLT (TLy1
), Pjl .SM.TLT (TLy1

)}

Σ
TLy2∈TL

max{Pik .SM.TLT (TLy2
), Pjl .SM.TLT (TLy2

)}
.

β ∈ [0, 1]

Pik .SM.ILT (ILx) Pik .SM.TLT (TLy)

ILx

TLy Pik .SM.AIL Pik .SM.ATL

The  parameter  is  to  balance  the  weight  be-
tween  the  similarities  of  AILs  and  ATLs.

 (resp. )  returns
the  corresponding  time  interval  length  of  (resp.

) from  (resp. ).
Θ(Pik , Pjl)

Φ(Pik , Pjl)

There  are  some  key  properties  of  and

 listed as follows:

Θ(Pik , Pjl) = Θ(Pjl , Pik) Φ(Pik , Pjl) = Φ(Pjl ,

Pik)

●  and 

;

0 ⩽ Θ(Pik , Pjl) ⩽ (Pik .PT.ST () + Pjl .PT.ST ())

Pik .PT Pjl .PT

Θ(Pik , Pjl) Θ(Pik , Pjl) = 0

Pik .PT Pjl .PT

● .

The  more  similar  and  in  indoor  dis-

tances, the smaller . And  iff

 and  are identical;

0 ⩽ Φ(Pik , Pjl) ⩽ 1 Pik Pjl

Φ(Pik , Pjl)

● . And as  and  are more

similar in semantics,  becomes larger.

Θ Φ

For two given indoor uncertain semantic trajecto-

ries, our proposed indoor uncertain semantic trajecto-

ry  similarity  metric  IUS considers  both  spatial  prox-

imity and semantic similarity of all pairs of potential

indoor  semantic  paths  to  determine  how much  these

two indoor uncertain semantic trajectories are similar

to  each  other.  Based  on  the  definition  of  and ,

the metric IUS is formally defined as follows.

IUS(τi, τj)

τi τj

Definition  4. (Indoor  Uncertain  Semantic  Trajec-

tory  Similarity  Metric ). Given  a  pair  of
indoor uncertain sematic trajectories  and ,

 

IUS(τi, τj) = Σ
Pik

∈τi
Σ

Pjl
∈τj

(Pik .L× Pjl .L× (α×

Θ′(Pik .PT, Pjl .PT ) + (1− α)× Φ(Pik , Pjl))).

α ∈ [0, 1]

Θ′(Pik .PT, Pjl .PT )

= (1− (Θ(Pik , Pjl)/(Pik .PT.ST () + Pjl .PT.ST ())))

Θ(Pik , Pjl)

The  parameter  is  to  balance  the  weight  be-
tween spatial proximity and semantic similarity of two
potential  indoor  semantic  paths. 

 is
to normalize  into [0, 1].

Θ(Pik , Pjl) = Θ(Pjl , Pik) Φ(Pik , Pjl) =

Φ(Pjl , Pik) IUS(τi, τj) = IUS(τj, τi) ∈
[0, 1] τi τj
IUS(τi, τj)

Since  and 

, we can see that 

.  And  the  more  similar  and ,  the  greater

. 

2.4    Problem Definition of IUST-Join

τi
τi.KTL()

For an indoor uncertain semantic trajectory , all
key TLs are stored in the key TL set , which

is formally defined as follows.

τi.KTL()

τi
µ

Definition  5. (Key  TL  Set ). Given  an
indoor uncertain semantic trajectory  and a thresh-
old ,
 

τi.KTL() ={TLy ∈ IL| Σ
Pik

∈τi

(Pik .L×

Pik .SM.ATL.TLT (TLy)) ⩾ µ}.

P
Q (τi ∈ P, τj ∈ Q)

τi τj

τi
τj θ

If  two  indoor  uncertain  semantic  trajectories  are

considered to be similar, a quite reasonable condition
is that they share at least one common key TL. This

condition  is  to  guarantee  that  there  is  some  mini-
mum  sematic  similarity  between  each  pair  of  indoor
uncertain  semantic  trajectories  in  the  similarity  join

result.  And such similar  conditions have been widely
applied in many studies,  such as  [19, 20].  Given two
sets  of  indoor  uncertain  semantic  trajectories  and

, IUST-Join is to find all such pairs 

that satisfy the following two conditions: 1)  and 
share at least one common key TL; 2) the indoor un-

certain semantic  trajectory similarity between  and
 is  no  less  than  a  given  threshold .  IUST-Join  is

formally defined as follows.

IUST Join(P,Q)

θ ∈ [0, 1] µ
P Q IUST Join(P,Q)

Definition  6. (Indoor  Uncertain  Semantic  Trajec-
tory  Similarity  Join - ). Given  two
thresholds  and ,  two sets  of  indoor  uncer-
tain semantic trajectories  and , -
returns
 

{(τi, τj) ∈ P×Q|τi.KTL() ∩ τj.KTL() ̸= ∅,

IUS(τi, τj) ⩾ θ}.
 

3    Baseline the TII Algorithm

In this section, we first propose an inverted index
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named 3IST, which is to prune many invalid pairs of

indoor  uncertain  semantic  trajectories  at  quite  low

computation cost  in the process  of  IUST-Join.  Then,

based  on  3IST,  we  propose  a  baseline  algorithm

named Traversing the Inverted Index (TII  for  short)

to  process  IUST-Join,  which  follows  a  filtering-and-

verification  framework.  Last,  in  order  to  reduce  the

time  cost  and  the  time  complexity  of  the  TII  algo-

rithm,  two additional  effective  acceleration  strategies

are  also  presented  and  embedded  in  the  TII  algo-

rithm. 

3.1    Inverted Index 3IST

(τi, τj) ∈ P×Q (τi, τj)

IUST Join(P,Q)

P×Q

TLy ∈ IL

In Definition 6,  only if  there is  at least one com-

mon key TL shared by a pair of indoor uncertain se-

mantic  trajectories ,  might  be

returned by - . And thus, in order to

filter  out  many  invalid  pairs  of  indoor  uncertain  se-

mantic  trajectories  from  the  candidate  result  set

,  we  can  build  an  inverted  index  of  all  indoor

uncertain  semantic  trajectories  (3IST  for  short)  on

each key TL  and search on such an invert-

ed index.

P Q

TLy ∈ IL
TLy.3IST (P) TLy.3IST (Q) P Q

The inverted index 3IST consists  of  inverted sets

on  all  key  TLs.  To  build  3IST,  we  first  go  through

each indoor uncertain semantic trajectory in  and 

to  get  the  corresponding  key  TL  set.  Then  for  each

key  TL ,  we  build  two  inverted  sets

 and  on  and , respec-

tively, which are formally defined as:
 

TLy.3IST (P) = {τi ∈ P|TLy ∈ τi.KTL()},

TLy.3IST (Q) = {τj ∈ Q|TLy ∈ τj.KTL()}.
 

3.2    TII Algorithm

ResultSet

(τi, τj) ∈ P×Q

IUS(τi, τj) θ

IUST Join(P,Q)

In  this  subsection,  we  present  a  straightforward

baseline  approach  to  answer  IUST-Join,  named  TII

algorithm. And the pseudo code of the TII algorithm

is shown in Algorithm 1.  is first initialized

to  an  empty  set  (line  1).  Then  we  go  through  each

key TL in the inverted index 3IST (lines 2–10). And

for  each  pair  of  indoor  uncertain  semantic  trajecto-

ries  sharing at least one common key

TL, we need to check whether the degree of the simi-

larity  is no less than the given threshold 

(lines  3–9).  Finally,  by  following this  processing  pro-

cedure, we can get the result set of - .

Algorithm 1. TII Algorithm

θ µ

P Q
Input: two thresholds  and , two sets of indoor uncertain se-

  mantic trajectories  and 

IUST Join(P,Q)Output: the result set of -

ResultSet← ∅1: 

TLy ∈ IL2: for  do

τi ∈ TLy.3IST (P)3: 　　for  do

τj ∈ TLy.3IST (Q)4: 　　　　for  do

IUS(τi, τj) ⩾ θ5: 　　　　　　if  then

ResultSet.append({τi, τj})6: 　　　　　　　　

7: 　　　　　　end if

8: 　　　　end for

9: 　　end for
10: end for

ResultSet  return 

 

3.3    Two  Efficient  Acceleration  Strategies

Embedded in Algorithm TII

|D| |IL| |TL| |P| |Q|
D IL IL P Q

|τ |max |PT |max

F

Davg = |D|/F

Some  notations  to  be  used  are  firstly  introduced
here.  Suppose  that , , , ,  and  are

the  sizes  of  sets , , , ,  and ,  respectively.
 and  denote the maximal number of po-

tential  indoor  semantic  paths  in  indoor  uncertain se-
mantic  trajectories  and  the  maximal  number  of  tu-
ples in potential indoor paths of indoor uncertain se-
mantic trajectories,  respectively.  In indoor space,  the
layout of each floor is usually similar.  denotes the
total  number  of  floors.  And  the  average  number  of
doors in each floor is denoted by .

Θ(Pik , Pjl)

Pik Pjl O(|PT |max
|PT |max)

Θ(Pik , Pjl)
Ds

Dt

Ds

Gacc

O(|D|2)
Θ(Pik , Pjl)

O(|PT |max
|PT |max × |D|2)

For the TII algorithm, though the time overhead
is  reduced  greatly  by  using  the  inverted  index  3IST,
the  time  overhead  of  computing  even  a  single

 is still completely unacceptable. According

to  Definition  2,  for  each  pair  of  potential  indoor  se-

mantic paths  and , up to  times

door-to-door indoor distances need to be calculated in
the  calculation  of .  And  for  each  door-to-

door indoor distance from the source door  to the
destination door , all unvisited doors are kept in a
priority queue, and the search from  on the graph

 is expanded in a way similar to the classical Dijk-
stra Algorithm. Thus, the time complexity of comput-
ing each door-to-door indoor distance is . And

thus, the time complexity of computing  is

high up to , which is complete-

ly unacceptable during use.

Θ(Pik , Pjl)

(|Pik .PT |+
1)× (|Pjl .PT |+ 1)

Θ(Pik , Pjl)

First, we find that there are lots of repeated calcu-

lations  of  door-to-door  indoor  distances  in  a  single

calculation  of .  To  avoid  this,  we  adopt

a dynamic programming solution, where a 

 matrix is  used in each calculation

of  to store the intermediate results. Due to
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O(|PT |max
|PT |max) O(|PT |max

2
)

this,  the  needed  calculation  times  of  door-to-door

indoor  distances  are  reduced  greatly  from

 to .

Θ(Pik , Pjl)

Gacc

O(|D|3) = O(Davg
3 × F 3) |D| × |D| = Davg

2×F 2

M1

M1

M1

Second, the results of extensive experiments done

by us show that getting door-to-door indoor distances

by  using  the  classical  Dijkstra  Algorithm  takes  up

over  99% of  the  total  execution  time  in  the  calcula-

tion of . As a quite natural idea to address

this,  we  present  the  first  pre-calculation  method,

which  is  to  make  all  door-to-door  indoor  distances

pre-calculated.  In  the  pre-processing  stage,  a  method

similar  to  the  Floryd  algorithm is  used  to  search  on

the  extended  accessibility  base  graph ,  and  all

door-to-door  indoor  distances  can  be  gotten  in

. A  ma-

trix named  is used to record the calculated door-

to-door  indoor  distances.  is  kept  in  the  main

memory. And by searching , we can get any door-

to-door indoor distance in constant time.

Unless otherwise noted, these two additional effec-

tive  acceleration  strategies  are  embedded  in  the  TII

algorithm. 

3.4    Complexity Analysis of Algorithm TII

Θ(Pik , Pjl)

O(|PT |max
|PT |max × |D|2) O(|PT |max

2
) Φ(Pik ,

Pjl) ILx

IL |IL|
Pik .SM.ILT (IL) Pjl .SM.ILT (IL)

TLx IL |TL|
Pik .SM.TLT (TL) Pjl .SM.TLT (TL)

Φ(Pik , Pjl) O(|IL|2 + |TL|2)

IUST

Join(P,Q) O(|P| × |Q| ×
|τ |max

2 × (|PT |max
|PT |max × |D|2 + |IL|2 + |TL|2))

O(|P| × |Q| × |τ |max
2 × (|PT |max

2
+ |IL|2 + |TL|2))

Thanks to these two additional effective accelera-
tion  strategies  embedded  in  the  TII  algorithm  pre-
sented  in Subsection 3.3,  the  time  complexity  of  the
TII  algorithm  computing  is  reduced  from

 to .  For 

 defined in  Definition 3,  for  each element  in

,  we  need  to  search  at  most  times  to  get

 and .  And for  each

element  in ,  we  need  to  search  at  most 

times to get  and .

And  thus,  the  time  complexity  of  computing
 is . Thus for the TII algo-

rithm,  by  embedding  these  two  effective  acceleration
strategies,  the  time  complexity  of  computing -

 is  reduced  greatly  from 

 to

.
 

4    Algorithm USP

For the TII algorithm, though both the time com-

plexity  and  the  time  overhead  are  reduced  by  using

the inverted index 3IST and two additional accelera-

tion  strategies,  there  are  still  some  limitations  to  be

addressed.

● For the first pre-calculation method, though any

O(Davg
3 × F 3)

O(Davg
2 × F 2) M1

F

Davg

door-to-door  indoor  distance can be obtained in  con-

stant  time,  the  time  overhead  of  get-

ting  all  door-to-door  indoor  distances  in  the  pre-pro-

cessing  stage  is  a  little  high  and  the  space  overhead

 to  store  the  matrix  in  the  main

memory is also a little high for large and complex in-

door  space.  And  both  the  time  overhead  and  the

space overhead could become much higher when  or

 gets larger (e.g., the shopping mall is with more

floors or with more doors in each floor).

Pik Pjl

Φ(Pik , Pjl)

O(|IL|2 + |TL|2)

● In the TII algorithm, for any two potential  in-

door semantic paths  and , the time complexity

of  computing  the  semantic  similarity  is

high up to , which is pretty high. And

the time overhead becomes much higher as the num-

bers of distinct ILs and TLs contained in potential in-

door semantic paths increase.

Θ() O(|PT |max
|PT |max × |D|2)

O(|PT |max
2
)

Θ()

Θ()

● The  analysis  in  Subsection 3.4 shows  that  by

using the TII algorithm, the time complexity of com-

puting  is  reduced from  to

.  However,  the  experimental  results  in

Subsection 5.2.1 show  that  the  calculations  of 

functions  take  up  over  99.9%  of  the  total  execution

time of  the TII algorithm. This means that the time

overhead  of  computing  functions  is  still  quite

high, and need to be further improved.

IUS(τi, τj)

IUS(τi, τj)

In  order  to  overcome  these  limitations,  we  pro-

pose  an  algorithm  named  USP,  which  consists  of

many  efficient  and  effective  acceleration  strategies.

The  USP algorithm,  which  is  shown  in Algorithm 2,

follows  a  filtering-and-verification  framework  and

prunes most invalid pairs of indoor uncertain seman-

tic trajectories at quite low computation cost. The in-

verted index 3IST is  still  applied  first  in  USP to  fil-

ter  out  invalid  indoor  uncertain  semantic  trajectory

pairs that do not share any key TLs (lines 4–5). The

indoor  uncertain  semantic  trajectory  similarity  met-

ric  has been formally defined in Definition

4. And based on this, we can rewrite  into

(lines 13, 15, and 16):
 

IUS(τi, τj)=α×Part1(τi, τj) + (1− α)× Part2(τi, τj),

Part1(τi, τj) = Σ
Pik

∈ τi
Σ

Pjl
∈ τj

(Pik .L × Pjl .L ×

Θ′(Pik .PT, Pjl .PT )) Part2(τi,τj)= Σ
Pik

∈τi
Σ

Pjl
∈τj

(Pik .L×

Pjl .L× Φ(Pik , Pjl)).

where 

 and 

More  details  about Algorithm 2 will  be  intro-

duced in the followings.
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Algorithm 2. USP Algorithm

P
Q θ ∈ [0, 1] µ

Input: two sets of indoor uncertain semantic trajectories  and
  , and two thresholds  and  defined in Defini-

  tion 6

IUST Join(P,Q)Output: the result set of -

ResultSet← ∅1: 

V isitedState← NewMatrix(P,Q)2: 

TLy ∈ IL3: for  do

τi ∈ TLy.3IST (P)4: 　　for  do

τj ∈ TLy.3IST (Q)5: 　　　　for  do

V isitedState[i][j] ̸= 06: 　　　　　　if  then

7: 　　　　　　　　continue

8: 　　　　　　else

V isitedState[i][j]← 19: 　　　　　　　　

10: 　　　　　  end if

upart1 ← UPart1(τi, τj)11: 　　　　　 

α× upart1 + (1− α) ⩾ θ12: 　　　　　  if  then

part2 ← Part2(τi, τj)13: 　　　　　　　　

α× upart1 + (1− α)× part2 ⩾ θ14: 　　　　　　　　if  then

part1 ← Part1(τi, τj)15: 　　　　　　　　　　

α× part1 + (1− α)× part2 ⩾ θ16: 　　　　　　　　　　if  then

ResultSet.append((τi, τj))17: 　　　　　　　　　　　　

18: 　　　　　　　　　　end if

19: 　　　　　　　　end if

20: 　　　　　　end if

21: 　　　　end for

22: 　　end for
23: end for

ResultSet  return 
 

4.1    The Second Pre-Calculation Method

M1

M1

As shown in the first  limitation in Section 4,  un-

der  the  condition  that  any  door-to-door  indoor  dis-

tance can be still  gotten in constant time, to further

reduce the time overhead of obtaining the matrix 

and  the  occupied  main  memory  to  store  the  matrix

, we present the second pre-calculation method.

M2 M1

∀z ∈ {1,
2, . . . , F} M2[z]

O(Davg
2) M2[z]

z

Gacc M2[z] O(Davg
3)

M2

O(Davg
3 × F )

O(Davg
3 × F 3) M1

M2 O(Davg
2 × F )

O(Davg
2 × F 2) M1

For the second pre-calculation method, in the pre-

processing  stage,  an  array  set ,  instead  of ,  is

created  and  stored  in  the  main  memory. 

,  and  is  a  matrix,  whose  size  is

.  stores  all  door-to-door  indoor  dis-

tances,  where  doors  are  all  on  the -th  floor.  A

method  similar  to  the  Floryd  algorithm can  be  used

to  search  on  part  of  the  extended  accessibility  base

graph , and  can be gotten in . And

thus,  the  time  overhead  of  getting  the  array  in

the  pre-processing  stage  is  only ,  not

 for ,  and  the  total  space  overhead

of  in the main memory is  only ,  in-

stead of  for .

In  the  indoor  space,  the  layouts  of  staircases  on

different  floors  are  usually  the  same.  Then

∀Da, Db ∈ D
Da Db

M2

,  and  the  door-to-door  indoor  distance

from the door  to the door  can be gotten by us-

ing the array  as shown below:
 

M1[a, b] = M2.d(Da, Db) =
M2[Da.f ][a, b], if Da.f = Db.f,

min

{
M2[Da.f ].D2S(Da, Sc)+

Sc.d(Da.f,Db.f)+
M2[Db.f ].S2D(Sc, Db)|Sc ∈ S

}
, otherwise.

Da.f Da S

M2[Da.f ].D2S(Da, Sc)

Da

Sc (Da.f)

M2[Db.f ].S2D(Sc, Db)

Sc

(Db.f) Db

M2[Da.f ].D2S(Da, Sc) M2[Db.f ].S2D(Sc, Db)

M2[Da.f ]

M2[Db.f ]

Sc.d(Da.f,Db.f)

Sc (Da.f)

Sc (Db.f)

Sc Sc.d(Da.f,Db.f)

M2

M2.d(Da, Db) O(|S|) |S|
|S|

M2.d(Da, Db) O(1)

O(Davg
3 × F 3) O(Davg

3 × F )

O(Davg
2 × F 2) O(Davg

2 × F )

 denotes which floor the door  is on.  is the

set  of  all  staircases  in  the  indoor  space.

 denotes  the  door-to-door  in-

door  distance  from  the  door  to  the  door  of  the

staircases  on  the -th  floor.  Similarly,

 is  the  door-to-door  indoor  dis-

tance  from  the  door  of  the  staircases  on  the

-th  floor  to  the  door .  Obviously,  both

 and  can

be  directly  gotten  from  the  matrices  and

 in  short  and  constant  time,  respectively.

 returns  the  indoor  walking  distance

from the door of staircases  on the -th floor

to the door of staircases  on the -th floor in

staircase .  By  pre-calculation,  can

be also gotten in short and constant time. And thus,

for  the  second  pre-calculation  method,  with  the  help

of  the  array ,  any  door-to-door  indoor  distance

 can be gotten in , where  is the

number of all staircases in the indoor space. Since 

is  usually  quite  small  and can  be  considered  to  be  a

constant,  the  time  complexity  of  computing

 can be also considered as .  At the

same time, the time cost and the occupied main mem-

ory  about  door-to-door  indoor  distances  in  the  pre-

processing  stage  are  reduced  greatly  from

 to  and  from

 to ,  respectively.  Unless

otherwise  noted,  the  second  pre-calculation  method,

instead of the first one, is used in the USP algorithm. 

4.2    Semantic Information Encoding

Φ(Pik , Pjl)

Pik .SM

Pik

SM.AIL SM.ATL

As shown in the second limitation in Section 4, to

further  reduce  the  time  overhead  and  the  time  com-

plexity  of  computing  the  semantic  similarity

, we propose a specfic encoding style named

Sematic  Label  Encoding  (SL-encoding  for  short),

which is  a little similar to one-hot encoding. For the

corresponding  semantic  information  of  a  po-

tential indoor semantic path , we use SL-encoding

to  encode  each  tuple  in  and .  An

example of SL-encoding is shown in Fig.4. Each tuple

Hong-Bo Yin et al.: Indoor Uncertain Semantic Trajectory Similarity Join 1451



(ILx, ILTx) ∈ AIL ILx.V

|IL| TLy.V

|TL| (TLy, TLTy) ∈ ATL

ILx ILx.V

ILTx TLy TLy.V

TLTy ILx.V

TLy.V AIL

AIL.V |IL|
ATL.V |TL|

ATL

 is  encoded  as  a  vector ,

whose size is . And a vector , whose size is

, is used to encode each tuple .

The corresponding position of  in  is set to

.  The corresponding position of  in 

is  set  to .  And  other  positions  in  and

 are  all  set  to  0.  Then  is  encoded  as  a

vector ,  whose  size  is .  And  another  vec-

tor ,  whose  size  is ,  is  used  to  encode

.

 

∀u ∈ [1, |IL|], AIL.V [u] = Σ
(ILx, ILTx)∈AIL

ILx.V [u],

∀v ∈ [1, |TL|], ATL.V [v] = Σ
(TLy, TLTy)∈ATL

TLy.V [v].

AIL ATLAfter  and  are encoded by SL-encoding,

Definition 3 can be redefined as Definition 7.

Φ(Pik , Pjl) β ∈ [0, 1]

Pik Pjl

Definition  7. (Semantic  Similarity  Metric

). Given a parameter  and two po-
tential  indoor  semantic  paths  of  different  indoor  un-
certain sematic trajectories  and ,
 

Φ(Pik , Pjl) = β×
Σ

ILx1∈IL
min{Pik .SM.ILT (ILx1

), Pjl .SM.ILT (ILx1
)}

Σ
ILx2

∈IL
max{Pik .SM.ILT (ILx2

), Pjl .SM.ILT (ILx2
)}
+

(1− β)×
Σ

TLy1
∈TL

min{Pik .SM.TLT (TLy1
), Pjl .SM.TLT (TLy1

)}

Σ
TLy2∈TL

max{Pik .SM.TLT (TLy2
), Pjl .SM.TLT (TLy2

)}

= β×
Σ

u1∈[1,|IL|]
min{Pik .SM.AIL.V [u1], Pjl .SM.AIL.V [u1]}

Σ
u2∈[1,|IL|]

max{Pik .SM.AIL.V [u2], Pjl .SM.AIL.V [u2]}
+

(1− β)×
Σ

v1∈[1,|TL|]
min{Pik .SM.ATL.V [v1], Pjl .SM.ATL.V [v1]}

Σ
v2∈[1,|TL|]

max{Pik .SM.ATL.V [v2], Pjl .SM.ATL.V [v2]}
.

(1)

β

AIL ATL

Parameter  is to balance the weight between the sim-
ilarities of s and s.

AIL ATL AIL.V
ATL.V

Pik .SM.AIL Pik .SM.ATL Pjl .SM.AIL

Pjl .SM.ATL

Φ(Pik , Pjl)

Φ(Pik , Pjl)

O(|IL|2 + |TL|2) O(|IL|+ |TL|)

IUST Join(P,Q)

O((|PT |max
2
+ |IL|2 + |TL|2)× |τ |max

2 × |P| × |Q|)
O((|PT |max

2
+ |IL|+ |TL|)× |τ |max

2 × |P| × |Q|)

After  and  are encoded into  and

 by SL-encoding, respectively, it is quite obvi-

ous  that , , ,

and  all need to be scanned only once in

the  calculation  of  the  semantic  similarity .

And  thus,  the  time  complexity  of  computing  the  se-

mantic  similarity  is  reduced  greatly  from

 to .  And  because  of

these, the time complexity of the USP algorithm com-

puting -  can  be  reduced  from

 to

.

AIL.V ATL.V
Iidx T idx AIL.V ATL.V

Iidx T idx

Φ(Pik , Pjl)
Iidx T idx

i
Iidx T idx i
AIL.V ATL.V

i AIL.V ATL.V

With  consideration  of  that  most  positions  in

 and  are set 0, we propose two indexs

named  and  to index  and ,

respectively.  With  the  help  of  and ,  the

time complexity of computing the semantic similarity

 can  be  further  reduced.  As  an  example

shown in Fig.4,  and  are two vectors, each

position of which stores a pointer. The -th pointer in

 (resp. )  points  to  the -th  position  in

 (resp. ). And the information stored by

the -th position in  (resp. ) is not 0.

Φ(Pik , Pjl)
Iidx T idx

Φ(Pik , Pjl)= β×(uSumI/dSumI) + (1−β)×(uSumT/

dSumT ) uSumI dSumI

uSumT dSumT

Pik .SM.Iidx Pjl .SM.Iidx

Iidx.size()

Tidx.size()
Iidx

T idx SumRestI()

SumRestT ()

As  shown  in Algorithm 3,  the  PUI  algorithm

shows  the  process  of  calculating  in  detail

by  using  both  and .  Some  variables  are

firstly  initialized  (line  1),  and  we  want  to  get

 finally.  and  can be gotten by

following  lines  2–24.  And  in  a  similar  manner,

 and  can be gotten by following lines

25–48. Each element of  and 

is  scanned  one  by  one  (lines  2–24).  and

 in line 2, line 4, line 26 and line 28 are to

get  the  sizes  of  the  corresponding  vectors  and

, respectively. The functions  in line

21  and  in  line  45  are  respectively  de-

fined as:

 

Apple KFC OPPO Starbuck

0 0 0 0 0

IL:

(Nike, 64 Ts)

(Apple, 128 Ts) 

Nike

0 0 0 0 0

0 0 0

+ + + + + +

= = ====

0 0 0 0 0

+ + + + + +

(Huawei, 256 Ts)

+

+

=

Huawei

1 2 4
Iidx


V

256 Ts

256 Ts

64 Ts

64 Ts128 Ts

128 Ts

...

...

...

...

...

...

P11 .SM.AIL ∆TFig.4.  SL-encoding for  in Table 3.  is the sampling time interval of the indoor position system.
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Algorithm 3. PUI Algorithm

Pik Pjl

β ∈ [0, 1]

Input: two potential indoor semantic paths  and , and the

  parameter  defined in Definition 3 and Definition 7

Φ(Pik , Pjl) Pik Pjl
Output: , the semantic similarity between  and 

Ii← 1 Ij ← 1 uSumI ← 0 dSumI ← 01: , , , 

Ii ⩽ Pik .SM.Iidx.size()2: while  do

IdxIi← Pik .SM.Iidx[Ii]3: 　　

Ij ⩽ Pjl .SM.Iidx.size()4: 　　while  do

IdxIj ← Pjl .SM.Iidx[Ij]5: 　　　　

IdxIi > IdxIj6: 　　　　if  then

dSumI ← dSumI + Pjl .SM.AIL.V [IdxIj]7: 　　　　　　

Ij ← Ij + 18: 　　　　　　

IdxIi = IdxIj9: 　　　　else if  then

uSumI ← uSumI +min{Pik .SM.AIL.V [IdxIi],

Pjl .SM.AIL.V [IdxIj]}
10:  　　　　　　
 

dSumI ← dSumI +max{Pik .SM.AIL.V [IdxIi],

Pjl .SM.AIL.V [IdxIj]}
11:  　　　　　　
 

Ii← Ii+ 1 Ij ← Ij + 112: 　　　　　　 , 

13: 　　　　　　break

14: 　　　　else

dSumI ← dSumI + Pik .SM.AIL.V [IdxIi]15: 　　　　　　

Ii← Ii+ 116: 　　　　　　

17: 　　　　　　break

18: 　　　　end if

19: 　　end while

Ij = Pjl .SM.Iidx.size() + 120: 　　if  then

dSumI ← dSumI + SumRestI(Pik .SM, Ii)21: 　　　　

22: 　　end if
23: end while

dSumI ← dSumI + SumRestI(Pjl .SM, Ij)24: 

Ti← 1 Tj ← 1 uSumT ← 0 dSumT ← 025: , , , 

Ti ⩽ Pik .SM.T idx.size()26: while  do

IdxT i← Pik .SM.T idx[Ti]27: 　　

Tj ⩽ Pjl .SM.T idx.size()28: 　　while  do

IdxTj ← Pjl .SM.T idx[Tj]29: 　　　　

IdxT i > IdxTj30: 　　　　if  then

dSumT ← dSumT + Pjl .SM.ATL.V [IdxTj]31: 　　　　　　

Tj ← Tj + 132: 　　　　　　

IdxT i = IdxTj33: 　　　　else if  then

uSumT ← uSumT +min{Pik .SM.ATL.V [IdxT i],

Pjl .SM.ATL.V [IdxTj]}
34: 　　　　　　
 

dSumT ← dSumT +max{Pik .SM.ATL.V [IdxT i],

Pjl .SM.ATL.V [IdxTj]}
35: 　　　　　　
 

Ti← Ti+ 1 Tj ← Tj + 136: 　　　　　　 , 

37: 　　　　　　break

38: 　　　　else

dSumT ← dSumT + Pik .SM.ATL.V [IdxT i]39: 　　　　　　

Ti← Ti+ 140: 　　　　　　

41: 　　　　　　break

42: 　　　　end if

43: 　　end while

Tj = Pjl .SM.T idx.size() + 144: 　　if  then

dSumT ← dSumT + SumRestT (Pik .SM, T i)45: 　　　　

46: 　　end if
47: end while

dSumT ← dSumT + SumRestT (Pjl .SM, Tj)48: 

β × (uSumI/dSumI) + (1− β)× (uSumT/dSumT )49: return 

 

SumRestI(SM, Ii) =
SM.Iidx.size()∑

z=Ii

SM.AIL.V [SM.Iidx[z]],

SumRestT (SM, Tj) =
SM.Tidx.size()∑

z=Tj

SM.ATL.V [SM.T idx[z]].

|Iidx|max |Tidx|max

Iidx T idx

|Iidx|max << |IL| |Tidx|max << |TL|
Iidx T idx

Pik .SM.Iidx Pjl .SM.Iidx Pik .SM.T idx

Pjl .SM.T idx

Φ(Pik , Pjl)

Φ(Pik , Pjl)

O(|IL|2 + |TL|2) O(|Iidx|max+

|Tidx|max)

IUST Join(P,Q)

O((|PT |max
2
+ |IL|2 + |TL|2)× |τ |max

2 × |P| × |Q|)
O((|PT |max

2
+ |Iidx|max+ |Tidx|max)× |τ |max

2 × |P|×
|Q|)

Φ(Pik , Pjl)

 and  are  used  to  denote  the

maximal  sizes  of  vectors  and ,  respecti-

vely. Usually, , and .

With the  help  of  indexs  and ,  it  is  quite

clear  that , , ,

and  all need to be scanned only once by

the PUI Algorithm in the calculation of semantic sim-

ilarity .  And thus,  by using the PUI Algo-

rithm, the time complexity of computing  is

further reduced from  to 

.  Thus,  the  time  complexity  of  computing

-  can  be  also  further  reduced  from

 to

 

.  Unless  otherwise  noted,  the  PUI  Algorithm  is

embedded in line 13 of Algorithm 2 to accelerate the

calculation of . 

4.3    Three Acceleration Strategies

As shown in the third limitation in Section 4, the

time overhead of computing the spatial proximity be-

tween a pair of given indoor uncertain sematic trajec-

tories  is  still  quite  high.  To  address  this,  we  present

three acceleration strategies embedded in the USP al-

gorithm, which is shown in Algorithm 2, to further re-

duce the time overhead.

The  first  acceleration  strategy  is  combined  with

the inverted index 3IST to form a more effective  fil-

tering-and-verification  framework.  And  by  the  USP

algorithm  following  such  a  framework,  more  invalid

indoor  uncertain  sematic  trajectory  pairs  can  be

pruned at quite low computation cost.

V isitedState |P| × |Q|
V isitedState

∃(τi, τj) ∈ P×Q |τi.KTL() ∩ τj.KTL()| ⩾ 2

V isitedState

IUS(τi τj)

 is a matrix whose size is ,

and each position in  is initialized to 0

(line  2  of Algorithm 2).  It  is  quite  likely  that

 and . And

the existence  of  is  to  prevent  the  re-

peated  calculations  of  the  indoor  uncertain  semantic

trajectory similarity metric ,  in such a case

(lines 6–10).

IUS(τi, τj)If  there  is  an  upper  bound  of  of  less
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θ

(τi, τj)

Part1(τi, τj)

Part1(τi, τj) O(|PT |max
2 × |τ |max

2
)

IUS(τi, τj)

than ,  a  threshold  in  Definition  6,  then  the  indoor

uncertain sematic trajectory pair  can be direct-

ly  pruned  without  the  complicated  calculation  of

 (line  15).  Since  the  time  complexity  of

 is  still  high  up  to .

In the follows, we will introduce how to derive the up-

per bounds of .

UPart1()

Part1()

First,  we  can  get  an  upper  bound  of

 at quite low computation cost.

Pik PjlTheorem  1. Given  and ,  two  potential  in-
door semantic paths of  different indoor uncertain se-
matic trajectories,
 

Θ(Pik , Pjl) ⩾ |Pik .PT.ST ()− Pjl .PT.ST ()|.

Θ(Pik , Pjl)

Pik .PT Pjl .PT

sub()

Pik .PT Pjl .PT

T ()

Θ(Pik , Pjl)

Pik .PT [M ] Pjl .PT [N ]

sub(Pik .PT [M ], Pjl .PT [N ])

|Pik .PT [M ].T ()− Pjl .PT [N ].T ()|
Θ(Pik , Pjl)

Proof. From  Definition  2,  the  definition  of  the

spatial  dissimilarity  metric ,  we  can  see

that each element pair of  and  is one-

to-one  matched  by  the  function .  For  the  un-

matched elements of  and ,  the sum of

the corresponding result  is contained in the final

result  of .  And  for  the  matched  pair

 and ,  in  the  function

,  the  difference

 is  also  contained  in

the  final  result  of .  And  thus,  Theorem  1

can be easily gotten from these. □
Θ′()Then,  for  the  the  spatial  proximity  metric 

defined in Definition 4, we can get that
 

Θ′(Pik .PT, Pjl .PT )

= (1− Θ(Pik , Pjl)

Pik .PT.ST () + Pjl .PT.ST ()
)

⩽ 2×min{Pik .PT.ST (), Pjl .PT.ST ()}
Pik .PT.ST () + Pjl .PT.ST ()

.

∀Pa, Pb ∈ usT, Pa.PT.ST () = Pb.PT.ST ()

Σ
Pik

∈τi
Σ

Pjl
∈τj

(Pik .L× Pjl .L) = 1

Since 

and ,  then  we  can  get

that (lines 15 and 13 of Algorithm 2)
 

part1 = Part1(τi, τj)

= Σ
Pik

∈τi
Σ

Pjl
∈τj

(Pik .L× Pjl .L×

Θ′(Pik .PT, Pjl .PT ))

⩽ ( Σ
Pik

∈τi
Σ

Pjl
∈τj

(Pik .L× Pjl .L))×

2×min{Pi1 .PT.ST (), Pj1 .PT.ST ()}
Pi1 .PT.ST () + Pj1 .PT.ST ()

=
2×min{Pi1 .PT.ST (), Pj1 .PT.ST ()}

Pi1 .PT.ST () + Pj1 .PT.ST ()

= UPart1(τi, τj) = upart1.

Part2()Second, an upper bound of  is also needed.

∀Pik , Pjl Φ(Pik , Pjl) ∈ [0, 1]Obviously, ,  and . Thus, we

can also get that
 

Part2(τi, τj) = Σ
Pik

∈τi
Σ

Pjl
∈τj

(Pik .L× Pjl .L× Φ(Pik , Pjl))

⩽ 1× Σ
Pik

∈τi
Σ

Pjl
∈τj

(Pik .L× Pjl .L) = 1.

τi τj Part1()

Part2()

IUS(τi, τj) = α× Part1(τi, τj)+(1− α)× Part2(τi, τj).

θ

(τi, τj)

Part1(τi, τj) IUS(τi, τj)

α× upart1 + (1− α)

Φ()

Part2(τi, τj)

O((|Iidx|max + |Tidx|max)× |τ |max
2
)

Part1(τi, τj) O(|PT |max
2 × |τ |max

2
)

Part2(τi, τj)

Part1(τi, τj)

IUS(τi, τj) α× upart1 + (1− α)× part2

Part1(τi, τj)

Last,  for  two  indoor  uncertain  sematic  trajecto-

ries  and ,  the  upper  bounds  of  and

 are  used  to  get  two  upper  bounds  of

And in the USP algorithm shown in Algorithm 2, if a

derived  upper  bound  is  less  than ,  a  threshold  de-

fined in  Definition  6,  the  pair  can be  directly

pruned  without  the  complicated  calculation  of

.  The  first  upper  bound  of  is

 (line 12). By using the PUI algo-

rithm shown  in Algorithm 3 to  computing  func-

tions,  the  time  overhead  of ,  i.e.,

, is much lower than

that  of ,  i.e., .  And

thus,  if  the  condition  in  line  12  is  not  satisfied,  we

choose  to  calculate  (line  13),  instead  of

 (line 15), to get the second upper bound

of  is  (line

14). By using these two conditions in line 12 and line

14,  many invalid  indoor  uncertain  sematic  trajectory

pairs  can  be  directly  pruned  at  quite  low  computa-

tion  cost  without  calculating  the  exact  result  of

.

Part1(τi, τj)If the complicated calculation of  can-

not  be  avoided  (line  14),  both  the  second  and  the

third  acceleration  strategies  are  embedded  in  line  15

of the USP algorithm and used to accelerate the cal-

culation.

Part1(τi, τj) Θ(Pik , Pjl) ∀Pik ∈ τi
∀Pjl ∈ τj

The  second  acceleration  strategy  is  to  reuse  part

of  the  calculated  matrix.  To  get  the  result  of

, we need to get  (  and

) first.

Θ(P11 , Pjl)

Θ(P12 , Pjl) P11 P12

|P11 .PT | = 0

|Pjl .PT | = 0 ∀x ∈ {1,
2, . . . , |P11 .PT |} ∀y ∈ {1, 2, . . . , |Pjl .PT |}

(x+ 1)

(y + 1) x P11 .PT

y Pjl .PT

Fig.5(a)  and Fig.5(b)  show  the  matrices  used  in

the dynamic programming to compute  and

,  respectively.  And  and  are  shown

in Table 3. Take the matrix shown in Fig.5(a) for ex-

ample.  It  is  assumed  that  in  the  first

column  and  in  the  first  row. 

 and ,  and

the  label  on  the -th  column  and  the  label  on

the -th row are the -th triple of  and

the -th triple  of ,  respectively.  And the time

interval  in  each  label  is  omitted  for  simplicity.  The

content of each position in the matrix is calculated by
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following the sequence of arrows.

τi
∀Pik , Pik′ ∈ τi Pik .PT

Pik′ .PT

P11 .PT P12 .PT

Pjl .PT

Θ(P11 , Pjl) Θ(P12 , Pjl)

Θ(P11 , Pjl)

Θ(P12 , Pjl)

Θ(P11 , Pjl)

For  an  indoor  uncertain  sematic  trajectory ,

,  potential  indoor  paths  and

 usually  share  many common triples.  For  ex-

ample,  and  listed in Table 3 share the

first  eight  triples.  Then  for  a  same  potential  indoor

path , in the matrices used in the dynamic pro-

gramming to compute  and , it is

quite clear that the contents of the positions in shad-

ow as shown in Fig.5(a) and Fig.5(b) are completely

the same. In other words, after computing ,

in  the  calculation  of ,  the  contents  of  the

positions  in  shadow  can  be  directly  copied  from  the

matrix, which is used in the dynamic programming to

compute  without any extra calculations.

Part1(τi, τj)

PT Pik ∈ τi
Pjl ∈ τj

Part1(τ1, τj) Pjl .PT

Θ(P11 , Pjl)

Pjl .PT

Θ(P12 , Pjl)

P11 .PT P12 .PT 1 + 8 = 9

Pjl .PT

Θ(P12 , Pjl)

Θ(P12 , Pjl) H20

D22 Pjl .PT

In order to make full use of such a useful proper-

ty  in  the  calculation  of ,  we  propose  a

novel  index storage structure for  matrices  named IM

built  on  each  corresponding  of  and

. As an example shown in Fig.5(c), in the cal-

culation  of ,  IM for  is  constantly

updated.  After  the  calculation  of ,  IM  for

 is  initialized  to  11  columns  with  pointers,

which  are  shown  in  the  top  half  of Fig.5(c).  In  the

calculation  of ,  since  the  first  eight  triples

are shared by  and , the first 

columns  of  IM  for  are  directly  inserted  into

the  matrix  of .  After  the  calculation  of

,  another  two  columns  labeled  with 

and  of the matrix are inserted into IM for 

for  the  next  use,  which  is  shown  in  the  lower  right

hand corner of Fig.5(c).

Part1(τi, τj)

Part1(τi, τj)

α× part1 + (1− α)× part2 ⩾ θ

Part1(τi, τj) ⩾
(θ − (1− α)× part2)/α LB

UB Part1(τi, τj)

The  third  acceleration  strategy  is  to  early  termi-

nate  the  calculation  of .  The  calculation

of  in  line  15  of Algorithm 2 is  to  verify

whether  in line 16. In

other words, we want to know whether 

. We define a lower bound 

and  an  upper  bound  of ,  which  are

calculated as follows:
 

∀τ ′
i ⊆ τi and ∀τ ′

j ⊆ τj, LB = Σ
Pik

∈τ ′
i

Σ
Pjl

∈τ ′
j

(Pik .L× Pjl .L×

Θ′(Pik .PT, Pjl .PT )),

UB = LB + Σ
(Pik

,Pjl
)∈((τi×τj)/(τ ′

i×τ ′
j))
(Pik .L× Pjl .L)×

2×min{Pi1 .PT.ST (), Pj1 .PT.ST ()}
Pi1 .PT.ST () + Pj1 .PT.ST ()

.

Part1(τi, τj)

LB

UB part1

LB UB part1
LB ⩾ (θ − (1− α)× part2)/

α UB < (θ − (1− α)× part2)/α LB ⩾ (θ − (1−
α)× part2)/α

UB < (θ − (1− α)× part2)/α

Part1(τi, τj)

τ ′
i τ ′

j

UB

LB

In the process of calculating , the progres-

sively  larger  lower  bound  and  the  progressively

smaller upper bound  of  are constantly gen-

erated. In this process, we check whether there exists

a lower bound  or an upper bound  of  me-

eting  the  condition  that 

 or . If 

,  then the  condition in  line  16 must  be

satisfied.  And  if ,  then

the  condition  in  line  16  must  not  be  satisfied.  And

thus, the calculation of  can be early ter-

minated,  and  the  condition  in  line  16  can  be  deter-

mined  directly.  If  the  potential  indoor  paths  with

greater  likelihoods  are  selected  in  and ,  the

tighter upper bound  and the tighter lower bound

 can  be  generated,  and  the  third  acceleration

strategy  will  be  more  effective  in  reducing  the  time

overhead.

 

21 21 20 24 23 23 20 22 22 22

1

2



(a)

(b)

(c)




21 21 20 24 23 23 20 22 20

20

22




21 21 20 24 23 23 20 22 22 22

22





 






1

2




 




 






1
2






...

...

Θ(P11 , Pjl )
Θ(P12 , Pjl )

Pjl .PT

Fig.5.   Reuse  of  calculated  matrix.  (a)Matrix  used  in  the  dy-
namic  programming  to  compute .  (b)  Matrix  used
in  the  dynamic  programming  to  compute .  (c)  In-
dex storage structure for matrices IM for .
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O((|PT |max
2
+ |Iidx|max + |Tidx|max)× |τ |max

2 × |P| × |Q|)
O((|PT |max

2 × |D|2 + |IL|2 + |TL|2)× |τ |max
2×

|P| × |Q|)

In summary, by combining the acceleration strate-

gies  presented  in Subsection 4.1 and Subsection 4.2,

the  time  complexity  of  the  USP  algorithm  is  only

,  in-

stead  of 

, the time complexity of the straightforward

baseline TII algorithm. Besides, by using the three ac-

celeration  strategies  proposed  in Subsection 4.3,  lots

of  unnecessary  calculations  can  be  easily  avoided  in

the USP algorithm at quite low computation cost. 

5    Experimental Evalution

IUST Join(P,Q)

In this section, the performances of our USP algo-

rithm on processing -  is evaluated in

detail. 

5.1    Experimental Setup
 

5.1.1    Datasets

×

As far as we know, there is no real dataset being

public or available, which contains indoor trajectories

in a shopping mall. And thus, as what has been done

in most related work[21, 22],  a real-world floorplan③ of

a  shopping  mall  is  used.  Each  floor  with  96  rooms,

four  hallways,  and  four  staircases  takes  136.8

m 136.8 m. We decompose the irregular hallways in-

to smaller but regular indoor partitions. By duplicat-

ing such a floor, a multi-floor indoor space is generat-

ed,  where  each  two adjacent  floors  are  connected  by

four  stairways.  Then  on  each  floor,  there  are  148

doors  or  virtual  doors,  and  109  indoor  partitions  in

total. The detection ranges of all partitioning devices

cover  all  entrances  and  exits  of  indoor  partitions.  In

order to generate indoor uncertain semantic trajecto-

ries  with  different  average  number  of  potential  in-

door  semantic  paths,  the  distribution  and  the  num-

ber  of  presence  devices  on  each  floor  are  varied.

About  the  semantic  information of  the  room in such

indoor space,  each room is randomly assigned to one

IL,  and  each  IL  is  associated  with  some  TLs.  These

ILs  and  TLs  are  obtained  from  the  online  informa-

tion of multiple shopping malls.

In  order  to  generate  indoor  uncertain  semantic

trajectories  in  such  indoor  space,  lots  of  trajectories

are  generated  first  by  following  the  most  commonly

used  method  named  Vita[23].  Then,  according  to  the

P Q T

distribution of static positioning devices, these trajec-

tories  are  transformed  into  the  corresponding  indoor

trajectories.  Finally, 2 000 indoor  uncertain  semantic

trajectories are generated. There are 4.1 potential in-

door semantic paths on average in each indoor uncer-

tain semantic trajectory.  And the average number of

indoor  partitions  and  doors  in  each  potential  indoor

path is 64.9. In the following experiments, the testing

datasets of indoor uncertain semantic trajectories, i.e.,

, , and , with different sizes are all randomly se-

lected from these 2 000 generated indoor uncertain se-

mantic trajectories. 

5.1.2    Experimental Environment

All  methods  are  implemented  in  C++  and  in  a

main  memory  fashion.  All  evaluations  are  conducted

on  a  PC  with  a  3.60  GHz  Intel® CoreTM i9-9900K

CPU and 32 GB RAM. Each experiment is  repeated

over three times, and the average result is reported.

The parameter settings are listed in Table 4.
 
 

Table  4.    Parameter Settings

Variable Range Default

α [0.1, 0.9] 0.3

F [2, 8] 7.0

I2T [1, 9] 5.0

|P| [50, 200] 200.0

|Q| [50, 200] 200.0

|T| [50, 200] 200.0

|IL| = |TL| [2 000, 10 000] 10 000.0
 

5.2    Performance Evaluation for

Algorithm USP
 

5.2.1    Impacts of the Number of Indoor

Uncertain Semantic Trajectories

IUST Join(P,Q) |P| |Q|
|P| |Q| P

Q

|P| |Q|

We first  evaluate  the  total  execution  time  of  the

USP algorithm and the TII algorithm in processing a

query -  w.r.t. varying  or  from

50 to 200.  and  are the sizes of the set  and

, respectively. The results are reported in Fig.6. The

results show that the total execution time of the TII

algorithm  increases  nearly  linearly  with  the  increase

of  or .  And  the  USP  algorithm  is  obviously

faster than the TII algorithm. By using the USP algo-

rithm, instead of the TII algorithm, at least 98.5% of

the total execution time can be easily saved. And the
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|P| |Q|

P Q

P
P

|P|

acceleration  gets  more  obvious  with  the  decrease  of

 or .  Besides,  there is  a key point needing fur-

ther  discussion  in Fig.6(a).  As  illustrated  in Subsec-

tion 5.1.1, the sets  (resp. ) with different sizes are

all randomly selected from 2 000 generated indoor un-

certain semantic trajectories. And the set  with size

of  100  is  not  necessarily  a  subset  of  the  set  with

size  of  150.  Thus  as  shown  in Fig.6(a),  the  random-

ness  of  testing datasets  most  likely  leads  to  that  the

total execution time only increases a little after  is

changed from 100 to 150.

IUST Join(P,Q)

TotalPairs

P×Q TotalPairs = |P| × |Q|
FilteredPairs

In the process of  an -  query,  the

symbol  represents  the  number  of  all  in-

door uncertain semantic trajectory pairs in the candi-

date  result  set ,  i.e., .

And  the  symbol  represents  the  num-

ber  of  invalid  indoor  uncertain  semantic  trajectory

pairs pruned by using the inverted index 3IST. Since

TotalPairs

F ilteredPairs

F ilteredPairs

TotalPairs

IUST Join(P,Q)

|P| |Q|

|P| |Q|

the inverted index 3IST is embedded in both the USP

algorithm  and  the  TII  algorithm,  both 

and  are  the  same  in  the  USP  algo-

rithm  and  the  TII  algorithm.  Then, 

and  of  the  USP algorithm are  evaluated

in  processing  a  query -  w.r.t.  vary-

ing  or  from  50  to  200,  and  the  results  are

shown  in Fig.7.  By  just  using  the  inverted  index

3IST, it is quite obvious that most invalid pairs of in-

door  uncertain  semantic  trajectories  are  pruned  at

quite low computation cost. Only at most 1.3% of all

potential  indoor  uncertain  semantic  trajectory  pairs

left need to be further checked. Besides for 3IST, with

the  variation  of  or ,  the  pruning  ratio  of  in-

valid  indoor  uncertain  semantic  trajectory  pairs  is

quite stable.

After  that,  we  want  to  analyze  the  total  execu-

tion  time  of  the  USP  algorithm  and  the  TII  algo-
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Θ() Φ()

Θ() Φ()

Θ()

Φ()

|P| |Q|

Θ()

Θ()

Φ()

rithm in detail. As defined in Definition 4 and Defini-

tion  5,  to  process  an -  query,  many

times of  and  functions need to be executed in

both  the  USP  algorithm  and  the  TII  algorithm.  We

divide the total execution time of the USP algorithm

or  the  TII  algorithm  into  three  main  parts,  i.e.,  the

execution  time  of  functions,  functions,  and

all  the other parts.  For both the USP algorithm and

the TII algorithm, we evaluate the corresponding ra-

tios of the the execution time of all  functions, the

execution time of all  functions and the execution

time of all the other parts to the total execution time

w.r.t. varying  or , and the results are reported

in Fig.8. For both the USP algorithm and the TII al-

gorithm, the execution of  functions consumes ex-

tremely  large  part  of  the  total  execution  time.  This

indicates that the calculation of  is quite time-con-

suming.  The  execution  time  of  all  the  other  parts  is

always a little longer than that of . For the TII al-

gorithm,  the  corresponding  ratios  of  the  three  main

Φ()

Θ()

|P| |Q|
Θ()

|P| |Q|

Θ()

parts are all relatively stable. And the execution time

of  and all the other parts only take up less than

0.1% of  the  total  execution  time.  For  the  USP algo-

rithm,  the  corresponding  ratio  of  functions  gets

much higher with the increase of  or . Thus, we

have reason to suspect that much more  functions

need  to  be  executed  in  the  USP  algorithm  with  the

increase of  or . Such a guess will be verified in

the  following  experiments.  For  the  execution  time  of

 functions,  the  corresponding  ratio  in  the  execu-

tion of the TII algorithm is always a little higher than

that in the execution of the USP algorithm.

Θ()

Θ()

|P| |Q|

To further figure out why the USP algorithm on-

ly  needs  no  more  than  1.5%  of  the  total  execution

time that the TII algorithm needs, and for the TII al-

gorithm,  why  the  corresponding  ratio  of  is  al-

ways a little higher than that in the execution of the

USP algorithm, the number of the executed  func-

tions  is  evaluated  w.r.t.  varying  or ,  and  the

results are reported in Fig.9. It can be easily seen that
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|P| |Q| Θ()
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Fig.6(a)  and Fig.9(a)  are  quite  similar,  and  so  do

Fig.6(b) and Fig.9(b). This indicates that for both the

TII algorithm and the USP algorithm, the number of

the  executed  functions  determines  the  total  exe-

cution  time  to  a  great  extent.  And  much  fewer 

functions needing to be executed make the USP algo-

rithm need much less execution time than the TII al-

gorithm. Besides, for the three acceleration strategies

presented  in Subsection 4.3,  though  their  abilities  of

avoiding  functions to be executed are always re-

markable, their such abilities decrease a little with the

increase of  or . Much more  functions need

to  be  executed  in  the  USP  algorithm  with  the  in-

crease of  or . In addition, how many  func-

tions to be executed can be avoided by using either of

the  three  acceleration strategies  presented in Subsec-

tion 4.3 will  be  studied  in  detail  by  using  extensive

experiments later in Subsection 5.2.4. 

5.2.2    Impacts  of  Pre-Calculation  for  Door-to-

Door Indoor Distances

Θ()

F

The calculation of function  is time-consuming,

and  we  find  that  there  are  lots  of  repeated  calcula-

tions of door-to-door indoor distances.  Thus, we pro-

pose the first and the second pre-calculation methods

in Subsection 3.3 and Subsection 4.1,  respectively,  to

make  door-to-door  indoor  distances  pre-calculated  to

reduce the time cost. For these two methods, we eval-

uate  the  pre-calculation  time  w.r.t.  the  various  total

number  of  floors  in  the  shopping  mall.  From  the

results  shown in Fig.10,  we  find the  first  method al-

ways  needs  more  pre-calculation  time  than  the  sec-

ond  one.  In  addition,  the  pre-calculation  time  of  the

O(Davg
3×

F 3) O(Davg
3 × F )

first one grows quite faster and that of the second one

grows nearly linearly. These phenomena are matched

with  the  corresponding  time  complexities 

 and , respectively.

In the following experiment, it is assumed that the

pre-calculation  time  is  also  considered  in  the  process

of  IUST-Join.  The  following  four  exection  time  met-

rics are used.

USP● :  the exection time of the USP algorithm,

where part of door-to-door indoor distances have been

pre-calculated by the second pre-calculation method;

USP_A● :  the  exection  time  of  the  USP  algo-

rithm,  where  all  door-to-door  indoor  distances  have

been  pre-calculated  by  the  first  pre-calculation

method;

USP&SP USP● : the sum of  and the pre-calcu-

lation time of the second pre-calculation method;

USP_A&FP USP_A● : the sum of  and the pre-

calculation time of the first pre-calculation method.
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IUST Join(P,Q) |P| |Q|

USP_A USP

The total  number of  floors  is  fixed as 7.  Then

we  evaluate  the  execution  time  on  processing  an

-  query w.r.t. varying  or  from

50  to  200,  and  the  results  are  reported  in Fig.11.  It

can  be  found  that  by  using  the  first  pre-calculation

method to make all door-to-door indoor distances pre-

calculated,  is  a  little  less  than ,  where

only  part  of  the  door-to-door  indoor  distances  have

been  pre-calculated.  However,  when  the  correspond-

ing  pre-calculation  time  is  also  considered  as  part  of

the total exection time, for one IUST-Join query, us-

ing  the  USP algorithm with  part  of  door-to-door  in-

door distances pre-calculated by the second pre-calcu-

lation  method  is  much  more  time-saving  than  using

the  USP  algorithm  with  all  door-to-door  indoor  dis-

tances  pre-calculated  by  the  first  pre-calculation

method.  This  means  that  if  a  limited  number  of

IUST-Join queries need to be processed, the USP al-

gorithm is more preferred.

IUST

Join(P,Q) |P| = 50 |Q| = 200

We also try to use the USP algorithm to process

one IUST-Join query, where none of door-to-door in-

door  distances  has  been  pre-calculated.  This  algo-

rithm  is  used  to  process  the  same  query -

,  where  and .  However,

this  algorithm is  too time-consuming to get  the final

result in five days. Thus, we choose to stop the exper-

iment.  To  conclude,  considering  the  consumed  time,

the  USP algorithm is  completely  infeasible  when  the

door-to-door indoor distances are not pre-calculated. 

5.2.3    Impacts of Semantic Information Encoding

In the following experiments, we evaluate the fol-

lowing three methods.

Φ()

● USP. It  is  the  USP  algorithm  introduced  de-

tailedly  in Section 4.  And  each  semantic  similarity

 function  is  calculated  by  using  the  PUI  algo-

rithm, i.e., Algorithm 3.

Φ()

● USP\SL. It is the USP algorithm where the se-

mantic information of  indoor uncertain semantic tra-

jectories is not encoded by SL-encoding, and each se-

mantic similarity  function is computed by using a

naive method.

Φ()

● USP\PUT. It  is  the  USP  algorithm  where  the

semantic  information  of  indoor  uncertain  semantic

trajectories  is  encoded  by  SL-encoding,  and  each  se-

mantic similarity  function is calculated by follow-

ing (1).

Φ() I2T

Φ()

O(|Iidx|max + |Tidx|max)

I2T

I2T

|IL| |TL|

As  introduced  in Subsection 2.2,  each  room  re-

lates to only one IL, and each IL is associated with a

set of TLs. In this experiment, we evaluate the aver-

age execution time of a single semantic similarity cal-

culation  w.r.t.  varying ,  i.e.,  the  number  of

TLs associated with each IL ranges from 1 to 9, and

the  results  are  shown  in Fig.12(a).  Obviously,  the

PUI Algorithm is the fastest algorithm in computing

the  semantic  similarity .  And  by  using  the  PUI

Algorithm,  instead  of  the  naive  method  in  USP\SL,

up to 88.8% time can be saved in the semantic simi-

larity  calculations.  As  analyzed  in Subsection 4.2,

such a result is matched with that the time complexi-

ty of the PUI algorithm, i.e., .

And the time complexity of the PUI Algorithm is the

lowest.  With  the  increase  of ,  more  TLs  need to

be  processed  in  the  semantic  similarity  calculations.

Thus  both  USP  and  USP\SL  are  slower  in  semantic

similarity calculations. However, with the variation of

, USP\PUI performs quite stably. This is because

two vectors, whose sizes are  and , respective-
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I2T

Φ()

|IL| |TL|

ly,  are  used  to  encode  and ,  respectively,

and  the  calculation  of  (1)  is  not  sensitive  to .

Thus  in  computing  the  semantic  similarity ,

USP\PUI  is  sure  to  be  sensitive  to  and ,

which is studied below.

Φ()

|IL| |TL|

Φ()

|IL| |TL|
O(|IL|+ |TL|)

|IL| |TL|
Φ()

|IL| |TL|

In this experiment, the average execution time of

a  single  semantic  similarity  calculation  is  also

evaluated  w.r.t.  varying  and  at  the  same

time, and the results are shown in Fig.12(b). The exe-

cution  time  of  USP\PUI  in  computing  the  semantic

similarity  grows nearly linearly with the increase

of  and ,  which  is  matched  with  the  corre-

sponding  time  complexity .  And  it  is

obvious that both USP and USP\SL perform relative-

ly stably with the variation of  and . In com-

puting the semantic similarity , though less execu-

tion time is needed by USP\PUI with the decrease of

 and ,  USP\PUI  still  consumes  more  time

than  both  USP  and  USP\SL.  This  is  because  for

|IL| |TL|
USP\PUI,  much  more  calculations  are  needed  in  all

positions of  and . And by using the PUI Al-

gorithm, instead of  the  naive  method in  USP\SL,  up

to 83.7% time can be saved in the semantic similari-

ty calculations.

I2T |IL| |TL|

Φ()

Θ() Φ()

Φ()
I2T |IL| |TL|

Then we evaluate the total execution time of USP

and  USP\SL  in  processing  IUST-Join  w.r.t.  varying

, ,  and ,  and  the  results  are  reported  in

Fig.13(a) and Fig.13(b), respectively. We can see that

by  using  the  PUI  algorithm  instead  of  the  naive

method, though the execution time of computing the

semantic  similarity  is  reduced  greatly,  the  re-

duced execution time in processing IUST-Join is quite

limited.  To  find  out  the  reason,  we  divide  the  total

execution time into three main parts,  i.e.,  the execu-

tion time of  functions,  functions and all  the

other parts. Then the corresponding ratio of the exe-

cution  time  of  functions  to  the  total  execution

time is  evaluated w.r.t.  varying , ,  and .
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Φ()

Θ()

And  the  results  are  reported  in Fig.14(a)  and

Fig.14(b),  respectively.  It  is  quite  clear  that  for  ei-

ther the PUI algorithm or the naive method, the exe-

cution time of  functions is far less than the total

execution time, which is also confirmed by the results

shown in Fig.8. In other words, if we want to reduce

the  execution  time  of  processing  IUST-Join  greatly,

more  attention  may  need  to  be  put  in  reducing  the

execution time of  functions. 

5.2.4    Impacts of Three Acceleration Strategies

In the following experiments, we evaluate the fol-

lowing four methods.

● USP:  the  USP  algorithm,  which  is  intorduced

detailedly in Section 4;

● USP \First: the USP algorithm, but without us-

ing the first acceleration strategy presented in Subsec-

tion 4.3;

● USP \Second:  the  USP  algorithm,  but  without

using  the  second  acceleration  strategy  presented  in

Subsection 4.3;

● USP\Third: the USP algorithm, but without us-

ing  the  third  acceleration  strategy  presented  in Sub-

section 4.3.

Θ()

α
α

Θ()

In  the  first  experiment,  the  total  execution  time

and  the  number  of  executed  functions  of  these

four  methods  are  evaluated  in  processing  IUST-Join,

w.r.t. varying the parameter  from 0.1 to 0.9, where

the  parameter  is  used  in  Definition  4.  The  results

are  shown  in Fig.15.  The  trends  in Figs.15(a)  and

15(b) are quite similar, which shows that the number

of  functions  needing  to  be  executed  determines

the  total  execution time to  a  great  extent.  With the
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Θ()

Θ()

Θ()

Θ()

Θ()

increase of , the importance of the spatial proximity

between  two  indoor  uncertain  semantic  trajectories

increases  in  terms  of  the  similarity  metric  IUS.  And

thus,  for  the  given  IUST-Join,  more  functions

need  to  be  executed  in  these  four  methods,  which  is

proved by Fig.15(b). Through analyzing the data, we

can get that by using the first and the third accelera-

tion strategies,  at  least  78.9% and 71.0% of  the  exe-

cuted  functions  can  be  avoided,  and  89.9%  and

79.7% of the total execution time can be easily saved

on average, respectively. In order to reduce the execu-

tion  time  of  functions,  the  second  acceleration

strategy is to reuse part of the calculated matrix. And

thus,  for  USP and  USP\Second,  the  numbers  of 

functions  needing  to  be  executed  are  completely  the

same. The results show that by using the second ac-

celeration strategy, 20.9% of the total execution time

can be saved on average.  And the acceleration effect

of  the  second  acceleration  strategy  on  the  execution

time of  functions is studied in the follows.

Θ()
α

Θ()
α

We evaluate the average execution time of  a sin-

gle  function of USP and USP\Second w.r.t. vary-

ing  from 0.1 to 0.9, and the results are reported in

Fig.16.  By  reusing  part  of  the  calculated  matrix,  on

average 20.5% of the average execution time of a sin-

gle  function  can  be  reduced.  And  with  the  de-

crease  of ,  the  acceleration  effect  of  using  the  sec-

ond acceleration strategy is much more obvious.
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6    Related Work

Indoor  Space  Data  Model. Though  indoor  space

has  smaller  extents,  distinct  entities,  such  as  doors,

walls, different kinds of rooms, hallways, and staircas-

Gacc

es, altogether form much more complex indoor topolo-

gy  that  constrains  and  enables  the  movements.  And

thus, before the execution of queries in indoor space,

the  conversion  from  the  complex  indoor  space  to  an

indoor space data model is the most fundamental op-

eration. 3D models for indoor space were proposed by

[24],  and  they  focus  on  topological  relationships  be-

tween  indoor  partitions.  However,  these  models  are

not  able  to  support  indoor  distance  calculations.  In-

doorGML[25] and  CityGML④ are  two  methods  where

indoor  space  is  described  in  XML.  Recently,  much

more  attention  is  attracted  by  mapping  the  indoor

space to a graph, where the door-to-door graph[15] and

the extended accessibility base graph[16] are two com-

monly used methods. Graph algorithms can be adopt-

ed  to  search  on  such  a  graph  to  support  various  in-

door  spatial  queries,  such as  the  indoor  distance  cal-

culation between two indoor positions.  For the door-

to-door graph, each door is mapped to a graph vertex.

And there is  a weighted edge between two vertexs if

and only if the corresponding doors belong to a same

indoor  partition.  The  indoor  distance  between  these

two  doors  is  the  weight  on  the  corresponding  edge.

For  the  extended  accessibility  base  graph,  each  in-

door  partition  is  represented  as  a  graph vertex.  And

there is an edge between two indoor partitions if and

only if these two indoor partitions share a same door.

In  this  paper,  we choose  to  map the  complex  indoor

space  to  the  extended  accessibility  base  graph ,

since most recent work[16, 17] has adopted this method.

k

Queries  in  Indoor  Space. Among  location-based

services,  route  planning  is  always  the  most  popular

and useful one. Recently, route planning in various in-

door  venues  such  as  airports,  railway  stations,  and

shopping  malls  is  increasingly  needed  and  attracts

more attention. Some work has been done to support

various  indoor  navigations  with  different  qualifica-

tions and qualifications, such as [17, 21]. As two kinds

of  primitive,  yet  quite  essential  indoor  queries,  near-

est  neighbor  (NN)  queries[16] and  range  queries[16, 26]

are  to  find  the  needed  static  indoor  POIs  (points  of

interest).  Besides,  there  are  also  some studies  on on-

line  indoor  moving  objects,  such  as  distance-aware

spatial  joins[27],  snapshot NN search[15, 28],  and  con-

tinuous  range  monitoring[29].  Among  them,  the  dis-

tance-aware spatial join is to find all such pairs of in-

door  moving  objects,  i.e.,  the  distance  between  each

pair  of  indoor  moving  objects  is  within  a  given  dis-

tance.  And  thus,  the  distance-aware  spatial  join  is

completely different from IUST-Join firstly defined in
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this paper. IUST-Join can be used in a number of es-

sential  indoor applications,  such as friend recommen-

dation  based  on  similar  shopping  interests,  geo-text

data cleaning, keyword-aware indoor route recommen-

dation, trajectory near-duplicate detection, and so on.

Therefore, we choose to detailedly study and efficient-

ly process IUST-Join in this paper. 

7    Conclusions

In  this  paper,  we  proposed  the  highly-efficient

USP  algorithm  to  process  a  new  essential  query

named  IUST-Join.  The  results  of  extensive  experi-

ments  showed  the  effectiveness  and  efficiency  of  the

USP algorithm on processing IUST-Join.  By just  us-

ing the inverted index 3IST embedded in the USP al-

gorithm, as invalid pairs, at least 98.7% of all poten-

tial indoor uncertain semantic trajectory pairs can be

pruned at quite low computation cost. Besides, by us-

ing  our  proposed  USP  algorithm  to  process  IUST-

Join,  instead  of  the  well-designed  baseline  TII  algo-

rithm,  at  least  98.5%  of  the  execution  time  can  be

easily saved. In future work, we will do more work on

how to  efficiently  process  other  useful  queries  on  in-

door uncertain semantic trajectories. 
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