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Abstract    “Smaller  and  Smaller” is  a  woodcut  by  the  Dutch  artist  M.C.  Escher  in  which  the  lizards  designed  in  a

rosette tiling approach the centre by geometric series. This paper proposes an easy method to generate drawings similar to

“Smaller and Smaller”. To this end, the geometrical structure of rosette tilings is first considered from the viewpoint of the

symmetry group in detail. This gives a simple way to construct rosette tilings. Then, a one-to-one mapping between kite-

shaped and square regions is presented to embed a pre-designed template into kite-shaped tiles of rosette tilings. Next, the

algorithms for rendering the rosette tilings are discussed. Finally, some detailed implements of producing rosette drawings

are specified. The presented examples show that by using the existing rich wallpaper templates, the method proposed in

the paper can generate a variety of Escher-like rosette drawings.
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1    Introduction

With the development of computer graphics tech-

nology,  there  is  considerable  research  on  the  genera-

tion of aesthetic patterns based on mathematical prin-

ciples.  This  includes  not  only  the  well-known  fract-

als[1, 2] but  also  patterns  of  the  wallpaper[3–5],  cyclic

and/or  dihedral[3, 6],  hyperbolic[7, 8],  and  spiral[1, 9, 10]

symmetries.  However,  the visual appeal of  computer-

generated  patterns  mainly  comes  from  harmonious

and graceful symmetries. A major defect of such pat-

terns is that they lack artistic vitality.

Dutch artist M.C. Escher is a great graphic artist.

The  order,  rigour,  and  accuracy  of  mathematics

formed  the  soul  of  his  work  and  became  his  unique

classic  sign.  He  showed  that  seemingly  contradictory

sensibility and reason could be perfectly integrated[11],

which  makes  a  durable  and  profound  influence  on

both artists and scientific researchers. Due to the aes-

thetic  appeal  as  well  as  commercial  potential,  there

appear a lot of studies dedicated to the creation of Esc-

her-like arts[11], such as Escherization[12, 13], Escher Sph-

eres[14],  metamorphosis[15],  fractal  drawings[16],  Escher

transmutation[17, 18],  and  hyperbolic  drawings[19, 20].

The  most  striking  feature  of  the  above  research  is

that the motifs are well recognizable.

As  a  common  and  beautiful  curve  in  nature,  the

logarithmic  spiral  has  been  explored  extensively  by

Escher, including “Development II” (1939), “Whirlpools”
(1957), “Path  of  Life  I” (1958), “Path  of  Life  II”
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(1958), and “Sphere Surface with Fish” (1958). There

is an outstanding woodcut that has to be mentioned –
“Smaller  and Smaller”①.  In  this  work,  as  the  lizards

of  different  colours  approach  the  centre  infinitely,

they  are  progressively  reduced by a  geometric  series,

which conveys the elements of  colour,  spiral,  similar,

and  cyclic  symmetries  simultaneously.  In  a  letter  to

his  son,  Escher wrote, “at moments of  great  enthusi-
asm it seems to me that no one in the world has ever
made something this beautiful and important”.

Inspired  by  Escher's  spiral  artworks,  rich  pro-

grams②, ③, ④ and  studies⑤, ⑥[21, 22] focus  on  creating

spiral patterns. One of the types of spiral patterns is

kite-based  tiling[23] (see Fig.1(a)  for  an  example  of

such  tiling).  In  [23, 24],  Fathauer  studied  only  some

properties of these tilings and has not introduced any

method  suitable  for  the  generation  and  rendering  of

such tilings.
 
 

(a) (b)

Fig.1.   (a)  Kite-based  tiling.  (b)  Periodic  tiling  that  can  be
mapped to the tiling from (a) using the anti-Mercator mapping.
 

In the literature, we can find a description of one

approach that could be used to render the kite-based

tiling. The method is presented by Kaplan⑤ and it is

based on the use of anti-Mercator mapping[21]:
 

f(z) = ez,

z ∈ Cwhere .  In  this  method,  we generate  a  periodic

tiling, and then we transform it using the anti-Merca-

tor  mapping.  Kaplan  considered  only  periodic  tilings

in  which  the  edges  of  the  tiles  are  straight  lines.

When we transform such edges by the anti-Mercator

mapping,  then  we  get  logarithmic  spirals,  concentric

circles,  or  radial  lines⑤.  Therefore,  we  cannot  get  a

rosette tiling in which all the edges are straight lines.

To get the rosette tiling using the anti-Mercator map-

ping,  we  need  to  use  a  periodic  tiling  in  which  the

edges  are  not  straight  lines  (see Fig.1(b)),  i.e.,  they

are curves. Such a tiling was not reported in the liter-

ature  earlier,  therefore  we  would  need  to  find  its

mathematical  description.  However,  the  approach  of

mapping  this  tiling  with  the  anti-Mercator  mapping

has several drawbacks.

The  edges  of  the  periodic  tiling  are  not  straight

lines,  therefore  it  is  harder  to  generate  such  tiling,

and the control over the resulting kite-based tiling is

not natural. To generate patterns in an Escher style,

we need to embed some motif into the tiles of the pe-

riodic  tiling.  To do this,  we can design the motif  di-

rectly on the tile or create the motif in a square tex-

ture and next map it into the tile. In both cases, we

need to take into account the fact that the anti-Mer-

cator mapping will transform the motif; thus it needs

to be properly designed. This is very difficult because

of  the  non-linearity  of  the  anti-Mercator  mapping.

Moreover,  in  the  approach  with  the  square  texture,

we need to calculate texture co-ordinates. Because the

tiles in the periodic tiling have curved edges, it would

require  solving  some  non-linear  equation,  which  can

require  the  use  of  a  numerical  method  and  can  be

time-consuming.

Instead of finding the mathematical description of

the  tiling  required  in  the  anti-Mercator  approach,  in

this paper, we propose some other method of generat-

ing  rosette  tilings  that  can  be  used  to  obtain  draw-

ings  similar  to  Escher's “Smaller  and  Smaller”.  This

method will  not have the mentioned drawbacks. The

method  is  a  direct  one,  i.e.,  we  generate  the  tiling's

kites directly, and the control over the tiling is natu-

ral by using two parameters. In the designing stage of

the  motif,  we  do  not  need  to  take  into  account  any

non-linear mapping because the motif will be directly

mapped onto the kites. Moreover, the method is very

simple to implement using shaders.

The remainder of this paper is outlined as follows.

First,  in Section 2,  we  introduce  rosette  tilings.  We

use the symmetry group to analyze its structure and

describe  how  to  construct  rosette  tilings  in  detail.

Then,  in Section 3,  we  establish  a  one-to-one  map-
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①https://mcescher.com/wp-content/uploads/2019/05/LW-413.jpg, Nov. 2024.
 

②https://tessellations.ca/2017/05/04/deforming-your-tessellations-into-infinite-spirals/, Nov. 2024.
 

③https://apps.apple.com/us/app/id534529876?platform=ipad, Nov. 2024.
 

④https://www.tissellator.com/, Nov. 2024.
 

⑤https://isohedral.ca/escher-like-spiral-tilings/, Nov. 2024.
 

⑥http://www.josleys.com/show_gallery.php?galid=290, Nov. 2024.
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ping  to  deform  a  unit  square  into  a  kite-shaped  re-

gion.  Given  a  pre-designed  wallpaper  template,  this

technique allows us to embed the template into kite-

shaped tiles of a rosette tiling. Next, we introduce the

algorithms  for  rendering  rosette  tilings  in Section 4

and  present  a  gallery  of  the  resulting  Escher-like

drawings  in Section 5.  To  show  the  performance  of

the  proposed  rendering  algorithm,  in Section 6,  we

show the generation times of drawings obtained with

the  algorithm.  Finally,  we  conclude  the  paper  and

show our future directions in Section 7. 

2    Symmetry Group of Rosette Tiling

Cn

In  this  section,  we  introduce  the  rosette  tiling  of

the symmetry, which is a combination of a rotational

symmetry  with  a  self-similar  radial  scaling.  We

start  by  introducing  some  concepts  about  symmetry

groups.

T S

T

g1, g2, . . . , gn G

G

F

G

G

A symmetry  of  a  tiling  is  a  transformation 

under  the  action  of  which  is  invariant.  A  tiling's

symmetry group comprises all its symmetries. The el-

ements  of a group  are called the set

of  generators if  every element of  can be expressed

as  a  finite  product  of  their  powers  (including  nega-

tive  powers).  The  fundamental  region  under  the

symmetry  group  is  a  connected  set  whose  trans-

formed copies under the action of  cover the entire

space without overlapping, except at the boundaries.

Fig.2(a)  shows  the  type  of  the  considered  rosette

tilings,  which are  tiled  with  similar  kite-shaped tiles.

The interweaving tiles make the tiling appear to be a

complex structure. It is easy to check that it possess-

es similar and rotational  symmetries.  An easily over-

looked fact is that this tiling also contains spiral sym-

metry,  which  is  an  important  factor  in  why  it  con-

veys  a  strong  visual  appeal  (see  the  dark–light  red

arm emphasized in Fig.2(b)). For convenience, we will

use the complex numbers to handle the symmetries of

rosette tiling and call the symmetry group associated

with the tiling as the rosette group.

ABCD

∠AOB = π/n ∠DAB = α

∠ABC = θ s

We  first  focus  on  the  tile  marked  in

Fig.2(a).  Assuming , ,  and

, by the Sine Rule, we obtain the ratio  of

the short edge to the long edge as

 

s =
|AD|
|AB|

=
sin

θ

2

sin
(
θ

2
+

π

n

) , (1)

θ = (n− 1/n)π− α |BD| = 1

D = (s2/(1− s2), 0)

ABCD

where .  If  we  set ,  then

by the summation formula of geometric series, we get

the  coordinates .  Then,  the  other

vertices  of  the tile  can  be  easily  calculated,

obtaining:
 






2










(a)

S
S

S

S









(b)

p







A B C D
Σ0 Σk = gk2 (Σ0) k = 0, 1, 2, . . . Tm, k

{Tm, k|Tm, k = gm1 [gk2 (Σ0)], m = 1, 2, 3, . . . , n, k ∈ Z} C∗

Fig.2.  (a) A rosette tiling by kite-shaped tiles centred at the origin of the Cartesian coordinate system. (b) A rosette tiling in which
one arm is emphasized by the alternate dark and light red tiles. Vertices of the biggest tile in this arm are denoted by , , , 
and  the  tile  itself  is  denoted  by .  The  arm  is  formed  by  tiles  for .  The  tiles  of  the  set

, cover the plane .
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A =

s cos
π

n
1− s2

,
s cos

π

n
tan

π

n
1− s2

 ,

B =

(
1

1− s2
, 0

)
,

C =

s cos
π

n
1− s2

, −
s cos

π

n
tan

π

n
1− s2

 .

C C∗ = C \ {0}
z ∈ C∗ g1 g2

Let  be  the  complex  plane,  and .

For ,  let  and  be transformations defined

as
 

g1(z) = ze
2π

n i, (2)

 

g2(z) = sze
π

n i, (3)

i =
√
−1

eiθ = cos θ + i sin θ g1
2π/n

g2
s

π/n g2

g−1
2 (z) = (1/s)ze−

π

n i

ABCD Σ0

g1 g2
G(n, α) Σ0

G(n, α)

where .  Recall  the  famous  Euler  formula

.  It  is  obvious that  represents  a

counter-clockwise  rotation  of  about  the  origin.

The effect of  is equivalent to a contraction of scale

 first, and then followed by a counter-clockwise rota-

tion  of  about  the  origin.  Geometrically,  is

equivalent  to  a  counter-clockwise  spiral  contraction

(thus  is a clockwise spiral expan-

sion). Denote the region of the tile  as  and

the  symmetry  group  generated  by  and  as

.  Next,  we  investigate  the  effect  of  under

group .

g2
Σ1 = g2(Σ0)

g2 Σk = gk
2(Σ0) k = 1, 2, 3, . . .

In Fig.2(b), by the geometrical meaning of , it is

clear that . In fact, by continuously apply-

ing ,  we  see  that  for .

Thus, the set
 

Σ∗ = {Σk|Σk = gk
2(Σ0) for k ∈ Z},

g1
Σ∗ 2π/n

forms  an  infinite  spiral  arm.  If  we  use  to  succes-

sively rotate the spiral arm  of  about the ori-

gin, we have
 

C∗ = {Σm|Σm = gm
1 (Σ

∗) for m = 1, 2, 3, . . . , n}

=
n∑

m=1

+∞∑
k=−∞

gm
1 [g

k
2(Σ0)]. (4)

G(n, α)

Σ0

G(n, α)

Consequently,  is a symmetry group of the

rosette tiling and  is a fundamental region associat-

ed with . (4) gives a simple algorithm for con-

structing rosette tilings. 

3    One-to-One Mapping Between

Kite-Shaped and Square Regions

G(n, α)To embed a square image into tiles  of  a 

Σ0

rosette  tiling,  in  this  section,  we  derive  a  one-to-one

mapping  between  the  kite-shaped  region  and  the

unit square.

O′x′y′ D Σ0

DABC

(−s2/(1− s2), 0) O′A′B′C ′ Σ0

Σ
′

0

For convenience, we set the origin of a new coor-

dinate  system  at  the  vertex  of  tile  (see

Fig.3). Now, the tile  is translated by a vector

 to quadrilateral ;  is cor-

respondingly denoted as  (see Fig.3).
 
 

'

' '

'

'

'









S
'

z1 ∈ O′A′ z3 ∈ O′C′

z2 ∈ B′C′ z4 ∈ A′B′

z = x+ yi ∈ z1z2 ∩ z3z4

Fig.3.     and  are  symmetrically  placed
boundary  points  of  and  that  satisfy  (5),
respectively; point .
 

Σ
′

0 z2 ∈ B′C ′ z4 ∈ A′B′

z1 ∈ O′A′

z3 ∈ O′C ′ zk (k = 1, 2, 3, 4)

In  tile ,  suppose  and  are

symmetrically  placed  boundary  points  of 

and , respectively. That is,  

satisfy
 

z2 +
s2

1− s2
= g−1

2

(
z1 +

s2

1− s2

)
,

z4 +
s2

1− s2
= g1

(
g−1
2

(
z3 +

s2

1− s2

))
,

(5)

g1 g2where  and  are  transformations  defined  in  (2)

and (3), respectively.

A′ (a, b)

∠A′O′B′ = ∠ADB = ϕ

Denote  the  coordinates  of  as  and

. It is easy to check that
 

(a, b) = |O′A′|(cosϕ, sinϕ)

=
cos( π

2n
+ α

2
)

sinα
(cosϕ, sinϕ),

ϕ = (n+ 1)π/2n− α/2where . Assume that
 

z1 = vA′,
z2 − C ′ = v(B′ − C ′), (6)

v ∈ [0, 1]for , and
 

z3 = uC ′,
z4 − A′ = u(B′ − A′), (7)

u ∈ [0, 1]for .
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z = x+ yi

z1z2 z3z4 z ∈ z1z2 ∩ z3z4
z (u, v)

Let  be  the  intersection  between  seg-

ments  and ,  i.e., .  We are  go-

ing  to  map  onto  a  point  of  the  unit  square

(see Fig.4).
 
 





       

     

 

z = x+ yi ∈ Σ0

(u, v)
(x, y) v u

Fig.4.   For  a  given  point  in Fig.3,  (13)  and
(14)  determine  a  unique  point  in  the  unit  square  that
corresponds to , where  and  are the roots of (13) and (14).
 

B′ − C ′ − A′ = (1− 2a, 0) A′ =

(a, b) B′ = (1, 0) C ′ = (a,−b)

Note that  because 

, ,  and .  By  (6)  and  (7),

we have
 

z2 − z1 = C ′ + v(1− 2a, 0), (8)

 

z4 − z3 = A′ + u(1− 2a, 0). (9)

z − z1 = p1(z2 − z1) p1 ∈ [0, 1]Let  for  certain .  By

(6) and (8), we have
 

z = z1 + p1(z2 − z1) = vA′ + p1[C
′ + v(1− 2a, 0)]. (10)

Similarly, using (7) and (9), we can obtain
 

z = z3 + p2(z4 − z3) = uC ′ + p2[A
′ + u(1− 2a, 0)] (11)

p2 ∈ [0, 1]for certain .

By comparing the real and imaginary parts of (10),

we get
  {

x = va+ p1a+ p1v(1− 2a),
y = bv − b p1.

(12)

p1

v

By eliminating  from (12), we derive a quadrat-

ic equation about  as
 

v2(1− 2a) + v

(
2a− y(1− 2a)

b

)
− x− ay

b
= 0. (13)

u
With  a  similar  treatment  for  (10),  we  obtain  a

quadratic equation about  from (11) as
 

u2(1− 2a) + u

[
2a+

y(1− 2a)

b

]
− x+

ay

b
= 0. (14)

z = x+ yi ∈ Σ
′

0Given , by (13) and (14) we find a

(u, v) ∈ [0, 1]× [0, 1]

Σ′
0

Σ0

point  (as  the  smaller  roots  in

(13) and (14) are less than zero, we take the positive

roots).  This  establishes  a  one-to-one  mapping  be-

tween  and a square region so that we can embed a

square  image  into  the  fundamental  region .  Then,

by (4), we can use copies of the image to construct a

rosette drawing similar to “Smaller and Smaller”. 

4    Rendering of a Rosette Tiling

In  this  section,  we  introduce  algorithms  for  ren-

dering  rosette  tilings.  All  the  algorithms  rely  on  the

algebraic  structure  of  the  tiling  and  the  one-to-one

mapping introduced in Section 2 and Section 3.

Σ0

g1 g2

C

k = 0, 1, 2, . . .

One way to render the rosette tiling is the direct

use of (4). Thus, we take the fundamental region ,

texture  it  using  texture  coordinates  calculated  using

the one-to-one mapping in Section 3, and next, we use

the generators  and  to obtain successive tiles of

the  tiling.  Using  (4),  we  generate  the  tiling  of  the

whole  space ,  but  when  we  want  to  generate  a

rosette pattern like the one presented in Fig.2, in (4),

we take only .

Now, let us notice that
 

Σk = gk
2(Σ0) = g2(g

k−1
2 (Σ0))

= g2(Σk−1), k = 1, 2, . . . ,

Σk = gk
2(Σ0) = g2(g

k+1
2 (Σ0))

= g2(Σk+1). k = −1, −2, . . . .

These  formulas  show  that  a  single  spiral  arm  in

the tiling is a simple feedback process. Therefore, we

can  use  graphics  card  capabilities  in  the  generation

process,  namely  the  transform  feedback  present  in

OpenGL and Vulkan.

Σ0 g1 g2
z ∈ C z′

Σ0

The  presented  method  is  not  the  only  method

that we can use to render a rosette tiling. We can de-

velop an algorithm that can be implemented in a frag-

ment shader. From (4), we know that every point in

the plane can be obtained by transforming some point

from  using  and . Thus, we need a method to,

for  a given ,  find the corresponding point  in

.

2π/n

g−1
1

−π/n π/n

Firstly,  let  us  examine  the  rosette  tiling  in

Fig.5(a). We see that each area between two magen-

ta lines contains the same pattern. Therefore, we can

concentrate only on one such area because every point

of the plane can be transformed to this area by a ro-

tation  using  some  multiple  of  as  the  rotation

angle, i.e., we use  multiple times. In our method,

we will  select the area in which the argument of  the

points  is  between  and  (see  the  area  be-
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Σ0 T1 T2

B,C, F1, E1 A,B,E2,

F2 E1 E2

tween the magenta lines in Fig.5(b)). In this area, let

us consider  and the two triangles  and . The

triangles are the halves of two kites of the tiling, i.e.,

the kites with the vertices , and 

. Therefore, the vertices  and  of the triangles

can be calculated as follows:
 

E1 =g−1
2 (B),

E2 =g1(g
−1
2 (B)) = g1(E1).

Σ0 Σ0

Now, let us consider the first green kite on the left

of  in Fig.5(b). We can transform it to  by using
 

f1(z) = g−1
2 (g−1

2 (g1(z))) =
1

s2
z.

1/s2

Σ0

f1
Σ0 f1

Σ0 f1
Σ0

Σ0

f1
T1 T2

Σ0

We see that this  is  a scaling transformation with

the  scaling  factor .  If  we  consider  the  second

green kite to the left of , then we can transform it

to the first  green tile  using  and then transform it

to  again  using .  In  general,  we  can  gradually

scale  each  green  tile  to  the  left  of  using ,  and

eventually,  we  reach .  Similar  reasoning  can  be

made for the blue triangles to the left of , but this

time  the  lower  blue  triangles  are  scaled  using  to

, and the upper ones to . When we consider the

kites to the right of , we notice that we can repeat

the same reasoning, but using
 

f2(z) = g−1
1 (g2(g2(z))) = s2z,

s2

Σ0 T1 T2

which again is a scaling transformation, but with the

scale factor . Therefore, we can scale each point in

the considered area to ,  or , i.e., the points in-

R C B A O

1/s2 s2

R

side the quad  with vertices , , ,  using the

scaling  factor ,  and  the  scaling  factor  for  the

points outside of this quad. Of course,  if  we want to

generate  a  rosette  pattern  like  the  one  presented  in

Fig.2,  then  we  only  consider  the  points  in .  The

points outside of this quad are discarded.

zsLet  be  the  point  after  the  scaling  transforma-

tion. Now, we have three cases:

zs ∈ Σ0 z′ = zs
z′

z

1) ; therefore  and we solve (13) and

(14)  for  to  find  the  texture  co-ordinates  and  tex-

ture ;

zs ∈ T1 Σ02) ; therefore we transform it to  using
 

z′ = g2(zs),

z′

z

and  next,  we  solve  (13)  and  (14)  for  to  find  the

texture co-ordinates and texture ;

zs ∈ T2 Σ03) ; therefore we transform it to  using
 

z′ = g2(g
−1
1 (zs)),

z′

z

and  next,  we  solve  (13)  and  (14)  for  to  find  the

texture co-ordinates and texture .

arg(z) ∈
[0, 2π)

We summarize the method as pseudocode in Algo-

rithm 1.  In  the  algorithm,  we  assume  that 

. 

5    Implementation  and  Gallery  of  Rosette

Drawings in an Escher-Like Style

In  this  section,  we  specify  some  implementation

details  and give a gallery of  the resulting Escher-like

drawings.

 

(a)























(b)

S

Σ0 T1 T2

Fig.5.  (a) Each area between two magenta lines of the rosette tiling contains the same pattern. (b) Every point between the two
magenta lines can be transformed by scaling to one of the sets , , or .
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Algorithm 1. Colour Calculation for a Rosette Tiling

z ∈ C
n ∈ N α ∈ [0, 2π] G(n, α)

Σ0 T1 T2

s g1 g2

G(n, α) R C B A

O brosette

cbg T

　Input: :  a  point  for  which  we  calculate  the  colour;

  , :  the  parameters  defining ;

  :  the  fundamental  region; , :  triangles  in

  Fig.5(b); :  the  scaling  factor  in  (1); , :  generat-

  ors of ; : the quad with the vertices , , ,

   (Fig.5(b)); :  a  boolean  variable,  if  true,  then

  render  the  rosette  pattern,  else  render  the  complete

  plane tiling; : background colour; : a texture.

z　Output: Colour for .

m =

⌊
arg(z) + (π/n)

2π/n

⌋
1 

z′ = ze−m(2π/n)i2 

sf = 1/s23 

z′ ̸∈ R4 if  then

brosette5　if  then

cbg6　　return 

sf = s27　

z′ ̸∈ Σ0 z′ ̸∈ T1 z′ ̸∈ T28 while  and  and  do

z′ = sfz9　

z′ ∈ T110 if  then

z′ = g2(z
′)11　

12 else

z′ ∈ T213　if  then

z′ = g2(g
−1
1 (z′))14　　

(u, v) z′15 Find texture co-ordinates  for  by solving (13) and (14)

T (u, v)16 return 

Wallpaper  groups  allow  both  square,  and  dia-

mond lattices[4, 5]. For a diamond wallpaper template,

we need to transform it  into a square template first.

Fig.6 shows the process of producing a manta rosette

drawing constructed from a wallpaper drawing of the

diamond  lattice.  We  first  cut  a  diamond  cycle  tem-

plate  from Fig.6(a).  Then  we  deform  the  template

Fig.6(b) as the square template Fig.6(c), which can be

realized  by a  simple  affine  transformation or  a  bilin-

ear  interpolation.  Using  the  one-to-one  mapping  de-

veloped in Section 3, we next embed the square tem-

plate Fig.6(c)  into  a  kite-shaped  region – the  funda-

mental  region  associated  with  the  rosette  group.  Fi-

nally,  by  (4),  we  use  the  kite-shaped  template  from

Fig.6(d) to construct a rosette drawing. Fig.7 demon-

strates the process of creating a rosette drawing con-

structed from a wallpaper pattern of a square lattice.

For the square wallpaper template, except for the re-

dundant step of converting the diamond template in-

to a square template, all the other steps are similar to

the  diamond  case.  To  save  space,  for  the  following

cases,  we  will  no  longer  display  technical  details,

merely showing the deformed kite-shaped template at

the upper right corner of each drawing.
 

(a) (b) (c) (d) (e)

G(16, (45/360)2π)

Fig.6.  Process diagram of a rosette drawing constructed from a wallpaper drawing of diamond lattice. (a) A manta wallpaper draw-
ing with a diamond lattice. (b) A cycle diamond template cut from (a). (c) The square template obtained by a bilinear interpolation
of image (b). (d) Using the one-to-one correspondence given in (13) and (14), a kite-shaped template deformed from template (c). (e)
A manta drawing constructed of  symmetry based on a kite-shaped template (d).

 

(a) (b) (c) (d) (e)

G(5, (80/360)2π)
G(6, (80/360)2π))

Fig.7.  Process diagram of a rosette drawing constructed from a wallpaper drawing of square lattice. (a) A seahorse and eel drawing
with square lattice. (b) A cycle square template cut from (a). (c) Using the one-to-one correspondence given in (13) and (14), a kite-
shaped template deformed from template (b). (d) A seahorse and eel drawing of  symmetry constructed using the
kite-shaped  template  (c).  (e)  By  modifying  colour  data  of  template  (b),  we  get  a  seahorse  and  eel  drawing  of 
symmetry.
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Using  a  strategy  developed  in  [9]  of  modifying

colours, Fig.7(e)  displays  a  seahorse  and  eel  drawing

different  from Fig.7(d).  This  approach can yield  rich

drawings of different styles easily and will be utilized

in some of the next cases.

S T

T

S

Rosette  drawings  demonstrated  in Figs.7(d)–7(e)

involve  a  technique  called  colour  symmetry.  Assum-

ing  is a symmetry of template , a colour symme-

try of  is a permutation of colours which is compati-

ble with [5]. Intuitively, a colour symmetry template

is a template in which colours of motifs are arranged

symmetrically.  Escher  creatively  introduced  colour

symmetry  into  his  artworks,  which  greatly  enhanced

the  aesthetic  appeal[11].  Due  to  strong  contrast,  tem-

plates  of  colour  symmetry  would  yield  appealing

drawings. Fig.8 and Figs.9(a)–9(d) display 10 rosette

drawings  of  colour  symmetry.  The  arrangement  of

template  motifs  may  greatly  affect  the  overall  effect

of rosette drawings. Figs.9(c)–9(d) illustrate a case in

which  the  arrangements  of  the  skate  motifs  differ  a

little.  However,  the  resulting  rosette  drawings  are

quite different.

In Fig.9(e),  we  show  a  beetle  rosette  drawing  of

G(13, (90/360)2π)

G(12, (80/360)2π)

 symmetry. To obtain a better aes-

thetic  effect,  the  boundary  motifs  are  trimmed  care-

fully so that a complete beetle is preserved. It should

be pointed out that the square or diamond templates

used in the construction of rosette drawings must sat-

isfy periodic symmetries of wallpaper groups. Fig.9(f)

shows  a  frog  and  crocodile  rosette  drawing  of

, which is a defective drawing since

two halves of a crocodile at the edge of the template

cannot  form  an  intact  normal  crocodile  motif.  The

fundamental  reason  is  that  the  original  square  tem-

plate  does  not  meet  the  translational  periodicity  of

wallpaper groups.

In  1958,  Escher  created  a  difficult  artwork,

“Sphere  Surface  with  Fish” on  the  curved  sphere

space.  In  this  work,  the  alternate  rows  of  white  and

black fish spirally swim outwards from one pole to an-

other; the fish attain the greatest size on the equator,

and after that, they become smaller and disappear in-

to  poles.  Now,  we  present  a  simple  way  to  produce

drawings similar to “Sphere Surface with Fish”.

N = (0, 0, 1) ∈ R3 S = {(x, y, z) ∈
R3|x2 + y2 + z2 = 1} R3

Let  and  let 

 be  the  unit  sphere  in .  The
 

(a) (b) (c)

(d) (e) (f)

G(4, (65/360)2π) G(5, (80/360)2π)
G(8, (85/360)2π) G(13, (90/360)2π)

G(12, (80/360)2π) G(6, (80/360)2π)

Fig.8.  (a) An octopus drawing of  symmetry. (b) An octopus drawing of  symmetry. (c) A frog
drawing  of  symmetry.  (d)  A  frog  drawing  of  symmetry.  (e)  A  bird  drawing  of

 symmetry. (f) A bird drawing of  symmetry.
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S Ĉ = C ∪ {∞}
N φ : S → Ĉ
stereographic  projection  of  to  from

 is  the map  given by the following for-

mula
 

φ(x, y, z) =

{ x

1− z
+

y

1− z
i, if (x, y, z) ̸= N ,

∞, if (x, y, z) = N ,

(x, y, z) ∈ S φ−1 : Ĉ → S
φ

where .  The  inverse  map  of

 is given by the formula
 

φ−1(a+bi) =


(
2a

d
,
2b

d
,
a2 + b2 − 1

d

)
, if a+ bi ∈ C,

N , if a+ bi=∞,

d = a2 + b2 + 1where .

P

φ−1 P

Now, suppose that  is a kite-based plane tiling.

Then, by using  one can project  onto the finite

sphere surface and obtain a spherical drawing. Fig.10

and Fig.11 show  12  spherical  drawings  similar  to

“Sphere Surface with Fish”. 

6    Performance

To show the performance of the proposed render-

ing  algorithm,  we  rendered  the  drawings  in Fig.8(b)

n 5

n 13

2 4 8

and Fig.9(c)  of  different  resolutions.  The  drawing  in

Fig.8(b)  has  a  low  value  of ,  i.e., ,  whereas  the

drawing in Fig.9(c) was obtained for a higher value of

, i.e., . The rendering method was implemented in

C++  using  OpenGL  and  GLSL  (OpenGL  Shading

Language).  The  computations  were  implemented  in

the  fragment  shader  using double  precision numbers.

Moreover,  we  rendered  the  drawings  without  anti-

aliasing,  i.e.,  one  sample  per  pixel,  and  with  anti-

aliasing using multi-sampling with various numbers of

samples  per  pixel  ( , ,  and ).  The  tests  were  per-

formed  on  a  computer  with  the  following  specifica-

tions:  NVIDIA GeForce GTX 1 660 Ti  graphics  card

with  6  GB  GDDR6  SDRAM,  Intel  i5-9600K  (@3.70

GHz), 32 GB DDR4 RAM and Windows 10 (64 bit).

1 000× 1 000

8 000× 8 000 300

400

The resultant rendering time (in milliseconds) are

gathered  in Table 1 for Fig.8(b),  and  in Table 2 for

Fig.9(c).  For  both drawings,  we see  that  the  genera-

tion time in the case of one sample per pixel (no anti-

aliasing)  is  very  short.  For  low  resolution

(  pixels),  it  is  equal  to  8  ms–9  ms,  and

for high resolution (  pixels), between 

and  milliseconds. When we turn the anti-aliasing

 

(a) (b) (c)

(d) (e) (f)

G(7, (50/360)2π) G(8, (80/360)2π)
G(13, (90/360)2π) G(13, (90/360)2π)

G(13, (90/360)2π) G(12, (80/360)2π)

Fig.9.  (a) A crocodile drawing of  symmetry. (b) A crocodile drawing of  symmetry. (c) A skate
drawing  of  symmetry.  (d)  A  skate  drawing  of  symmetry.  (e)  A  beetle  drawing  of

 symmetry. (f) A defective frog and crocodile drawing of  symmetry.
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8 000× 8 000

on, then the time is longer, but the quality of the gen-

erated  drawings  is  greater,  especially  in  the  areas

where many tiny details appear. For two samples per

pixel, we observe time is less than a second, even for

high resolutions. For four and eight samples per pixel,

only for the resolution of  pixels, we get

time longer than one second, i.e., for four samples, the

time  is  longer  than  two  seconds,  whereas,  for  eight

samples, the time is longer than three seconds.

The  proposed  rendering  method  of  rosette  draw-

ings has also low memory requirements. We only need

memory for the rendered image and several variables

needed in the calculations. 

7    Conclusions

Inspired  by  Escher's “Smaller  and  Smaller”,  this

paper  considered  the  computer-aided  generation  of

Escher-like  rosette  drawings.  We first  introduced the

symmetry group to analyze the geometrical structure

of rosette tilings. Then, to embed a pre-designed tem-

plate into kite-shaped tiles of a rosette tiling, we elab-

orated a one-to-one mapping between the kite-shaped

and  square  regions.  We  finally  specified  some  imple-

mentations of drawings similar to “Smaller and Small-
er” and “Sphere  Surface  with  Fish”.  The  proposed

method can create  rich  drawings  using  existing  wall-

paper templates.

G(n, α)

The kite-based tilings obtained with the proposed

method are generated directly without using any non-

linear  mapping.  They  can  be  controlled  in  a  natural

way using the two parameters of the symmetry group

.  Moreover,  we  can  design  the  motif  in  a

square texture without the need to take into account

any non-linear  mappings.  The embedding of  the tex-

ture  into  the  kite  is  easy  and  fast  because  we  solve

simple  quadratic  equation.  Therefore,  the  proposed

method  eliminates  all  the  drawbacks  of  the  method

based on the anti-Mercator mapping mentioned in the

introduction.

In  contrast  to  the  methods  reported  in  [21,

22]⑦, ⑧, ⑨, ⑩, ⑪, the approach developed in this paper

has  several  advantages.  First,  the  construction  of

rosette  tilings  merely  involves  simple  similarity  and

rotation  transformations,  which  makes  the  resulting

drawings  present  a  strong  spiral  effect  (because  tiles

 

(a) (b) (c)

(d) (e) (f)

G(10, (80/360)2π) G(12, (80/360)2π)
G(10, (55/360)2π) G(9, (85/360)2π)

G(19, (65/360)2π) G(10, (75/360)2π)

Fig.10.  (a) A spherical butterfly drawing of  symmetry. (b) A spherical cat drawing of  symme-
try. (c) A spherical crocodile drawing of  symmetry. (d) A spherical frog drawing of  symmetry.
(e) A spherical goose drawing of  symmetry. (f) A spherical octopus drawing of  symmetry.
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⑦https://tessellations.ca/2017/05/04/deforming-your-tessellations-into-infinite-spirals/, Nov. 2024.
 

⑧https://apps.apple.com/us/app/id534529876?platform=ipad, Nov. 2024.
 

⑨https://www.tissellator.com/, Nov. 2024.
 

⑩https://isohedral.ca/escher-like-spiral-tilings/, Nov. 2024.
 

⑪http://www.josleys.com/show_gallery.php?galid=290, Nov. 2024.
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have no distortion). It also provides an easy-to-imple-

ment measure to design spiral patterns by hand (see a

case  demonstrated  in Figs.12(a)–12(b)).  Second,  our

method  is  straightforward  and  elementary.  We  did

not introduce complex functions that cannot be easi-

ly  understood  by  ordinary  people  (such  as  the  anti-

Mercator  mapping  used  by  Kaplan⑩).  Finally,  based

on  computer  graphic  technology,  we  developed  a

mathematical  algorithm  to  obtain  Escher-like  draw-

ings.  The  precise  mathematical  approach  completely

avoids the human errors inherent in Escher's manual

creative process.

The  applications  of  Escher-like  rosette  drawings

span  across  at  least  five  domains,  demonstrating  the

versatility and practical utility of the proposed meth-

ods.

Textile  Design.  The  techniques  enable  the  cre-

ation  of  unique,  symmetrical  patterns  for  textiles  in

fashion and home decor. This allows designers to pro-

duce distinctive fabric prints that enhance the visual

appeal  of  clothing  and  interior  fabrics,  such  as  cur-

tains and upholstery.

Interior  Decoration.  The  generated  patterns  can

be  utilized  in  designing  wallpapers,  floor  tiles,  and

 

(a) (b) (c)

(d) (e) (f)

G(7, (80/360)2π) G(10, (35/360)2π)
G(8, (85/360)2π) G(13, (90/360)2π)

G(12, (85/360)2π) G(7, (80/360)2π)

Fig.11.  (a) A spherical lion drawing of  symmetry. (b) A spherical lion drawing of  symmetry.
(c)  A  spherical  fish  drawing  of  symmetry.  (d)  A  spherical  fish  drawing  of  symmetry.  (e)  A
spherical dragon drawing of  symmetry. (f) A spherical dragon drawing of  symmetry.

 

Table  1.    Rendering Time (ms) of Fig.8(b) Using the Proposed Rendering Algorithm for Various Resolutions (in Pixels) and Num-
ber of Samples

Resolution One Sample Two Samples Four Samples Eight Samples

1 000× 1 000 8.517 16.803 33.667 61.350

2 000× 2 000 33.118 65.239 116.338 202.251

4 000× 4 000 129.299 203.397 327.665 566.856

8 000× 8 000 327.971 551.430 2 056.120 3 020.710

 

Table  2.    Rendering Time (ms) of Fig.9(c) Using the Proposed Rendering Algorithm for Various Resolutions (in Pixels) and Num-
ber of Samples

Resolution One Sample Two Samples Four Samples Eight Samples

1 000× 1 000 9.526 19.105 35.173 67.047

2 000× 2 000 36.224 68.214 131.132 215.955

4 000× 4 000 136.665 218.860 376.312 728.326

8 000× 8 000 381.989 703.412 2 359.940 3 646.360
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furniture coverings. These applications help in achiev-

ing  aesthetically  pleasing  and  thematic  interior

spaces, tailored to specific styles or colour schemes.

Poster and Graphic Design. In the realm of adver-

tising  and  marketing,  these  complex  patterns  can  be

incorporated into posters, flyers, and digital advertise-

ments.  They serve as  eye-catching elements that can

effectively  capture  attention  and  convey  messages,

thereby  enhancing  brand  recognition  and  visual  im-

pact.

Digital  Media and Web Design.  The patterns can

be applied to digital interfaces, including websites and

virtual reality environments, to create engaging visu-

al experiences. They add depth and interest to digital

backgrounds  and  elements,  improving  user  interac-

tion and overall digital aesthetics.

Educational  Tools.  These  patterns  also  serve  an

educational purpose by illustrating mathematical con-

cepts  such  as  symmetry,  geometry,  and  tessellation.

They can be integrated into educational materials  to

make learning these concepts more engaging and visu-

ally intuitive for students.

Overall,  the  broad  applicability  of  these  Escher-

like  patterns  underscores  their  potential  to  influence

diverse fields. This not only benefits the aesthetic and

functional aspects of products and spaces but also en-

hances  the  educational  approaches  in  understanding

complex  mathematical  principles.  In  the  future,  we

plan  to  generate  richer  Escher-like  tessellations  and

explore  the  commercial  potential  of  Escher  artwork

(see two examples shown in Figs.12(c)–12(d)). 
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