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Abstract    Deep convolutional neural networks with high performance are hard to be deployed in many real world appli-

cations, since the computing resources of edge devices such as smart phones or embedded GPU are limited. To alleviate

this hardware limitation, the compression of deep neural networks from the model side becomes important. As one of the

most popular methods in the spotlight, channel pruning of the deep convolutional model can effectively remove redundant

convolutional channels from the CNN (convolutional neural network) without affecting the network’s performance remark-

ably. Existing methods focus on pruning design, evaluating the importance of different convolutional filters in the CNN

model. A fast and effective fine-tuning method to restore accuracy is urgently needed. In this paper, we propose a fine-tun-

ing method KDFT (Knowledge Distillation Based Fine-Tuning), which improves the accuracy of fine-tuned models with

almost negligible training overhead by introducing knowledge distillation. Extensive experimental results on benchmark

datasets with representative CNN models show that up to 4.86% accuracy improvement and 79% time saving can be ob-

tained.

Keywords    model compression, deep learning, knowledge distillation, fine-tuning

  

1    Introduction

In the field of big data analysis, deep convolution-

al neural networks (DCNNs) are steadily pushing the

envelope of a variety of tasks, such as image classifi-

cation[1–6], object detection[7, 8], and semantic segmen-

tation[9, 10].  Nowadays,  CNN  (convolutional  neural

network) models are mainly proposed by experts, and

their network structures are designed to be concise to

a  great  extent.  However,  to  learn  from  a  huge  vol-

ume  of  data  and  achieve  a  remarkable  performance,

the network still needs to be deep, with a large num-

ber of parameters. Such large CNNs are both compu-

tationally  expensive  and  memory  demanding.  They

can  only  be  trained  and  deployed  with  the  help  of

GPUs or other sophisticated hardware. Therefore, an

intuitive method to deploy DCNNs in resource limit-

ed applications is to compress DCNN models.

To reduce computation of CNN models with limit-

ed performance degradation, model compression tech-

niques  have  emerged.  Many  studies  were  proposed

from  different  perspectives,  including  connection

pruning[11, 12], sparsity  regularization[13],  parameter

quantization[14], low rank approximation[15], and struc-

tural channel pruning[16–19].

The idea of removing redundant components in a

neural  network came from LeCun et  al.[20].  With the

help of information-theoretic ideas, it is found that by

removing  unimportant  weights,  a  network  could  be

easier to train and achieve better generalization, with

even better performance. Inspired by this work, sever-

al  studies  on  sparsity  regularization  and  connection

pruning  have  emerged,  which  either  obtains  sparse

weight  matrices  by  regularization  in  the  training

phase or prunes the network weights directly. Howev-

er,  the  models  pruned  by  these  methods  are  often
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non-structured  neural  connections,  resulting  in  their

limited  applications  on  general-purpose  hardware  or

BLAS[21] (Basic  Linear  Algebra  Subprograms)  li-

braries.  Some  work  compresses  the  models  by  low

rank approximation[22] or encoding[23].

In contrast, channel pruning methods do not have

this  limitation,  making  them  more  suitable  for  com-

pressing CNNs, since they prune entire convolutional

channels  away.  Usually,  there  are  three  phases  for  a

channel  pruning  method.  Firstly,  an  importance  as-

sessment mechanism on convolutional channels is pro-

posed. This mechanism may only consider local statis-

tical characteristics of convolutional channels, such as

the average percentage of zeros (APoZ)[24] or the aver-

age rank of kernel matrices[16]. It could also assess the

influence  of  a  kernel  on  the  model's  overall  perfor-

mance[17]. Secondly, guided by the assessment mecha-

nism and a proper pruning rate, unimportant kernels

are removed. To keep a structural balance and main-

tain accuracy, the importance of kernels is often com-

pared inside the same layer, and the balance of prun-

ing rate for different layers is also considered[17].  The

third phase is called fine-tuning[25]. During this phase,

the  pruned  networks  have  to  be  trained  for  several

epochs with the same training dataset to restore accu-

racy.

Knowledge  distillation[26] is  a  promising  way  to

obtain  a  small  model  that  retains  the  accuracy  of  a

large  one,  by  transferring  the  complex  knowledge

learned by the large model to the small one.

Among  all  the  methods  above,  channel  pruning

methods are the most promising way to apply DCNN

models on resource limited edge devices. The accura-

cy of the pruned model after fine-tuning may be close

to or even exceed the accuracy of the original model.

But  the  increase  of  compression  rate  for  channel

pruning methods is urgent, and the accuracy drop af-

ter  extreme  pruning  is  a  dominant  bottleneck  for

modern channel pruning methods. On the other hand,

to  get  an  ideal  fine-tuning  accuracy,  sometimes  it

takes a lot of  training epochs,  even more than train-

ing the original model. When the pruning rate is too

large,  the  accuracy  drops  significantly  and  could  not

be improved by simply adding fine-tuning epochs. We

notice that the deep convolutional models before and

after channel pruning make a good pair of the teach-

er  and  the  student.  Inspired  by  this  observation,  we

propose  the  Knowledge  Distillation  Based  Fine-Tun-

ing (KDFT) for channel-pruned deep models, a frame-

work which utilizes knowledge distillation in the fine-

tuning phase for a channel pruning method to better

and more efficiently restore accuracy.

Our main contributions are threefold.

• We  propose  the  Knowledge  Distillation  Based

Fine-Tuning  (KDFT),  which  fine-tunes  channel-

pruned  DCNNs  by  any  channel  pruning  methods,

with  no  extra  information  and  negligible  computing

overhead.

•
α

 We present a dynamic learning schedule to au-

tomatically  set  the  hyper-parameter  according  to

the compression rate, which could alleviate the hyper-

parameter sensitivity of knowledge distillation.

• We  analyze  the  impact  of  structural  skewness

on KDFT, to guide practitioners to apply KDFT bet-

ter under various practical scenarios.

Experiments  are  conducted  on  two  benchmark

datasets  CIFAR-10  and  CIFAR-100[27],  using  three

representative large CNN models, including ResNet[3],

VGGNet[28],  and  GoogLeNet[2].  The  results  demon-

strate both the effectiveness and efficiency of our pro-

posed  method,  compared  with  many  state-of-the-art

channel pruning methods. 

2    Related Work
 

2.1    Non-Structural Model Compression

To remove redundant components in a neural net-

work, most studies cared about fully-connected layers

at  first.  Guo et  al.[12] proposed  a  dynamic  network

surgery  to  remarkably  reduce  the  network  complexi-

ty  by  making  on-the-fly  connection  pruning,  which

could  recover  timely  when  the  pruning  decision  goes

wrong.  Srinivas et  al.[29] pruned unimportant connec-

tions in neural networks by explicitly imposing sparse

constraint  over  weights  and  stored  the  model  in  a

sparse format after pruning. However, the speedup of

these  methods  are  based  on  the  support  of  sophisti-

cated sparse matrix operation libraries or hardware. 

2.2    Structural Model Pruning

From Multilayer  Perceptron  (MLP)[30] to  DCNN,

the structure of deep neural network becomes increas-

ingly  modularized.  This  makes  it  more  beneficial  to

prune  whole  convolutional  channels,  rather  than

pruning fully-connected layers.

Structured  sparsity  learning  (SSL)  presented  by

Wei et al.[13] made an effort to get a compact sparse

model  during  training  by  adding  a  group  Lasso  con-

straint  to  the  objective  function  and  pruning  chan-

nels  with near-zero weights.  Gao et  al.[17] proposed a

discrete  model  compression  method,  which  prunes

channels by measuring the overall discriminative pow-
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θ

er  of  a  sub-network  after  closing  certain  discrete

gates.  These  gates  are  inserted  after  feature  maps,

and the opening of gates is  controlled by a learnable

parameter . Other studies mainly focused on convo-

lutional  channel  itself,  looking for a good importance

assessment mechanism to make pruning decisions. Lin

et al.[16] found that the average rank of feature maps

generated  by  a  certain  filter  is  nearly  the  same,  re-

gardless  of  how much data  the  CNN has  seen.  Thus

the filters in a certain layer could be sorted and then

pruned according to their average rank by scanning a

number of input samples. Instead of convolutional fil-

ters,  Liu et al.[18] focused on the batch normalization

layers  after  convolutional  layers.  They  indirectly  as-

sessed the importance of convolutional filters by their

scaling factor produced by batch normalization layers.

Chin et  al.[31] proposed  a  global  ranking  method  for

filters  in  different  layers,  by  using  layer-wise  affine

transformations over filter norms to construct a glob-

al ranking of filters in a learnable fashion. 

2.3    Knowledge Distillation

Hinton et  al.[26] put  forward  the  idea  of  teacher-

student model for knowledge distillation. This method

makes the student model learn from ground truth and

the experience of teacher model at the same time, by

introducing the  softened output  of  the  softmax layer

of  the  teacher  network  as  a  soft  target  to  the  loss

function  of  the  student  model.  To  make  the  distilla-

tion  more  suitable  for  deep  models,  Romero et  al.[32]

proposed  Fitnets,  which  introduces  an  intermediate

output of the teacher model as hint in addition to the

softened logits. Yim et al.[33] proposed flow of the so-

lution procedure (FSP) to train students for different

tasks.  FSP is  a  more  complex  knowledge  representa-

tion  which  describes  the  transforming  process  of  fea-

ture  map  outputs  of  different  stages  of  deep  struc-

tural  models.  Chen et al.[6] improved the accuracy of

the student model by utilizing maximal teacher infor-

mation through a review mechanism. 

3    Knowledge Distillation Based Fine-Tuning

There are two stages in our method: 1) removing

unimportant convolutional channels of a DCNN mod-

el  with  any  channel  pruning  method,  2)  performing

knowledge distillation from the original  model  to the

pruned  model  for  fine-tuning,  to  recover  the  pruned

model's accuracy effectively. 

3.1    KDFT for Generic CNN Channel

Pruning Methods

i

Ai Ai+1

Ki Ai ∈ Rni, hi, wi

ni hi × wi

Ki ∈ Rni, ni+1, h, w ni+1

ni h× w

ni+1 ni

Ai ni+1

Ai+1

For a generic channel pruning method, no matter

it prunes channels layer-wise or globally, the pruning

process  for  a  certain  layer  is  similar.  As  shown  in

Fig.1, for the -th convolutional layer, the three main

parts of the network structure are input feature map

,  output  feature  map ,  and  convolutional  fil-

ters .  Input  here  is  a  3D  vector,

with  channels  of  2D  feature  maps.

 represents  convolution  filters

containing  channels of  kernels. By applying

these  convolutional  filters  on  channels  of  in-

put feature maps in , we get  channels of fea-

ture maps in  after convolutional transformation.
 
 

Input of the
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
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(b)

(a)

iFig.1.  Illustration for channel pruning of the -th convolution-
al  layer.  (a)  Filters  and  feature  maps  before  pruning.  (b)  Fil-
ters and feature maps after pruning.
 

F ()

cpi

K
′

i ∈ Rni, n
′
i+1, h, w = F (Ki, cpi)

n
′

i+1 = ni+1 − 1 i

With a pruning method,  (assuming it prunes

layer  by  layer),  we  can  prune  a  certain  number  of

unimportant  channels  according  to  the  compression

rate for this layer, . We get the pruned kernel ma-

trix . We can see from

Fig.1 that  if  we prune one  convolutional  filter  away,

we  also  reduce  one  channel  of  the  output  feature

maps  ( )  of  the -th  layer,  and  the

channel dimension of the filters in the next layer is al-

so reduced by one.

MT

MS

After pruning all layers in the original pre-trained

model, we get a pruned model. Denoting them as 

and , respectively, we follow the settings in [26] to
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MT

MS xi

zi
T = NT(x

i) zi
S = NS(x

i)

NT

NS

zi zi
T zi

S

illustrate  the  fine-tuning  process  of  KDFT  with 

and .  For a network input sample ,  we can get

two feature vectors extracted by the teacher and stu-

dent  networks  as  and ,  re-

spectively. These feature vectors, called logits, are ac-

tually  the  input  of  the  softmax  layer,  while  and

 are the teacher network and the student network

without  softmax,  respectively.  Through  the  softmax

layer,  the  logits  vectors  (  or )  could  be  con-

verted to the possibility for each class.
 

qi =
exp(zi)∑
j

exp(zi
j)
.

TP

Since there are significant differences between the

teacher  and  student  networks,  logits  computed  by

them might not be similar. A temperature parameter

 is  introduced  to  the  softmax  function  to  soften

the output of softmax, so that the student could learn

from the teacher more conveniently.
 

qi
k =

exp(zi
k/TP )∑

j

exp(zi
j/TP )

.

With the guidance of the teacher network, the loss

function of the student network is written as
 

L =
1

n

n∑
i=1

((1− α)D(qi
S,y

i) + αTP 2D(qi
S, q

i
T)), (1)

yi i

D(·, ·)

α

MS

MT

where  is  the  ground  truth  label  of  the -th  input

sample,  is the cross entropy loss for guarantee-

ing the performance of the student network. The left

term  in  the  function  is  the  hard  target,  which  mea-

sures  the  distance  between  student  network  outputs

and the ground truth. The right term is the soft tar-

get and calculates the cross entropy between the stu-

dent and teacher outputs. The weight parameter  is

used to balance the soft and hard targets, make sure

that  learns  a  good  proportion  from  the  ground

truth and .

MS

MT

MT

MS

α

Dynamic alpha()

During the training process of , the network of

 is  frozen  and  batches  of  input  samples  from the

training set are fed into both networks,  only has

to  inference  from  input  and  provide  guidance  with

logits,  and  the  loss  of  is  calculated  according  to

(1).  Then  the  error  is  back-propagated  only  on  the

student network. A detailed algorithm pseudocode for

KDFT  is  shown  in Algorithm 1.  For  every  fine-tun-

ing epoch, parameter  is automatically set by func-

tion , which will be detailed in Sub-

section 3.2 and  the  pruned  model  is  fine-tuned  with

knowledge distillation (KD).

Algorithm 1. KDFT

F cp
M Em

Input: channel pruning method , compression rate , DCNN
          , maximum fine-tuning epochs 

MKDFTOutput: fine-tuned channel-pruned DCNN 

M ′ = F (M, cp)1: ;

MKDFT = M ′2: ;

E = 1, 2, . . . , Em3: for  do

α = Dynamic alpha(E, cp)4:    ;

MKDFT = KD(M,MKDFT, α);5:   
6: end for

MKDFT7: return ;
 

3.2    Fine-Tuning  Pruned  ResNets  with

HRank Analysis

α

To illustrate  the  effectiveness  of  KDFT and ana-

lyze  the  impact  of  parameter ,  we  employ  our

method  on  the  channel  pruning  method  HRank[16].

Lin et al.[16] applied their method to many deep net-

works  such  as  VGG-16[28],  GoogLeNet[2],  and  Mo-

bileNet[34].  We  only  fine-tune  the  pruned  model  of

ResNet56[3] because  its  architecture  is  deeper  and

more complex, which makes it more representative.

The  original  ResNet56  model  is  trained  with  the

dataset  CIFAR-10[27],  with  an  accuracy  of  93.12.

Firstly we apply HRank to the pre-trained model with

three  different  compression  rates,  22.4%,  42.9%,  and

71.8%,  respectively.  Then  we  fine-tune  the  pruned

models  primitively for 150 epochs,  and the recovered

accuracies  of  the  three  models  are  93.29%,  92.90%,

and 91.52%, respectively, which is illustrated in Fig.2.

We can see that the recovery results are not bad, the

accuracy  of  the  pruned  model  with  low  compression

rate  even surpasses  the original  model.  One explana-
 

0.1

93.5

93.0

92.5

92.0

91.5

0.2

A
c
c
u
ra

c
y
 (

%
)
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

Original Model Accuracy
22.4%-HRank Fine-Tuning
22.4%-KDFT
42.9%-HRank Fine-Tuning
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71.8%-HRank Fine-Tuning
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α
Fig.2.   Accuracy  of  ResNet56  models  after  pruning  by  HRank
and  fine-tuning  by  KDFT,  with  different  values.  Dash-dot-
ted  and  dashed  lines  indicate  the  accuracy  of  original  model
and the model fine-tuned without KDFT, respectively. The leg-
end indicates the compression rate and the fine-tuning method
of a curve.
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tion  for  this  phenomenon  is  that  the  pruned  model

has less parameters than the original model to a prop-

er extent, which does not harm its fitting ability but

makes it easier to train under this circumstance.

α

α

α

To analyze  the  impact  of  parameter ,  for  every

compression rate,  we try different values from 0.1 to

0.9 with a stride of  0.1.  The results  are presented in

Fig.2. In general, the performance of KDFT is always

better than that of the primitive fine-tuning. It can be

seen  that  the  directions  of  the  lines  above  the  origi-

nal model accuracy are opposite to the lines below it.

When  the  recovered  model  accuracy  is  higher  than

that  of  the  original  model,  it  descends  with  the  in-

crease of . And on the contrary, when the recovered

model  accuracy  is  lower  than  that  of  the  original

model,  it  ascends  with  the  increase  of .  This  phe-

nomenon is very intuitive: when the student is naive,

learning  from  the  teacher  is  easier  for  it  than  learn-

ing from the world directly. But when the student is

better  than  its  teacher,  knowledge  and  experience

from the teacher could only restrict the development

of the student, and it is better to explore the world it-

self.

α

E

Em

cp

Dynamic alpha()

In  order  to  make  sure  that  the  student  network

learns enough from the teacher network but is not re-

stricted  by it,  we  propose  a  dynamic  learning  sched-

ule,  with  an  adaptive  parameter ,  according  to  the

compression rate of  the pruned model.  Let  be the

current epoch,  be the total fine-tuning epochs and

 denotes  the  parameter  compression  rate  of  the

pruned  model.  We  get  a  dynamic  learning  schedule

 following  a  linear  piecewise  func-

tion as below.
 

α =



0.9, if E < Em × cp,

0.9− 0.8× (E − Em × cp)

0.9× Em − Em × cp
,

if Em × cp < E < 0.9× Em,

0.1, if E > 0.9× Em.
 

4    Experiments
 

4.1    Settings

Datasets  and  Models. To  demonstrate  the  effec-

tiveness  and  efficiency  of  KDFT  on  channel  pruned

methods for DCNN pruning, we conduct experiments

on  two  benchmark  datasets,  CIFAR-10  and  CIFAR-

100[27],  for  image  classification.  The  performance  of

KDFT on many popular DCNN models is studied, in-

cluding ResNet56 and ResNet34 with residual blocks,

VGG-16,  and  GoogLeNet  with  inception  mudules.

Resnet34  is  trained  and  fine-tuned  on  CIFAR-100,

while other models on CIFAR-10.

Metrics. To evaluate the pruning results quantita-

tively,  we  use  two  metrics,  Params  (number  of  pa-

rameters) and FLOPs (float Point operations) to rep-

resent model size and its needed computing resource.

Besides,  PR  (pruning  rate)  is  adopted  to  show  how

much a model is pruned. If not specified, the parame-

ter  reduction  denotes  the  model  compression  rate.

Top-1 accuracy is used as the metric for model accu-

racy.

Implementations. Our method KDFT is applied to

three  channel  pruning  methods,  HRank[16],  BN-slim-

ming[18],  and  LeGR[31],  implemented  by  PyTorch[35].

Before pruning, HRank uses 10 input samples to cal-

culate the average rank of each convolutional channel,

and  BN-slimming  needs  a  sparse  training  for  200

epochs to prepare for the pruning. In the fine-tuning

stage,  all  these  methods  use  the  optimizer  of  the

Stochastic  Gradient  Descent  algorithm (SGD)[36].  All

the hyper-parameters for fine-tuning, including initial

learning rate, batch size, weight decay, learning decay

step, and momentum are set according to [16, 18, 31],

respectively.  All  experiments  are  conducted  on  two

NVIDIA GTX 3060 GPUs. 

4.2    Results on CIFAR-10

32× 32

CIFAR-10 is a dataset containing 10 classes of im-

ages,  and there  are  50k training  and 10k testing  im-

ages,  whose  resolution  is .  Here  we  train  and

prune  three  DCNN models,  ResNet56,  VGG-16,  and

GoogLeNet with HRank, and the first  two with BN-

slimming  and  LeGR[31].  The  reason  we  choose  these

three  methods  is  that  they  are  representative,  since

they  represent  different  visions  for  pruning.  HRank

sorts  the  channels  in  every  layer  according  to  their

average  rank  given  a  certain  number  of  input  sam-

ples,  and it  prunes  away unimportant  channels  layer

by layer, thus the compression rate for every layer in

controllable.  BN-slimming  sorts  all  the  convolutional

channels  in  the  network  according  to  their  scale  fac-

tor  and prunes  channels  globally,  which may lead to

extreme pruning in some layers. L2-norm[13] is a tradi-

tional  metric  to  compare  the  importance  of  different

channels  with  each  convolutional  layer,  and  LeGR

proposes  a  learned  affine  transformation  to  improve

the  applicability  of  L2-norm,  making  it  suitable  to

compare channels across different layers. To conclude,

these methods have different assessment angles for fil-

ters.  LeGR  focuses  directly  on  the  convolutional  fil-
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ters  and compares  their  L2-norms,  while  HRank and

BN-slimming use indirect means to assess the impor-

tance of filters.

Comparison with HRank. Table 1 shows the com-

parison results on CIFAR-10. The models are pruned

by  HRank,  fine-tuned  with  and  without  KDFT,  re-

spectively.  The  three  original  models  are  trained  for

200  epochs  and  every  model  is  fine-tuned  for  300

epochs after pruning. The learning rate is initially set

to 0.01, and divided by 10 at epochs 150 and 225. The

network  structures  of  the  three  DCNNs are  different

from each other, but as shown in Table 1, the perfor-

mance of KDFT is always better than that of primi-

tive  fine-tuning,  and  the  accuracy  improvements  for

different  compression  rates  nearly  follow  the  same

trend. Taking ResNet56 for example, for the compres-

sion rate of 22.4%, 42.9%, and 71.8%, the accuracy of

the  models  fine-tuned  by  KDFT  exceeds  HRank  by

0.07%,  0.46%,  and  0.50%,  respectively.  KDFT  could

even improve the fine-tuning accuracy when the stu-

dent's performance is better than that of the teacher

model.  And  a  same  trend  followed  by  all  models  is

that  when  the  compression  rate  is  higher,  the  im-

provement of KDFT is more obvious (e.g., 0.07 < 0.46

< 0.50).  That is a great news since the bottleneck of

improving  compression  rate  for  channel  pruning

methods  is  exactly  the  unbearable  drop  of  accuracy.

With KDFT, the compression limit of pruning meth-

ods could be pushed to a further extent.

Comparison  with  BN-Slimming. The  results  of

pruning  and  fine-tuning  comparison  with  BN-slim-

ming  is  shown  in Table 2.  The  original  models  are

trained  with  channel  sparse  regularization  for  200

epochs.  The  learning  rate  is  initially  set  to  0.1,  and

divided by 10 after every 50 epochs. The training pa-

rameters  for  the  fine-tuning  stage  are  the  same  as

training  stage.  We  can  see  the  fine-tuning  accuracy

improvements  by KDFT is  more significant  on mod-

els pruned by BN-slimming. For ResNet56 with com-

pression  rate  of  84.7%,  pruned  by  BN-slimming,  the

improvement  is  0.83%,  while  the  one  pruned  with

HRank  by  71.8%  compression  rate  is  improved  by

0.50%. As for VGG-16-BN models, the HRank pruned

model with compression rate of 83.3% is improved by

0.08% through KDFT, while the improvement of the

model  83.5%  pruned  by  BN-slimming  is  0.47%.  We

hypothesize this is due to the nature of the two meth-

ods.  The  models  pruned  by  HRank  are  more  struc-

turally  balanced  since  the  compression  rate  is  well

controlled in every layer, and thus it is easier to train

in  the  fine-tuning  stage,  while  the  model  globally

pruned  by  BN-slimming  might  be  extremely  pruned

in some layers  and its  accuracy is  harder  to  recover.

This  may  be  the  reason  that  knowledge  distillation

has more effect on the models pruned by BN-slimming.
Comparison with LeGR. LeGR is a globally prun-

ing method like BN-slimming, which may also end up
with an unbalanced structure.  We use ResNet56 and

 

Table  1.    Fine-Tuning Comparisons Between KDFT and HRank[16] on CIFAR-10

Model ×106Params ( )/PR (%) ×106FLOPs ( )/PR (%) HRank (%) KDFT (%)

ResNet-56 0.85/0.0 126.55/0.0 93.12 –
0.66/22.4 90.85/28.2 93.88 93.95

0.49/42.9 65.94/47.9 93.39 93.85

0.24/71.8 34.79/72.5 92.16 92.66

VGG-16-BN 14.99/0.0 314.29/0.0 93.94 –
2.77/81.5 131.17/58.1 93.68 93.82

2.51/83.3 104.78/66.7 93.63 93.71

1.90/87.3 66.95/78.7 93.20 93.42

GoogLeNet 6.17/0.0 1 529.42/0.0 94.97 –
2.86/53.6 649.19/57.6 94.90 95.10

2.10/66.0 395.42/74.1 94.42 94.84

 

Table  2.    Fine-Tuning Comparisons Between KDFT and BN-Slimming[18] on CIFAR-10

Model ×106Params ( )/PR (%) ×106FLOPs ( )/PR (%) BN-Slimming (%) KDFT (%)

ResNet-56 0.85/0.0 126.55/0.0 93.78 –
0.69/18.1 89.89/29.0 92.66 93.99

0.62/27.9 76.93/39.2 92.59 93.89

0.13/84.7 16.56/86.9 87.27 88.10

VGG-16-BN 14.99/0.0 314.29/0.0 93.58 –
4.64/76.9 197.80/37.0 93.76 93.97

2.48/83.5 106.25/66.2 93.84 94.31
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VGG-16-BN as the base models, which are trained for

200  epochs  before  pruning.  In  the  fine-tuning  stage,

the initial learning rate is set to 0.01, and it is multi-

plied by 0.2 at the 18th, 36th, and 48th epoch, respec-

tively, with totally 60 fine-tuning epochs. The accura-

cy  improvement  of  LeGR is  still  larger  than  that  of

HRank, when the compression rates of both methods

are  near.  For  example,  the  accuracy  improvement  of

ResNet56  pruned  by  HRank  with  compression  rate

71.8% is  0.50%,  while  pruned by  HRank with  75.6%

compression rate, the improvement is 0.98%. This al-

so  supports  our  hypothesis  that  KDFT is  more  suit-

able for structurally extremely pruned models.

Comparison with Pure Knowledge Distillation. To

illustrate the superiority of DKFT over the tradition-

al  knowledge  distillation  method,  we  conduct  con-

trast  experiments  on  models  pruned  by  LeGR.  For

KDFT, we fine-tune the pruned model directly for 60

epochs,  and  for  KD,  the  pretrained  model  before

pruning is set to be the teacher, and the pruned mod-

el is set to be the student after we reinitialize the pa-

rameters  of  it,  after  that  KD  is  trained  for  also  60

epochs.  The  results  are  shown  in Table 3.  We  could

see  that  with  the  same  training  budget,  the  perfor-

mance  of  KDFT is  always  better  than that  of  tradi-

tional  KD,  for  both  DCNN models  and  all  compres-

sion rates. 

4.3    Results on CIFAR-100

Besides experiments on the CIFAR-10 dataset, in

this  subsection  we  consider  ResNet34  on  the  image

classification  task  of  CIFAR-100.  Though  shallower

than  ResNet56,  ResNet34  has  much  more  convolu-

tional  channels  structurally,  which  makes  it  a  better

option  for  the  classification  task  with  more  classes.

Since there are 100 object classes in CIFAR-100, it is

more  challenging  for  DCNNs  to  get  a  good  perfor-

mance.  The  ResNet34  models  are  trained  for  200

epochs and the accuracy of the pre-trained model on

this  dataset  is  only about 71%, which is  much lower

than  that  on  the  CIFAR-10  dataset.  We  prune  the

pre-trained  model  with  HRank,  BN-slimming,  and

LeGR  at  two  compression  rates  respectively,  after-

wards  the  pruned  models  are  fine-tuned  with  and

without  KDFT,  respectively,  and  the  results  are

shown in Table 4.

Every  pruned  model  is  fine-tuned  for  200  epochs

in Table 4.  The  accuracy  improvement  of  KDFT  is

greater  on  the  dataset  CIFAR-100,  with  all  pruning

methods  and  all  compression  rates.  With  two  differ-

ent  compression  rates  for  the  three  methods  respec-

tively, the accuracies of models pruned by HRank are

promoted by 0.96% and 0.29%, LeGR promotes their

accuracies  by  0.67% and 1.22%,  while  the  accuracies

of  models  pruned  by  BN-slimming  are  promoted  by

2.89%  and  3.36%,  respectively.  These  improvements

are  of  great  significance  for  a  100-class  classification

task, while the overhead of KDFT is negligible.  This

fully demonstrates the effectiveness of KDFT. To con-

firm  our  hypothesis  that  KDFT  works  better  on

pruned  models  with  unbalanced  structures,  we  set  a
 

Table  3.    Fine-Tuning Comparisons Between KDFT and LeGR[31] on CIFAR-10

Model ×106Params ( )/PR (%) ×106FLOPs ( )/PR (%) LeGR (%) KDFT (%) KD (%)

ResNet-56 0.85/0.0 126.55/0.0 92.87 – –
0.46/46.5 62.38/50.1 92.70 93.40 91.23

0.33/61.0 37.45/70.0 91.34 92.30 89.97

0.21/75.6 24.94/80.0 89.97 90.95 89.17

VGG-16-BN 14.99/0.0 314.29/0.0 93.70 – –
3.05/79.7 187.75/40.3 93.43 93.74 92.52

2.39/84.1 156.42/50.2 93.44 93.79 92.45

 

Table  4.    Fine-Tuning Pruned ResNet34 on CIFAR-100 with/Without KDFT

Method ×106Params ( )/PR (%) ×106FLOPs ( )/PR (%) Accuracy (%) KDFT (%)

HRank 21.15/0.0 1 155.10/0.0 71.15 –
3.99/81.1 298.56/74.2 72.94 73.90

2.76/87.0 208.97/81.3 72.71 73.00

BN-slimming 21.14/0.0 1 115.10/0.0 71.12 –
4.78/77.4 357.7/68.0 67.13 70.02

3.81/83.3 285.09/74.4 66.19 69.55

LeGR 21.14/0.0 1 115.10/0.0 77.40 –
7.99/62.2 575.69/48.4 76.46 77.13

4.18/80.2 288.16/74.2 74.00 75.22
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constrain  that  at  least  15%  channels  in  each  layer

should be preserved in the pruning stage. Under this

circumstance,  the  improvement  by  KDFT  with  BN-

slimming is distinctly more remarkable than that with

HRank and LeGR. 

4.4    More Analysis

Efficiency  Analysis. The  accuracy  recover  effec-

tiveness  of  KDFT  is  evidently  better  than  primitive

fine-tuning,  which  is  already  proved  by  the  experi-

ments above. In this subsection, we consider the effi-

ciency instead, to demonstrate how fast KDFT could

be,  to  get  a  better  recovered  accuracy.  Taking  fine-

tuning ResNet34 on CIFAR-100 for example, we mea-

sure how many epochs it  takes for KDFT to get the

same  accuracy  as  or  better  accuracy  than  primitive

fine-tuning.  The  pruning  ratio  and  methods  here  are

the  same  as  in Table 4.  After  pruning,  we  fine-tune

the  pruned  models  for  100  epochs.  In  the  first  20

epochs, the learning rate is set to 0.1, and 0.01 after-

wards.  For  KDFT,  we  use  the  same  learning  rate

schedule, but when the fine-tuned accuracy of KDFT

reach  or  surpass  the  final  accuracy  of  primitive  fine-

tuning,  we  record  the  epoch and accuracy  of  it.  The

results are displayed in Table 5.

The  result  of  pruning  87%  parameters  with

HRank shows that after primitive fine-tuning for 100

epochs,  the  accuracy  of  the  pruned  model  is  recov-

ered  to  67.76%,  while  it  only  takes  29  epochs  for

KDFT to get 67.87% and 100 epochs to get the final

accuracy  of  68.57%.  That  is  nearly  70% time  saving

since the overhead for knowledge distillation is negli-

gible.  While  the  final  accuracy  is  promoted  with

KDFT by 0.81% in terms of effectiveness.

The efficiency promotion of  BN-slimming is  more

significant than that of HRank. For the two compres-

sion  rates,  77.4% and  83.3%,  it  only  takes  21% tun-

ing time for KDFT to get a similar accuracy to primi-

tive fine-tuning. The improvement in accuracy is even

more obvious. KDFT improves the final accuracy for

the  two  compression  rates  by  4.86%  and  3.90%,  re-

spectively,  which  are  great  improvements  for  a  100-

class image classification task.

Structural  Skewness Analysis. To analyze the im-

pact of structural disbalance between different convo-

lutional  layers after channel  pruning,  we conduct ex-

periments on ResNet56 with LeGR. To show the sta-

ble  influence  of  structural  skewness,  we  set  different

channel  preserving  proportions  for  different  compres-

sion  rates,  and  every  pruned  model  comes  from  a

same pretrained model. We do not preserve too many

channels for compression rates 70% and 80% because

that  would  compromise  the  pruning  decision  by  a

global pruning method too much.

We can see from Table 6 that for every compres-

sion rate,  when the channel  preserving rate increases

(i.e.,  with  a  more  balanced  structure),  the  accuracy

after  pruning  and  naive  fine-tuning  gets  better.  But

as the skewness increases,  the accuracy improvement

by  KDFT is  higher.  This  verifies  that  a  structurally

unbalanced model is harder to fine-tune, but it could

be easier when there is a good teacher model. 

5    Conclusions

α

In  this  paper,  we  proposed  a  fine-tuning  method

KDFT for channel-pruned DCNN models. Inspired by

the idea of  knowledge distillation,  we found the DC-

NN models  before and after  channel  pruning make a

perfect pair of the teacher and student, and the accu-

racy of pruned models could be better recovered with

the help of teacher knowledge with minimum comput-

ing  and  storage  overhead.  We  proposed  a  dynamic

tuning schedule with adaptive parameter  to get rid

of  the  hyperparametric  influence.  Experiments  were

conducted on CIFAR-10 and CIFAR-100,  with three

representative  pruning  methods  and  several  state-of-

the-art DCNN models. The results have shown the ef-

fectiveness and efficiency (up to 79% time saving) of

KDFT.

Different  from  traditional  knowledge  distillation

models, there are many shared structures and param-

eters between the models before and after pruning. In

the future, we aim to develop specific methods to ef-

fectively  distill  knowledge  between  structure  sharing

models. 
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Table  5.    Epoch Comparison for Fine-Tuning ResNet34 on CIFAR-100

Method ×106Params ( )/ PR(%) ×106FLOPs ( )/PR (%) Accuracy (%) KDFT (%) Breaking Epoch/Accuracy (%)

HRank 3.99/81.1 298.56/74.2 69.38 69.47 38/69.47

2.76/87.0 208.97/81.3 67.76 68.57 29/67.87

BN-slimming 4.78/77.4 357.7/68.0 62.52 67.38 21/64.63

3.81/83.3 285.09/74.4 62.90 66.80 21/64.11
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