

Fine-Tuning Channel-Pruned Deep Model via Knowledge Distillation

Chong Zhang1 (张　翀), Student Member, CCF
Hong-Zhi Wang1 (王宏志), Senior Member, IEEE, Member, CCF
Hong-Wei Liu1, * (刘宏伟), Member, CCF, and Yi-Lin Chen2 (陈熠琳)

1 Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China
2 School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

E-mail: 19B903094@stu.hit.edu.cn; wangzh@hit.edu.cn; liuhw@hit.edu.cn; 120l011005@stu.hit.edu.cn

Received April 4, 2022; accepted November 7, 2023.

Abstract Deep convolutional neural networks with high performance are hard to be deployed in many real world appli-

cations, since the computing resources of edge devices such as smart phones or embedded GPU are limited. To alleviate

this hardware limitation, the compression of deep neural networks from the model side becomes important. As one of the

most popular methods in the spotlight, channel pruning of the deep convolutional model can effectively remove redundant

convolutional channels from the CNN (convolutional neural network) without affecting the network’s performance remark-

ably. Existing methods focus on pruning design, evaluating the importance of different convolutional filters in the CNN

model. A fast and effective fine-tuning method to restore accuracy is urgently needed. In this paper, we propose a fine-tun-

ing method KDFT (Knowledge Distillation Based Fine-Tuning), which improves the accuracy of fine-tuned models with

almost negligible training overhead by introducing knowledge distillation. Extensive experimental results on benchmark

datasets with representative CNN models show that up to 4.86% accuracy improvement and 79% time saving can be ob-

tained.

Keywords model compression, deep learning, knowledge distillation, fine-tuning

1 Introduction

In the field of big data analysis, deep convolution-

al neural networks (DCNNs) are steadily pushing the

envelope of a variety of tasks, such as image classifi-

cation[1–6], object detection[7, 8], and semantic segmen-

tation[9, 10]. Nowadays, CNN (convolutional neural

network) models are mainly proposed by experts, and

their network structures are designed to be concise to

a great extent. However, to learn from a huge vol-

ume of data and achieve a remarkable performance,

the network still needs to be deep, with a large num-

ber of parameters. Such large CNNs are both compu-

tationally expensive and memory demanding. They

can only be trained and deployed with the help of

GPUs or other sophisticated hardware. Therefore, an

intuitive method to deploy DCNNs in resource limit-

ed applications is to compress DCNN models.

To reduce computation of CNN models with limit-

ed performance degradation, model compression tech-

niques have emerged. Many studies were proposed

from different perspectives, including connection

pruning[11, 12], sparsity regularization[13], parameter

quantization[14], low rank approximation[15], and struc-

tural channel pruning[16–19].

The idea of removing redundant components in a

neural network came from LeCun et al.[20]. With the

help of information-theoretic ideas, it is found that by

removing unimportant weights, a network could be

easier to train and achieve better generalization, with

even better performance. Inspired by this work, sever-

al studies on sparsity regularization and connection

pruning have emerged, which either obtains sparse

weight matrices by regularization in the training

phase or prunes the network weights directly. Howev-

er, the models pruned by these methods are often

Regular Paper

This work was supported by the National Natural Science Foundation of China under Grant No. U1866602.
*Corresponding Author

Zhang C, Wang HZ, Liu HW et al. Fine-tuning channel-pruned deep model via knowledge distillation. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 39(6): 1238−1247 Nov. 2024. DOI: 10.1007/s11390-023-2386-8

©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-023-2386-8
https://doi.org/10.1007/s11390-023-2386-8
https://doi.org/10.1007/s11390-023-2386-8
https://doi.org/10.1007/s11390-023-2386-8
https://doi.org/10.1007/s11390-023-2386-8
https://doi.org/10.1007/s11390-023-2386-8
https://doi.org/10.1007/s11390-023-2386-8

non-structured neural connections, resulting in their

limited applications on general-purpose hardware or

BLAS[21] (Basic Linear Algebra Subprograms) li-

braries. Some work compresses the models by low

rank approximation[22] or encoding[23].

In contrast, channel pruning methods do not have

this limitation, making them more suitable for com-

pressing CNNs, since they prune entire convolutional

channels away. Usually, there are three phases for a

channel pruning method. Firstly, an importance as-

sessment mechanism on convolutional channels is pro-

posed. This mechanism may only consider local statis-

tical characteristics of convolutional channels, such as

the average percentage of zeros (APoZ)[24] or the aver-

age rank of kernel matrices[16]. It could also assess the

influence of a kernel on the model's overall perfor-

mance[17]. Secondly, guided by the assessment mecha-

nism and a proper pruning rate, unimportant kernels

are removed. To keep a structural balance and main-

tain accuracy, the importance of kernels is often com-

pared inside the same layer, and the balance of prun-

ing rate for different layers is also considered[17]. The

third phase is called fine-tuning[25]. During this phase,

the pruned networks have to be trained for several

epochs with the same training dataset to restore accu-

racy.

Knowledge distillation[26] is a promising way to

obtain a small model that retains the accuracy of a

large one, by transferring the complex knowledge

learned by the large model to the small one.

Among all the methods above, channel pruning

methods are the most promising way to apply DCNN

models on resource limited edge devices. The accura-

cy of the pruned model after fine-tuning may be close

to or even exceed the accuracy of the original model.

But the increase of compression rate for channel

pruning methods is urgent, and the accuracy drop af-

ter extreme pruning is a dominant bottleneck for

modern channel pruning methods. On the other hand,

to get an ideal fine-tuning accuracy, sometimes it

takes a lot of training epochs, even more than train-

ing the original model. When the pruning rate is too

large, the accuracy drops significantly and could not

be improved by simply adding fine-tuning epochs. We

notice that the deep convolutional models before and

after channel pruning make a good pair of the teach-

er and the student. Inspired by this observation, we

propose the Knowledge Distillation Based Fine-Tun-

ing (KDFT) for channel-pruned deep models, a frame-

work which utilizes knowledge distillation in the fine-

tuning phase for a channel pruning method to better

and more efficiently restore accuracy.

Our main contributions are threefold.

• We propose the Knowledge Distillation Based

Fine-Tuning (KDFT), which fine-tunes channel-

pruned DCNNs by any channel pruning methods,

with no extra information and negligible computing

overhead.

•
α

 We present a dynamic learning schedule to au-

tomatically set the hyper-parameter according to

the compression rate, which could alleviate the hyper-

parameter sensitivity of knowledge distillation.

• We analyze the impact of structural skewness

on KDFT, to guide practitioners to apply KDFT bet-

ter under various practical scenarios.

Experiments are conducted on two benchmark

datasets CIFAR-10 and CIFAR-100[27], using three

representative large CNN models, including ResNet[3],

VGGNet[28], and GoogLeNet[2]. The results demon-

strate both the effectiveness and efficiency of our pro-

posed method, compared with many state-of-the-art

channel pruning methods.

2 Related Work

2.1 Non-Structural Model Compression

To remove redundant components in a neural net-

work, most studies cared about fully-connected layers

at first. Guo et al.[12] proposed a dynamic network

surgery to remarkably reduce the network complexi-

ty by making on-the-fly connection pruning, which

could recover timely when the pruning decision goes

wrong. Srinivas et al.[29] pruned unimportant connec-

tions in neural networks by explicitly imposing sparse

constraint over weights and stored the model in a

sparse format after pruning. However, the speedup of

these methods are based on the support of sophisti-

cated sparse matrix operation libraries or hardware.

2.2 Structural Model Pruning

From Multilayer Perceptron (MLP)[30] to DCNN,

the structure of deep neural network becomes increas-

ingly modularized. This makes it more beneficial to

prune whole convolutional channels, rather than

pruning fully-connected layers.

Structured sparsity learning (SSL) presented by

Wei et al.[13] made an effort to get a compact sparse

model during training by adding a group Lasso con-

straint to the objective function and pruning chan-

nels with near-zero weights. Gao et al.[17] proposed a

discrete model compression method, which prunes

channels by measuring the overall discriminative pow-

Chong Zhang et al.: Fine-Tuning Channel-Pruned Deep Model via Knowledge Distillation 1239

θ

er of a sub-network after closing certain discrete

gates. These gates are inserted after feature maps,

and the opening of gates is controlled by a learnable

parameter . Other studies mainly focused on convo-

lutional channel itself, looking for a good importance

assessment mechanism to make pruning decisions. Lin

et al.[16] found that the average rank of feature maps

generated by a certain filter is nearly the same, re-

gardless of how much data the CNN has seen. Thus

the filters in a certain layer could be sorted and then

pruned according to their average rank by scanning a

number of input samples. Instead of convolutional fil-

ters, Liu et al.[18] focused on the batch normalization

layers after convolutional layers. They indirectly as-

sessed the importance of convolutional filters by their

scaling factor produced by batch normalization layers.

Chin et al.[31] proposed a global ranking method for

filters in different layers, by using layer-wise affine

transformations over filter norms to construct a glob-

al ranking of filters in a learnable fashion.

2.3 Knowledge Distillation

Hinton et al.[26] put forward the idea of teacher-

student model for knowledge distillation. This method

makes the student model learn from ground truth and

the experience of teacher model at the same time, by

introducing the softened output of the softmax layer

of the teacher network as a soft target to the loss

function of the student model. To make the distilla-

tion more suitable for deep models, Romero et al.[32]

proposed Fitnets, which introduces an intermediate

output of the teacher model as hint in addition to the

softened logits. Yim et al.[33] proposed flow of the so-

lution procedure (FSP) to train students for different

tasks. FSP is a more complex knowledge representa-

tion which describes the transforming process of fea-

ture map outputs of different stages of deep struc-

tural models. Chen et al.[6] improved the accuracy of

the student model by utilizing maximal teacher infor-

mation through a review mechanism.

3 Knowledge Distillation Based Fine-Tuning

There are two stages in our method: 1) removing

unimportant convolutional channels of a DCNN mod-

el with any channel pruning method, 2) performing

knowledge distillation from the original model to the

pruned model for fine-tuning, to recover the pruned

model's accuracy effectively.

3.1 KDFT for Generic CNN Channel

Pruning Methods

i

Ai Ai+1

Ki Ai ∈ Rni, hi, wi

ni hi × wi

Ki ∈ Rni, ni+1, h, w ni+1

ni h× w

ni+1 ni

Ai ni+1

Ai+1

For a generic channel pruning method, no matter

it prunes channels layer-wise or globally, the pruning

process for a certain layer is similar. As shown in

Fig.1, for the -th convolutional layer, the three main

parts of the network structure are input feature map

, output feature map , and convolutional fil-

ters . Input here is a 3D vector,

with channels of 2D feature maps.

 represents convolution filters

containing channels of kernels. By applying

these convolutional filters on channels of in-

put feature maps in , we get channels of fea-

ture maps in after convolutional transformation.

Input of the
-th Layer

Output of the
-th Layer

Convolutional Filters
of the -th Layer



A

'

A
'K

'

Input of the
-th Layer

Output of the
-th Layer

Convolutional Filters
of the -th Layer




A AK

(b)

(a)

iFig.1. Illustration for channel pruning of the -th convolution-
al layer. (a) Filters and feature maps before pruning. (b) Fil-
ters and feature maps after pruning.

F ()

cpi

K
′

i ∈ Rni, n
′
i+1, h, w = F (Ki, cpi)

n
′

i+1 = ni+1 − 1 i

With a pruning method, (assuming it prunes

layer by layer), we can prune a certain number of

unimportant channels according to the compression

rate for this layer, . We get the pruned kernel ma-

trix . We can see from

Fig.1 that if we prune one convolutional filter away,

we also reduce one channel of the output feature

maps () of the -th layer, and the

channel dimension of the filters in the next layer is al-

so reduced by one.

MT

MS

After pruning all layers in the original pre-trained

model, we get a pruned model. Denoting them as

and , respectively, we follow the settings in [26] to

1240 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

MT

MS xi

zi
T = NT(x

i) zi
S = NS(x

i)

NT

NS

zi zi
T zi

S

illustrate the fine-tuning process of KDFT with

and . For a network input sample , we can get

two feature vectors extracted by the teacher and stu-

dent networks as and , re-

spectively. These feature vectors, called logits, are ac-

tually the input of the softmax layer, while and

 are the teacher network and the student network

without softmax, respectively. Through the softmax

layer, the logits vectors (or) could be con-

verted to the possibility for each class.

qi =
exp(zi)∑
j

exp(zi
j)
.

TP

Since there are significant differences between the

teacher and student networks, logits computed by

them might not be similar. A temperature parameter

 is introduced to the softmax function to soften

the output of softmax, so that the student could learn

from the teacher more conveniently.

qi
k =

exp(zi
k/TP)∑

j

exp(zi
j/TP)

.

With the guidance of the teacher network, the loss

function of the student network is written as

L =
1

n

n∑
i=1

((1− α)D(qi
S,y

i) + αTP 2D(qi
S, q

i
T)), (1)

yi i

D(·, ·)

α

MS

MT

where is the ground truth label of the -th input

sample, is the cross entropy loss for guarantee-

ing the performance of the student network. The left

term in the function is the hard target, which mea-

sures the distance between student network outputs

and the ground truth. The right term is the soft tar-

get and calculates the cross entropy between the stu-

dent and teacher outputs. The weight parameter is

used to balance the soft and hard targets, make sure

that learns a good proportion from the ground

truth and .

MS

MT

MT

MS

α

Dynamic alpha()

During the training process of , the network of

 is frozen and batches of input samples from the

training set are fed into both networks, only has

to inference from input and provide guidance with

logits, and the loss of is calculated according to

(1). Then the error is back-propagated only on the

student network. A detailed algorithm pseudocode for

KDFT is shown in Algorithm 1. For every fine-tun-

ing epoch, parameter is automatically set by func-

tion , which will be detailed in Sub-

section 3.2 and the pruned model is fine-tuned with

knowledge distillation (KD).

Algorithm 1. KDFT

F cp
M Em

Input: channel pruning method , compression rate , DCNN
 , maximum fine-tuning epochs

MKDFTOutput: fine-tuned channel-pruned DCNN

M ′ = F (M, cp)1: ;

MKDFT = M ′2: ;

E = 1, 2, . . . , Em3: for do

α = Dynamic alpha(E, cp)4: ;

MKDFT = KD(M,MKDFT, α);5:
6: end for

MKDFT7: return ;

3.2 Fine-Tuning Pruned ResNets with

HRank Analysis

α

To illustrate the effectiveness of KDFT and ana-

lyze the impact of parameter , we employ our

method on the channel pruning method HRank[16].

Lin et al.[16] applied their method to many deep net-

works such as VGG-16[28], GoogLeNet[2], and Mo-

bileNet[34]. We only fine-tune the pruned model of

ResNet56[3] because its architecture is deeper and

more complex, which makes it more representative.

The original ResNet56 model is trained with the

dataset CIFAR-10[27], with an accuracy of 93.12.

Firstly we apply HRank to the pre-trained model with

three different compression rates, 22.4%, 42.9%, and

71.8%, respectively. Then we fine-tune the pruned

models primitively for 150 epochs, and the recovered

accuracies of the three models are 93.29%, 92.90%,

and 91.52%, respectively, which is illustrated in Fig.2.

We can see that the recovery results are not bad, the

accuracy of the pruned model with low compression

rate even surpasses the original model. One explana-

0.1

93.5

93.0

92.5

92.0

91.5

0.2

A
c
c
u
ra

c
y
 (

%
)

0.3 0.4 0.5 0.6 0.7 0.8 0.9



Original Model Accuracy
22.4%-HRank Fine-Tuning
22.4%-KDFT
42.9%-HRank Fine-Tuning
42.9%-KDFT
71.8%-HRank Fine-Tuning
71.8%-KDFT

α
Fig.2. Accuracy of ResNet56 models after pruning by HRank
and fine-tuning by KDFT, with different values. Dash-dot-
ted and dashed lines indicate the accuracy of original model
and the model fine-tuned without KDFT, respectively. The leg-
end indicates the compression rate and the fine-tuning method
of a curve.

Chong Zhang et al.: Fine-Tuning Channel-Pruned Deep Model via Knowledge Distillation 1241

tion for this phenomenon is that the pruned model

has less parameters than the original model to a prop-

er extent, which does not harm its fitting ability but

makes it easier to train under this circumstance.

α

α

α

To analyze the impact of parameter , for every

compression rate, we try different values from 0.1 to

0.9 with a stride of 0.1. The results are presented in

Fig.2. In general, the performance of KDFT is always

better than that of the primitive fine-tuning. It can be

seen that the directions of the lines above the origi-

nal model accuracy are opposite to the lines below it.

When the recovered model accuracy is higher than

that of the original model, it descends with the in-

crease of . And on the contrary, when the recovered

model accuracy is lower than that of the original

model, it ascends with the increase of . This phe-

nomenon is very intuitive: when the student is naive,

learning from the teacher is easier for it than learn-

ing from the world directly. But when the student is

better than its teacher, knowledge and experience

from the teacher could only restrict the development

of the student, and it is better to explore the world it-

self.

α

E

Em

cp

Dynamic alpha()

In order to make sure that the student network

learns enough from the teacher network but is not re-

stricted by it, we propose a dynamic learning sched-

ule, with an adaptive parameter , according to the

compression rate of the pruned model. Let be the

current epoch, be the total fine-tuning epochs and

 denotes the parameter compression rate of the

pruned model. We get a dynamic learning schedule

 following a linear piecewise func-

tion as below.

α =



0.9, if E < Em × cp,

0.9− 0.8× (E − Em × cp)

0.9× Em − Em × cp
,

if Em × cp < E < 0.9× Em,

0.1, if E > 0.9× Em.

4 Experiments

4.1 Settings

Datasets and Models. To demonstrate the effec-

tiveness and efficiency of KDFT on channel pruned

methods for DCNN pruning, we conduct experiments

on two benchmark datasets, CIFAR-10 and CIFAR-

100[27], for image classification. The performance of

KDFT on many popular DCNN models is studied, in-

cluding ResNet56 and ResNet34 with residual blocks,

VGG-16, and GoogLeNet with inception mudules.

Resnet34 is trained and fine-tuned on CIFAR-100,

while other models on CIFAR-10.

Metrics. To evaluate the pruning results quantita-

tively, we use two metrics, Params (number of pa-

rameters) and FLOPs (float Point operations) to rep-

resent model size and its needed computing resource.

Besides, PR (pruning rate) is adopted to show how

much a model is pruned. If not specified, the parame-

ter reduction denotes the model compression rate.

Top-1 accuracy is used as the metric for model accu-

racy.

Implementations. Our method KDFT is applied to

three channel pruning methods, HRank[16], BN-slim-

ming[18], and LeGR[31], implemented by PyTorch[35].

Before pruning, HRank uses 10 input samples to cal-

culate the average rank of each convolutional channel,

and BN-slimming needs a sparse training for 200

epochs to prepare for the pruning. In the fine-tuning

stage, all these methods use the optimizer of the

Stochastic Gradient Descent algorithm (SGD)[36]. All

the hyper-parameters for fine-tuning, including initial

learning rate, batch size, weight decay, learning decay

step, and momentum are set according to [16, 18, 31],

respectively. All experiments are conducted on two

NVIDIA GTX 3060 GPUs.

4.2 Results on CIFAR-10

32× 32

CIFAR-10 is a dataset containing 10 classes of im-

ages, and there are 50k training and 10k testing im-

ages, whose resolution is . Here we train and

prune three DCNN models, ResNet56, VGG-16, and

GoogLeNet with HRank, and the first two with BN-

slimming and LeGR[31]. The reason we choose these

three methods is that they are representative, since

they represent different visions for pruning. HRank

sorts the channels in every layer according to their

average rank given a certain number of input sam-

ples, and it prunes away unimportant channels layer

by layer, thus the compression rate for every layer in

controllable. BN-slimming sorts all the convolutional

channels in the network according to their scale fac-

tor and prunes channels globally, which may lead to

extreme pruning in some layers. L2-norm[13] is a tradi-

tional metric to compare the importance of different

channels with each convolutional layer, and LeGR

proposes a learned affine transformation to improve

the applicability of L2-norm, making it suitable to

compare channels across different layers. To conclude,

these methods have different assessment angles for fil-

ters. LeGR focuses directly on the convolutional fil-

1242 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

ters and compares their L2-norms, while HRank and

BN-slimming use indirect means to assess the impor-

tance of filters.

Comparison with HRank. Table 1 shows the com-

parison results on CIFAR-10. The models are pruned

by HRank, fine-tuned with and without KDFT, re-

spectively. The three original models are trained for

200 epochs and every model is fine-tuned for 300

epochs after pruning. The learning rate is initially set

to 0.01, and divided by 10 at epochs 150 and 225. The

network structures of the three DCNNs are different

from each other, but as shown in Table 1, the perfor-

mance of KDFT is always better than that of primi-

tive fine-tuning, and the accuracy improvements for

different compression rates nearly follow the same

trend. Taking ResNet56 for example, for the compres-

sion rate of 22.4%, 42.9%, and 71.8%, the accuracy of

the models fine-tuned by KDFT exceeds HRank by

0.07%, 0.46%, and 0.50%, respectively. KDFT could

even improve the fine-tuning accuracy when the stu-

dent's performance is better than that of the teacher

model. And a same trend followed by all models is

that when the compression rate is higher, the im-

provement of KDFT is more obvious (e.g., 0.07 < 0.46

< 0.50). That is a great news since the bottleneck of

improving compression rate for channel pruning

methods is exactly the unbearable drop of accuracy.

With KDFT, the compression limit of pruning meth-

ods could be pushed to a further extent.

Comparison with BN-Slimming. The results of

pruning and fine-tuning comparison with BN-slim-

ming is shown in Table 2. The original models are

trained with channel sparse regularization for 200

epochs. The learning rate is initially set to 0.1, and

divided by 10 after every 50 epochs. The training pa-

rameters for the fine-tuning stage are the same as

training stage. We can see the fine-tuning accuracy

improvements by KDFT is more significant on mod-

els pruned by BN-slimming. For ResNet56 with com-

pression rate of 84.7%, pruned by BN-slimming, the

improvement is 0.83%, while the one pruned with

HRank by 71.8% compression rate is improved by

0.50%. As for VGG-16-BN models, the HRank pruned

model with compression rate of 83.3% is improved by

0.08% through KDFT, while the improvement of the

model 83.5% pruned by BN-slimming is 0.47%. We

hypothesize this is due to the nature of the two meth-

ods. The models pruned by HRank are more struc-

turally balanced since the compression rate is well

controlled in every layer, and thus it is easier to train

in the fine-tuning stage, while the model globally

pruned by BN-slimming might be extremely pruned

in some layers and its accuracy is harder to recover.

This may be the reason that knowledge distillation

has more effect on the models pruned by BN-slimming.
Comparison with LeGR. LeGR is a globally prun-

ing method like BN-slimming, which may also end up
with an unbalanced structure. We use ResNet56 and

Table 1. Fine-Tuning Comparisons Between KDFT and HRank[16] on CIFAR-10

Model ×106Params ()/PR (%) ×106FLOPs ()/PR (%) HRank (%) KDFT (%)

ResNet-56 0.85/0.0 126.55/0.0 93.12 –
0.66/22.4 90.85/28.2 93.88 93.95

0.49/42.9 65.94/47.9 93.39 93.85

0.24/71.8 34.79/72.5 92.16 92.66

VGG-16-BN 14.99/0.0 314.29/0.0 93.94 –
2.77/81.5 131.17/58.1 93.68 93.82

2.51/83.3 104.78/66.7 93.63 93.71

1.90/87.3 66.95/78.7 93.20 93.42

GoogLeNet 6.17/0.0 1 529.42/0.0 94.97 –
2.86/53.6 649.19/57.6 94.90 95.10

2.10/66.0 395.42/74.1 94.42 94.84

Table 2. Fine-Tuning Comparisons Between KDFT and BN-Slimming[18] on CIFAR-10

Model ×106Params ()/PR (%) ×106FLOPs ()/PR (%) BN-Slimming (%) KDFT (%)

ResNet-56 0.85/0.0 126.55/0.0 93.78 –
0.69/18.1 89.89/29.0 92.66 93.99

0.62/27.9 76.93/39.2 92.59 93.89

0.13/84.7 16.56/86.9 87.27 88.10

VGG-16-BN 14.99/0.0 314.29/0.0 93.58 –
4.64/76.9 197.80/37.0 93.76 93.97

2.48/83.5 106.25/66.2 93.84 94.31

Chong Zhang et al.: Fine-Tuning Channel-Pruned Deep Model via Knowledge Distillation 1243

VGG-16-BN as the base models, which are trained for

200 epochs before pruning. In the fine-tuning stage,

the initial learning rate is set to 0.01, and it is multi-

plied by 0.2 at the 18th, 36th, and 48th epoch, respec-

tively, with totally 60 fine-tuning epochs. The accura-

cy improvement of LeGR is still larger than that of

HRank, when the compression rates of both methods

are near. For example, the accuracy improvement of

ResNet56 pruned by HRank with compression rate

71.8% is 0.50%, while pruned by HRank with 75.6%

compression rate, the improvement is 0.98%. This al-

so supports our hypothesis that KDFT is more suit-

able for structurally extremely pruned models.

Comparison with Pure Knowledge Distillation. To

illustrate the superiority of DKFT over the tradition-

al knowledge distillation method, we conduct con-

trast experiments on models pruned by LeGR. For

KDFT, we fine-tune the pruned model directly for 60

epochs, and for KD, the pretrained model before

pruning is set to be the teacher, and the pruned mod-

el is set to be the student after we reinitialize the pa-

rameters of it, after that KD is trained for also 60

epochs. The results are shown in Table 3. We could

see that with the same training budget, the perfor-

mance of KDFT is always better than that of tradi-

tional KD, for both DCNN models and all compres-

sion rates.

4.3 Results on CIFAR-100

Besides experiments on the CIFAR-10 dataset, in

this subsection we consider ResNet34 on the image

classification task of CIFAR-100. Though shallower

than ResNet56, ResNet34 has much more convolu-

tional channels structurally, which makes it a better

option for the classification task with more classes.

Since there are 100 object classes in CIFAR-100, it is

more challenging for DCNNs to get a good perfor-

mance. The ResNet34 models are trained for 200

epochs and the accuracy of the pre-trained model on

this dataset is only about 71%, which is much lower

than that on the CIFAR-10 dataset. We prune the

pre-trained model with HRank, BN-slimming, and

LeGR at two compression rates respectively, after-

wards the pruned models are fine-tuned with and

without KDFT, respectively, and the results are

shown in Table 4.

Every pruned model is fine-tuned for 200 epochs

in Table 4. The accuracy improvement of KDFT is

greater on the dataset CIFAR-100, with all pruning

methods and all compression rates. With two differ-

ent compression rates for the three methods respec-

tively, the accuracies of models pruned by HRank are

promoted by 0.96% and 0.29%, LeGR promotes their

accuracies by 0.67% and 1.22%, while the accuracies

of models pruned by BN-slimming are promoted by

2.89% and 3.36%, respectively. These improvements

are of great significance for a 100-class classification

task, while the overhead of KDFT is negligible. This

fully demonstrates the effectiveness of KDFT. To con-

firm our hypothesis that KDFT works better on

pruned models with unbalanced structures, we set a

Table 3. Fine-Tuning Comparisons Between KDFT and LeGR[31] on CIFAR-10

Model ×106Params ()/PR (%) ×106FLOPs ()/PR (%) LeGR (%) KDFT (%) KD (%)

ResNet-56 0.85/0.0 126.55/0.0 92.87 – –
0.46/46.5 62.38/50.1 92.70 93.40 91.23

0.33/61.0 37.45/70.0 91.34 92.30 89.97

0.21/75.6 24.94/80.0 89.97 90.95 89.17

VGG-16-BN 14.99/0.0 314.29/0.0 93.70 – –
3.05/79.7 187.75/40.3 93.43 93.74 92.52

2.39/84.1 156.42/50.2 93.44 93.79 92.45

Table 4. Fine-Tuning Pruned ResNet34 on CIFAR-100 with/Without KDFT

Method ×106Params ()/PR (%) ×106FLOPs ()/PR (%) Accuracy (%) KDFT (%)

HRank 21.15/0.0 1 155.10/0.0 71.15 –
3.99/81.1 298.56/74.2 72.94 73.90

2.76/87.0 208.97/81.3 72.71 73.00

BN-slimming 21.14/0.0 1 115.10/0.0 71.12 –
4.78/77.4 357.7/68.0 67.13 70.02

3.81/83.3 285.09/74.4 66.19 69.55

LeGR 21.14/0.0 1 115.10/0.0 77.40 –
7.99/62.2 575.69/48.4 76.46 77.13

4.18/80.2 288.16/74.2 74.00 75.22

1244 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

constrain that at least 15% channels in each layer

should be preserved in the pruning stage. Under this

circumstance, the improvement by KDFT with BN-

slimming is distinctly more remarkable than that with

HRank and LeGR.

4.4 More Analysis

Efficiency Analysis. The accuracy recover effec-

tiveness of KDFT is evidently better than primitive

fine-tuning, which is already proved by the experi-

ments above. In this subsection, we consider the effi-

ciency instead, to demonstrate how fast KDFT could

be, to get a better recovered accuracy. Taking fine-

tuning ResNet34 on CIFAR-100 for example, we mea-

sure how many epochs it takes for KDFT to get the

same accuracy as or better accuracy than primitive

fine-tuning. The pruning ratio and methods here are

the same as in Table 4. After pruning, we fine-tune

the pruned models for 100 epochs. In the first 20

epochs, the learning rate is set to 0.1, and 0.01 after-

wards. For KDFT, we use the same learning rate

schedule, but when the fine-tuned accuracy of KDFT

reach or surpass the final accuracy of primitive fine-

tuning, we record the epoch and accuracy of it. The

results are displayed in Table 5.

The result of pruning 87% parameters with

HRank shows that after primitive fine-tuning for 100

epochs, the accuracy of the pruned model is recov-

ered to 67.76%, while it only takes 29 epochs for

KDFT to get 67.87% and 100 epochs to get the final

accuracy of 68.57%. That is nearly 70% time saving

since the overhead for knowledge distillation is negli-

gible. While the final accuracy is promoted with

KDFT by 0.81% in terms of effectiveness.

The efficiency promotion of BN-slimming is more

significant than that of HRank. For the two compres-

sion rates, 77.4% and 83.3%, it only takes 21% tun-

ing time for KDFT to get a similar accuracy to primi-

tive fine-tuning. The improvement in accuracy is even

more obvious. KDFT improves the final accuracy for

the two compression rates by 4.86% and 3.90%, re-

spectively, which are great improvements for a 100-

class image classification task.

Structural Skewness Analysis. To analyze the im-

pact of structural disbalance between different convo-

lutional layers after channel pruning, we conduct ex-

periments on ResNet56 with LeGR. To show the sta-

ble influence of structural skewness, we set different

channel preserving proportions for different compres-

sion rates, and every pruned model comes from a

same pretrained model. We do not preserve too many

channels for compression rates 70% and 80% because

that would compromise the pruning decision by a

global pruning method too much.

We can see from Table 6 that for every compres-

sion rate, when the channel preserving rate increases

(i.e., with a more balanced structure), the accuracy

after pruning and naive fine-tuning gets better. But

as the skewness increases, the accuracy improvement

by KDFT is higher. This verifies that a structurally

unbalanced model is harder to fine-tune, but it could

be easier when there is a good teacher model.

5 Conclusions

α

In this paper, we proposed a fine-tuning method

KDFT for channel-pruned DCNN models. Inspired by

the idea of knowledge distillation, we found the DC-

NN models before and after channel pruning make a

perfect pair of the teacher and student, and the accu-

racy of pruned models could be better recovered with

the help of teacher knowledge with minimum comput-

ing and storage overhead. We proposed a dynamic

tuning schedule with adaptive parameter to get rid

of the hyperparametric influence. Experiments were

conducted on CIFAR-10 and CIFAR-100, with three

representative pruning methods and several state-of-

the-art DCNN models. The results have shown the ef-

fectiveness and efficiency (up to 79% time saving) of

KDFT.

Different from traditional knowledge distillation

models, there are many shared structures and param-

eters between the models before and after pruning. In

the future, we aim to develop specific methods to ef-

fectively distill knowledge between structure sharing

models.

Conflict of Interest The authors declare that

they have no conflict of interest.

Table 5. Epoch Comparison for Fine-Tuning ResNet34 on CIFAR-100

Method ×106Params ()/ PR(%) ×106FLOPs ()/PR (%) Accuracy (%) KDFT (%) Breaking Epoch/Accuracy (%)

HRank 3.99/81.1 298.56/74.2 69.38 69.47 38/69.47

2.76/87.0 208.97/81.3 67.76 68.57 29/67.87

BN-slimming 4.78/77.4 357.7/68.0 62.52 67.38 21/64.63

3.81/83.3 285.09/74.4 62.90 66.80 21/64.11

Chong Zhang et al.: Fine-Tuning Channel-Pruned Deep Model via Knowledge Distillation 1245

References

 Krizhevsky A, Sutskever I, Hinton G E. ImageNet classifi-

cation with deep convolutional neural networks. Commu-

nications of the ACM, 2017, 60(6): 84–90. DOI: 10.1145/

3065386.

[1]

 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov

D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper

with convolutions. In Proc. the 2015 IEEE Conference on

Computer Vision and Pattern Recognition, Jun. 2015,

pp.1–9. DOI: 10.1109/cvpr.2015.7298594.

[2]

 He K, Zhang X, Ren S, Sun J. Deep residual learning for

image recognition. In Proc. the 2016 IEEE Conference on

Computer Vision and Pattern Recognition, Jun. 2016,

pp.770–778. DOI: 10.1109/cvpr.2016.90.

[3]

 Niyaz U, Bathula D R. Augmenting knowledge distilla-

tion with peer-to-peer mutual learning for model compres-

sion. In Proc. the 19th International Symposium on

Biomedical Imaging, Mar. 2022, pp.1–4. DOI: 10.1109/IS-

BI52829.2022.9761511.

[4]

 Morikawa T, Kameyama K. Multi-stage model compres-

sion using teacher assistant and distillation with hint-

based training. In Proc. the 2022 IEEE International Con-

ference on Pervasive Computing and Communications

Workshops and Other Affiliated Events, Mar. 2022,

pp.484–490. DOI: 10.1109/PerComWorkshops53856.2022.

9767229.

[5]

 Chen P, Liu S, Zhao H, Jia J. Distilling knowledge via

knowledge review. In Proc. the 2021 IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, Jun.

2021, pp.5006–5015. DOI: 10.1109/cvpr46437.2021.00497.

[6]

 Redmon J, Divvala S, Girshick R, Farhadi A. You only

look once: Unified, real-time object detection. In Proc. the

2016 IEEE Conference on Computer Vision and Pattern

Recognition, Jun. 2016, pp.779–788. DOI: 10.1109/CVPR.

2016.91.

[7]

 Ren S, He K, Girshick R, Sun J. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. IEEE Trans. Pattern Analysis and Machine Intelli-

gence, 2017, 39(6): 1137–1149. DOI: 10.1109/tpami.2016.

2577031.

[8]

 Shelhamer E, Long J, Darrell T. Fully convolutional net-

works for semantic segmentation. IEEE Trans. Pattern

Analysis and Machine Intelligence, 2017, 39(4): 640–651.
DOI: 10.1109/tpami.2016.2572683.

[9]

 Chen L C, Papandreou G, Kokkinos I, Murphy K, Yuille

A L. DeepLab: Semantic image segmentation with deep

convolutional nets, atrous convolution, and fully connect-

ed CRFs. IEEE Trans. Pattern Analysis and Machine In-

telligence, 2018, 40(4): 834–848. DOI: 10.1109/tpami.2017.

2699184.

[10]

 Han S, Pool J, Tran J, Dally W J. Learning both weights

and connections for efficient neural network. In Proc. the

28th International Conference on Neural Information Pro-

cessing Systems, Dec. 2015, pp.1135–1143.

[11]

 Guo Y, Yao A, Chen Y. Dynamic network surgery for ef-

ficient DNNs. In Proc. the 30th International Conference

on Neural Information Processing Systems, Dec. 2016,

pp.1387–1395.

[12]

 Wen W, Wu C, Wang Y, Chen Y, Li H. Learning struc-

tured sparsity in deep neural networks. In Proc. the 30th

International Conference on Neural Information Process-

ing Systems, Dec. 2016, pp.2074–2082.

[13]

 Chen W, Wilson J T, Tyree S, Weinberger K Q, Chen Y.

Compressing neural networks with the hashing trick. In

Proc. the 32nd International Conference on Machine

Learning, Jul. 2015, pp.2285–2294.

[14]

 Denton E, Zaremba W, Bruna J, LeCun Y, Fergus R. Ex-

ploiting linear structure within convolutional networks for

efficient evaluation. In Proc. the 27th International Con-

ference on Neural Information Processing Systems, Dec.

2014, pp.1269–1277.

[15]

 Lin M, Ji R, Wang Y, Zhang Y, Zhang B, Tian Y, Shao

L. HRank: Filter pruning using high-rank feature map. In

Proc. the 2020 IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, Jun. 2020, pp.1526–1535.
DOI: 10.1109/cvpr42600.2020.00160.

[16]

 Gao S, Huang F, Pei J, Huang H. Discrete model com-

pression with resource constraint for deep neural net-

works. In Proc. the 2020 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, Jun. 2020,

pp.1896–1905. DOI: 10.1109/cvpr42600.2020.00197.

[17]

 Liu Z, Li J, Shen Z, Huang G, Yan S, Zhang C. Learning

efficient convolutional networks through network slim-

ming. In Proc. the 2017 IEEE International Conference on

Computer Vision, Oct. 2017, pp.2755–2763. DOI: 10.1109/

iccv.2017.298.

[18]

 He Y, Lin J, Liu Z, Wang H, Li L J, Han S. AMC: Au-

toML for model compression and acceleration on mobile

devices. In Proc the 15th European Conference on Com-

puter Vision, Sept. 2018, pp.815–832. DOI: 10.1007/978-3-

030-01234-2_48.

[19]

 Le Cun Y, Denker J S, Solla S A. Optimal brain damage.

In Proc. the 2nd International Conference on Neural In-

formation Processing Systems, Jan. 1989, pp.598–605.

[20]

 Lawson C L, Hanson R J, Kincaid D R, Krogh F T. Ba-

sic linear algebra subprograms for Fortran usage. ACM

Trans. Mathematical Software (TOMS), 1979, 5(3):

308–323. DOI: 10.1145/355841.355847.

[21]

Table 6. Results of Skewness Analysis

Cp_rate Preserve (%) Accuracy (%) ∆acc (%)

50 0 92.73 0.45

5 92.81 0.32

10 92.85 0.20

15 92.92 0.15

70 0 90.70 0.56

5 90.82 0.39

10 90.92 0.17

80 0 88.84 0.82

5 89.25 0.70

10 90.36 0.16

∆acc

Note: The ResNet56 models are pruned by LeGR on CIFAR-
10, with different compression rates and channel preserving
rates. Preserve here indicates the minimum percentage of
channels to be reserved in each layer, while Cp_rate is short for
compression rate, and denotes the accuracy improvement
by KDFT.

1246 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1109/cvpr.2015.7298594
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/ISBI52829.2022.9761511
https://doi.org/10.1109/ISBI52829.2022.9761511
https://doi.org/10.1109/ISBI52829.2022.9761511
https://doi.org/10.1109/PerComWorkshops53856.2022.9767229
https://doi.org/10.1109/PerComWorkshops53856.2022.9767229
https://doi.org/10.1109/cvpr46437.2021.00497
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/tpami.2016.2577031
https://doi.org/10.1109/tpami.2016.2577031
https://doi.org/10.1109/tpami.2016.2572683
https://doi.org/10.1109/tpami.2017.2699184
https://doi.org/10.1109/tpami.2017.2699184
https://doi.org/10.1109/cvpr42600.2020.00160
https://doi.org/10.1109/cvpr42600.2020.00197
https://doi.org/10.1109/iccv.2017.298
https://doi.org/10.1109/iccv.2017.298
https://doi.org/10.1007/978-3-030-01234-2_48
https://doi.org/10.1007/978-3-030-01234-2_48
https://doi.org/10.1007/978-3-030-01234-2_48
https://doi.org/10.1007/978-3-030-01234-2_48
https://doi.org/10.1007/978-3-030-01234-2_48
https://doi.org/10.1007/978-3-030-01234-2_48
https://doi.org/10.1007/978-3-030-01234-2_48
https://doi.org/10.1007/978-3-030-01234-2_48
https://doi.org/10.1007/978-3-030-01234-2_48
https://doi.org/10.1007/978-3-030-01234-2_48
https://doi.org/10.1007/978-3-030-01234-2_48
https://doi.org/10.1145/355841.355847

 Denil M, Shakibi B, Dinh L, Ranzato M, de Freitas N.

Predicting parameters in deep learning. In Proc. the 26th

International Conference on Neural Information Process-

ing Systems, Dec. 2013, pp.2148–2156.

[22]

 Jiang W, Wang W, Liu S. Structured weight unification

and encoding for neural network compression and acceler-

ation. In Proc. the 2020 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition Workshops, Jun.

2020, pp.3068–3076. DOI: 10.1109/cvprw50498.2020.00365.

[23]

 Hu H, Peng R, Tai Y W, Tang C K. Network trimming:

A data-driven neuron pruning approach towards efficient

deep architectures. arXiv: 1607.03250, 2016. https://arxiv.

org/abs/1607.03250, Sept. 2024.

[24]

 Guo J, Ouyang W, Xu D. Multi-dimensional pruning: A

unified framework for model compression. In Proc. the

2020 IEEE/CVF Conference on Computer Vision and

Pattern Recognition, Jun. 2020, pp.1505–1514. DOI: 10.

1109/cvpr42600.2020.00158.

[25]

 Hinton G, Vinyals O, Dean J. Distilling the knowledge in

a neural network. arXiv: 1503.02531, 2015. https://arxiv.

org/abs/1503.02531, Sept. 2024.

[26]

 Krizhevsky A. Learning multiple layers of features from

tiny images. [Master Thesis], University of Toronto, 2009.

https://www.cs.toronto.edu/~kriz/learning-features-2009-

TR.pdf, Sept. 2024.

[27]

 Simonyan K, Zisserman A. Very deep convolutional net-

works for large-scale image recognition. arXiv: 1409.1556,

2015. https://arxiv.org/abs/1409.1556, Sept. 2024.

[28]

 Srinivas S, Subramanya A, Venkatesh Babu R. Training

sparse neural networks. In Proc. the 2017 IEEE Confer-

ence on Computer Vision and Pattern Recognition Work-

shops, Jul. 2017. pp.455–462. DOI: 10.1109/cvprw.2017.61.

[29]

 Gardner M W, Dorling S R. Artificial neural networks

(the multilayer perceptron)—A review of applications in

the atmospheric sciences. Atmospheric Environment,

1998, 32(14/15): 2627–2636. DOI: 10.1016/S1352-2310(97)

00447-0.

[30]

 Chin T W, Ding R, Zhang C, Marculescu D. Towards ef-

ficient model compression via learned global ranking. In

Proc. the 2020 IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, Jun. 2020. pp.1515–1525.
DOI: 10.1109/cvpr42600.2020.00159.

[31]

 Romero A, Ballas N, Kahou S E, Chassang A, Gatta C,

Bengio Y. FitnEts: Hints for thin deep Nets. In Proc. the

3rd International Conference on Learning Representa-

tions, May 2015.

[32]

 Yim J, Joo D, Bae J, Kim J. A gift from knowledge distil-

lation: Fast optimization, network minimization and

transfer learning. In Proc. the 2017 IEEE Conference on

Computer Vision and Pattern Recognition, Jul. 2017,

pp.7130–7138. DOI: 10.1109/cvpr.2017.754.

[33]

 Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L C.

MobileNetV2: Inverted residuals and linear bottlenecks.

In Proc. the 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition, Jun. 2018. pp.4510–4520.
DOI: 10.1109/cvpr.2018.00474.

[34]

 Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVi-[35]

to Z, Lin Z, Desmaison A, Antiga L, Lerer A. Automatic

differentiation in Pytorch. In Proc. the 31st Conference

on Neural Information Processing Systems, Dec. 2017.

 Robbins H, Monro S. A stochastic approximation method.

The Annals of Mathematical Statistics, 1951, 22(3):

400–407. DOI: 10.1214/aoms/1177729586.

[36]

Chong Zhang is currently pursuing

his Ph.D. degree in advanced manu-

facturing in the Faculty of Comput-

ing, Harbin Institute of Technology,

Harbin. His research interests focus on

deep model compression, development,

and acceleration of neural networks on

industrial applications, such as object detection.

Hong-Zhi Wang is a full professor

in the Faculty of Computing, Harbin

Institute of Technology, Harbin. He

received his Ph.D. degree in computer

science and technology from Harbin

Institute of Technology, Harbin, in

2008. His research fields include big

data management and analysis, database systems,

knowledge engineering, and data quality.

Hong-Wei Liu is a full professor in

the Faculty of Computing, Harbin In-

stitute of Technology, Harbin. He re-

ceived his Ph.D. degree in computer

science and technology from Harbin

Institute of Technology, Harbin, in

2004. His research interests mainly in-

clude computer system structure, cloud computing, and

internet of things.

Yi-Lin Chen is currently an under-

graduate student in Harbin Institute

of Technology, Harbin. His research

interests focus on the development of

model compression and industrial ap-

plications of neural networks, such as

object detection and instance segmen-

tation.

Chong Zhang et al.: Fine-Tuning Channel-Pruned Deep Model via Knowledge Distillation 1247

https://doi.org/10.1109/cvprw50498.2020.00365
https://arxiv.org/abs/1607.03250
https://arxiv.org/abs/1607.03250
https://doi.org/10.1109/cvpr42600.2020.00158
https://doi.org/10.1109/cvpr42600.2020.00158
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/cvprw.2017.61
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1109/cvpr42600.2020.00159
https://doi.org/10.1109/cvpr.2017.754
https://doi.org/10.1109/cvpr.2018.00474
https://doi.org/10.1214/aoms/1177729586

	1 Introduction
	2 Related Work
	2.1 Non-Structural Model Compression
	2.2 Structural Model Pruning
	2.3 Knowledge Distillation

	3 Knowledge Distillation Based Fine-Tuning
	3.1 KDFT for Generic CNN Channel Pruning Methods
	3.2 Fine-Tuning Pruned ResNets with HRank Analysis

	4 Experiments
	4.1 Settings
	4.2 Results on CIFAR-10
	4.3 Results on CIFAR-100
	4.4 More Analysis

	5 Conclusions
	Conflict of Interest
	References

