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Abstract    This paper focuses on document-level event factuality identification (DEFI), which predicts the factual na-

ture of an event from the view of a document. As the document-level sub-task of event factuality identification (EFI), DE-

FI is a challenging and fundamental task in natural language processing (NLP). Currently, most existing studies focus on

sentence-level event factuality identification (SEFI). However, DEFI is still in the early stage and related studies are quite

limited. Previous work is heavily dependent on various NLP tools and annotated information, e.g., dependency trees, event

triggers, speculative and negative cues, and does not consider filtering irrelevant and noisy texts that can lead to wrong re-

sults. To address these issues, this paper proposes a reinforced multi-granularity hierarchical network model: Reinforced

Semantic Learning Network (RSLN), which means it can learn semantics from sentences and tokens at various levels of

granularity and hierarchy. Since integrated with hierarchical reinforcement learning (HRL), the RSLN model is able to se-

lect relevant and meaningful sentences and tokens. Then, RSLN encodes the event and document according to these select-

ed  texts.  To  evaluate  our  model,  based  on  the  DLEF  (Document-Level  Event  Factuality)  corpus,  we  annotate  the

ExDLEF corpus as the benchmark dataset. Experimental results show that the RSLN model outperforms several state-of-

the-arts.

Keywords    document-level event factuality identification, hierarchical reinforcement learning, attention network, multi-

granularity encoding

  

1    Introduction

Event factuality  identification (EFI)  aims to pre-

dict the factual nature of a given event in texts, i.e.,

whether  the  event  is  evaluated  as  a  fact,  a  counter-

fact, or a possibility. EFI mainly consists of two sub-

tasks:  1)  sentence-level  event  factuality  identification

(SEFI), which predicts the factuality of an event on-

ly  considering  the  current  sentence  containing  this

event, and 2) document-level event factuality identifi-

cation (DEFI), which is defined as identifying the fac-

tuality of an event based on a document, from which

the event is derived. This paper focuses on the DEFI

task  exemplified  by Fig.1,  where  we  can  observe  the

following aspects.

−

1)  The  sentences  S1.1,  S1.2,  S1.3,  S1.6,  and  S1.7

contain  the  event  mentions  (i.e.,  the  event  trigger

“cancel”)  of  the  event  E1  directly,  while  S1.4  and

S1.5  refer  to  the  event  mention  of  E1  indirectly.  2)

S1.3,  S1.4,  and  S1.6  hold  negative  positions  CT

with regard to E1, mainly according to negative cues
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“deny” (S1.3), “untrustworthy” (S1.4), “not” (S1.6),

and  negative  sentimental  words “disappointing”
(S1.4). 3) Other sentences express different factuality.

For  example,  S1.1  and S1.7  evaluate  E1 as “possible

positive”/PS+,  while  S1.2  thinks  that  E1  is “certain

positive”/CT+. 4)  In  addition,  S1.8  mentions  anoth-

er irrelevant CT+ event “Japan closes its  borders to

non-resident foreigners”,  rather than E1. Hence,  S1.8

offers  unrelated  factual  information  for  E1,  and  may

mislead it to be predicted as CT+ by mistake.

−
In term of document-level factuality, the value of

E1  is  unique,  i.e., “certain  negative”/CT .  Accord-

ing to the core semantics of the document, sentences

S1.3,  S1.4,  and  S1.6  are  responsible  for  determining

the factuality of E1. Other sentences may filter nega-

tive  information  and  mislead  E1  to  be  identified  as

CT+ or PS+ mistakenly. Therefore, to tackle the in-

consistency  of  sentence-level  information  and  to  un-

derstand texts correctly and comprehensively with re-

spect to (w.r.t.)  the event,  we should design a DEFI

model that can select the most relevant and meaning-

ful sentences and tokens.

Up to now, previous EFI work mainly considered

sentence-level  task  SEFI  and  employed  neural  net-

works[1–5].  Nevertheless,  DEFI  is  in  the  preliminary

stage.  Related  work[6, 7] designed  complex  methods

capturing syntactic and semantic features from parsed

trees  and  sentences  with  event  mentions,  or  extract-

ing  local  and  global  information  for  event  triggers

based on graph convolution networks (GCN)[8]. How-

ever, the limitations of these studies are that they de-

pend on annotated information, and encode the whole

document  directly  without  discarding  irrelevant  and

noisy texts.

Based on the analysis above, the main challenges

of DEFI are summarized as follows.

End-to-End  Modeling  Formulation.  End-to-end

DEFI should be defined clearly, and corresponding so-

lution  needs  to  be  proposed  for  practical  and  real-

world application. It is required that the DEFI model

only relies on the event and document, and no other

explicitly  annotated  information  (e.g.,  event  triggers,

speculative  and  negative  cues  in Fig.1)  is  needed,

since upstream tasks detecting other information may

result in cascade errors and performance degradation.

Comprehensive  Encoding.  The DEFI model  is  re-

quired to be able to learn contextual information, and

capture interactions between events and documents to

understand  the  semantics  of  the  event-related  texts

comprehensively.  For  example,  it  should  be  inferred

that E1 is negated by the document in Fig.1.

Text  Selection.  It  is  required  that  a  DEFI  model

can  select  the  most  relevant  and  meaningful  sen-

tences  and  tokens,  meanwhile  discard  those  irrele-

vant and noisy ones,  since noise is  likely to result  in

wrong  prediction.  As  illustrated  in Fig.1,  the  model

needs to select S1.3,  S1.4,  S1.6,  and ensures the pre-

dicted results are not influenced by other sentences.

To  address  these  challenges,  we  develop  a  novel

model named Reinforced Semantic Learning Network

(RSLN).  In  summary,  our  core  contributions  and

main work are as follows.

1)  We  define  the  end-to-end  DEFI  task  and  de-

sign the RSLN model as the solution. To the best of

our knowledge, this is the first end-to-end framework

on DEFI to address the end-to-end modeling formula-

tion.

2)  We  design  sentence  and  document-level  en-

coders  with  hierarchical  structures  to  extract  seman-

tics from the event and document at various levels of

granularity,  aiming  at  building  a  comprehensive  en-

coding method.

3)  We  integrate  policy  networks  that  can  select

relevant  and useful  sentences  and tokens  to  the  pro-

 

−

−

Fig.1.  Example for document-level event factuality, where the event E1 is “Tokyo Olympics is canceled in 2021” with the factuality
of CT . Event triggers are green, speculative cues are blue, and negative cues (including negative sentimental tokens) are red. The
token “pessimistic” in S1.7 can be regarded as both a speculative cue and a negative sentimental token expressing the semantics of
incomplete negation (PS ).
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posed RSLN model with the mechanism of hierarchi-

cal reinforcement learning, which can tackle the prob-

lem of applying text selection mechanism.

4)  We  construct  the  ExDLEF  (Extended  version

of  Document-Level  Event  Factuality)  corpus  that  is

suitable  for  the  DEFI  defined  by  this  paper.  Experi-

mental  results  on  both  English  and  Chinese  sub-cor-

pus (MacroF1/MicroF1: 67.42/77.48 and 75.74/78.29,

respectively)  demonstrate  that  our  RSLN  model  is

better than several state-of-the-art baselines.

The rest of this paper is organized as follows. Re-

lated work is discussed in Section 2. Then we present

the  formalized  definition  of  DEFI  in Section 3.  We

provide a  detailed description of  the  proposed RSLN

model in Section 4. Section 5 introduces the ExDLEF

corpus  and  analyzes  its  differences  from  the  related

dataset DLEF. Experimental results and analysis are

demonstrated  in Section 6.  Finally, Section 7 con-

cludes this paper. 

2    Related Work
 

2.1    Event Factuality Identification

−

SEFI. With the wide and successful application in

NLP  (natural  language  processing),  neural  networks

have been applied to SFEI. Some work aimed to learn

semantical  and  lexical  information  from texts.  Sheng

et al.[4] devised a convolutional neural network (CNN)

model  with  linguistic  features  such  as  event  selected

predicates,  negative  words  and  degree  words.

Rudinger et  al.[1] developed  long  short-term  memory

(LSTM) models with the versions of linear chain and

dependency tree. Qian et al.[2] used a hybrid network

with LSTM and CNN working on sentences and syn-

tactic  paths.  To  further  improve  the  performance  of

CT , PS+, and PR+ that are in minority, Qian et al.[3]

designed  a  generative  adversarial  network  (GAN)  to

produce  more  syntactic  features.  Veyseh et  al.[5] pre-

sented  a  graph  neural  network  exploiting  syntactic

and  semantic  structures  of  sentences  to  model  the

contexts.

DEFI.  This  task  is  still  in  its  preliminary  stage.

Qian et al.[6] constructed the first corpus, Document-

Level  Event  Factuality  (DLEF),  which  is  annotated

with  both  sentence-level  and  document-level  event

factuality, and also includes event triggers, and specu-

lative and negative cues. Based on DLEF, Qian et al.[6]

designed a multi-layer LSTM neural network to cap-

ture  both intra- and inter-sequence  information from

dependency  paths  and  sentences.  Similarly,  Huang

et al.[7] employed a double-layer LSTM network to en-

code sentences. Cao et al.[8] developed an uncertain lo-

cal-to-global  network to model  the uncertainty of  lo-

cal  information  and  to  leverage  global  structure  for

integrating.  We  find  that  the  main  limitations  of

these  studies  are  that  they  depend  on  annotated  in-

formation, and do not discard noisy texts. Therefore,

we re-define the DEFI task and devote to an end-to-

end paradigm. 

2.2    Hierarchical Reinforcement Learning

(HRL)

HRL integrates two-level policy networks with re-

inforcement learning to capture information of differ-

ent  levels.  Liu et  al.[9] devised  a  goal-oriented  dia-

logue  system,  where  the  high-level  policy  guides  the

conversation to the final goal, and the low-level poli-

cy reaches sub-goals by generating the corresponding

utterance  for  response.  Wang et  al.[10] incorporated

clause and word selection to tackle the problem of da-

ta noise in document-level aspect sentiment classifica-

tion.  Xiao et  al.[11] proposed  an  HRL  framework  for

summarization switching between copying and rewrit-

ing sentences.  Wan et  al.[12] built  an HRL model  en-

coding  historical  knowledge  and  structured  action

space, and achieved improvements on relation and en-

tity link prediction.

This paper considers HRL to select the most rele-

vant  sentences  and  tokens  with  regard  to  the  event

by  policy  networks.  Some  work[10–12] designed  policy

networks  with  simple  structures.  To  extract  sen-

tences  and  tokens  more  accurately,  we  apply  sen-

tence encoding layer and document encoding layer to

both  sentence  and  token  policy  networks  for  multi-

granularity  and  hierarchical  encoding.  Additionally,

we use similar encoders in classification networks and

policy networks to ensure the homogeneity so that all

of them can capture speculative and negative syntac-

tic and semantic features. 

2.3    Advanced Attention Networks

Co-Attention.  This  is  a  bi-directional  mechanism

computing  weights  for  two  sequences,  and  mainly

covers  parallel  and  alternating  co-attention.  Zhou

et  al.[13] employed  a  co-attention  enhanced  hierarchi-

cal MRC (Machine Reading Comprehension) model to

capture  interactions  between  the  article  and  ques-

tions,  thus  guided the  decoder  to  produce  more  con-

sistent  and relevant  distractors.  Wu et  al.[14] exploit-
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ed a decision tree based explainable claim verification

model  integrating  co-attention  to  make  the  evidence

and claims interact with each other. Wu et al.[15] de-

vised multi-modal co-attention network for fake news

detection to fuse textual and visual features.

Gated Attention. It selects elements with gates for
aggregation  to  alleviate  unnecessary  calculation  on

unattended elements. In NLP field, Lai et al.[16] used
a  gated  self-attention  memory  network  for  the  an-

swer selection task. Xue et al.[17] proposed a dynami-
cally gated attention network and achieved satisfacto-

ry results on several sentence classification tasks. Liu

et al.[18] devised a multi-classification sentiment analy-
sis model based on attention with gated linear units.

Given the above advantages, we integrate various
attentions into our RSLN model, including self-atten-

tion,  multi-head  attention,  co-attention,  gated  atten-
tion, and hierarchical attention. 

2.4    Differences Between DEFI and FEVER

Fact extraction and verification (FEVER) concen-

trates  more  on  information  retrieval  including  claim
verification  and  evidence  selection,  which  are  a  bit

similar  to  DEFI.  We compare  them from the follow-
ing perspectives.

Task  Definitions.  FEVER requires  claim verifica-
tion  labelled  as “Supported/Refuted/NotEnoughInfo”
and  evidential  sentence  selection.  DEFI  focuses  on
identifying  event  factuality  based  on  a  given  event

and a document. Due to the combination of modality
and polarity associated with speculation and negation,

the definition of event factuality values is more com-

plicated, as defined in Table 1. Therefore, the classifi-
cation  task  in  DEFI  is  more  difficult  than  that  in

FEVER.
  

Table  1.    Event Factuality Values Used in This Paper

Positive/+ −Negative/ Underspecified/u

Certain/CT CT+* −CT * CTu

Possible/PS PS+* −PS * N/A

Underspecified/U N/A N/A Uu*

Note:  The  applicable  values  in  the  ExDLEF  corpus  are
highlighted  in  bold  and  marked  with  *.  CT:  certain.  PS:
possible. +: positive. –: negative. U: modality. u: polarity.
 

Resources.  Annotation  of  FEVER requires  sever-
al documents, while for an event in ExDLEF, we an-

notate  its  label  of  factuality  according  to  one  docu-
ment.  Moreover,  FEVER  consists  of 185 445 claims

crawled  from  Wikipedia,  whose  size  is  larger  than
that  of  ExDLEF  focusing  on  news.  Hence,  the  main

differences  of  resources  are  annotated  information,
genre, and scale.

Methods. Some work[19, 20] on FEVER constructed

a pipeline system comprising document retrieval, sen-

tence-level evidence selection, and textual entailment,

and designed networks to fuse evidences and then ver-

ify  the  claim.  Other  studies[21, 22] organized  evidence

selection and claim verification into multi-task learn-

ing frameworks.  Compared with FEVER, DEFI does

not  aim  at  retrieving  documents  or  evidential  sen-

tences or tokens precisely.

As a conclusion,  we argue that FEVER and DE-

FI are different tasks.  Compared with the models on

FEVER, our RSLN is absorbed in the document-lev-

el  solution,  integrates  both sentence and token selec-

tion,  focuses  on  factual  and  non-factual  information,

and defines more comprehensive and detailed labels. 

3    Task Formulation

This  section  gives  definitions  and formulations  of

the dataset, DEFI, and factuality values.

C

C = {(y, E,D)}Nc−1
i=0 Nc

(y, E,D) E

y

D y

Dataset.  The  whole  dataset  can  be  defined  as

, where  is the total number of

samples  (i.e.,  events).  Each  event  is  denoted  as  a

triple  sample .  For  each  sample,  event 

(usually a sentence) is associated with a ground-truth

label  of  its  document-level  factuality  value  and  a

document  from which  can be inferred. In this pa-

per, we only consider one event in each document.

E D

E E D

M

hE D E

y

DEFI. This task is defined as predicting the factu-

ality value of event  according to document , from

which  is derived. Given  and  as input, a DE-

FI model  aims to learn the event-specific represen-

tation  according  to  specified  to ,  and  the

probability of  is calculated by softmax:
 

hE = M(E,D|Θ), (1)
 

p(y|E,D) = softmax(hE|Θ), (2)

Θ

D

D = {S0, S1, . . . , SI−1}

where  is the set of parameters of the model. A doc-

ument  can  be  denoted  as  a  set  of  sentences,

.

−

Event  Factuality  Values.  As  previous  work[6, 23],

event factuality values are characterized as the combi-

nation of modality and polarity, where modality con-

veys the certainty degree of  events,  mainly including

three applicable values, certain (CT), probable (PR),

and  possible  (PS),  while  polarity  expresses  whether

the  event  happened  or  not,  mainly  containing  posi-

tive (+) and negative ( ). There is one default value

for  both  modality  and  polarity,  which  is  underspeci-

fied (U/u, where U for modality, and u for polarity),
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−

⟨ ⟩
⟨ ⟩ − ⟨ ⟩ −
⟨ ⟩ ⟨ ⟩

meaning  unknown  or  uncommitted.  We  utilize  the

factuality values in Table 1[6]. PR and PS are merged

into PS in both the DLEF and ExDLEF corpus,  be-

cause  of  similar  semantics  on  modality  expressing

“not totally certainty”. Grammatically speaking, PSu

and U+/  are not applicable (N/A). Although appli-

cable,  no  events  can  be  annotated  as  CTu,  since  it

means “partially  underspecified” that  is  extremely

rare  in  news  texts.  Therefore,  there  are  five  applica-

ble  event  factuality  values  in  the  benchmark dataset

ExDLEF corpus: underspecified, underspecified /Uu,

certain,  negative /CT , possible,  negative /PS ,

possible, positive /PS+, and certain, positive /CT+.
 

4    Approach: RSLN for DEFI

This section introduces the proposed reinforced se-

mantic  learning  network  (RSLN)  in  detail.  For  clear

description,  we  first  give  the  overview  architecture,

and then present the structures of main sub-networks.

Finally, we explain the optimization of RSLN. 

4.1    Overview

ϕc

πs

D

πt

Si

Model/M = {CNet/ϕc, SPNet/πs,TPNet/πt}

The architecture of RSLN is shown in Fig.2. Over-

all, RSLN is composed of three sub-networks: 1) clas-

sification network (CNet)  that outputs the results

of  DEFI,  and  produces  rewards  for  policy  networks;

2) sentence selection policy network (SPNet)  that

selects sentences from the document ; and 3) token

selection  policy  network  (TPNet)  that  selects  to-

kens  from each sentence .  Based on these  sub-net-

works,  the  RSLN  model  is  presented  as  the  set  of

them: .

The advantages of RSLN can be characterized as fol-

lows.
 

Event Document

Sentence Encoding Layer
(SEL)

Input Layer

Document Encoding Layer 
(DEL)

VA

ISEncEVEnc TPEnc

FSEnc

VA

[FC]+

1 0 1 1 0
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IDEnc
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Fig.2.  Overall architecture of our RSLN model, below which we give the legends for encoders in SEL and DEL. The regular expres-
sion operator “[ ]+” means this sub-network is used and stacked more than once.
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Reinforcement.  RSLN enables  policy  networks  to

select sentences and tokens with HRL for information

extraction and refinement.

Multi-Granularity.  RSLN  captures  semantics  of

events  and  documents  at  multi-levels  of  granularity.

It  learns  intra- and  inter-sentence  information  from

events, topics, and sentences.

Hierarchy. RSLN integrates both the sentence and

document  encoding  layers  hierarchically  to  under-

stand texts comprehensively,  rather than concatenat-

ing  all  the  sentences  into  one  sequence,  since  sen-

tences may hold different factuality values for events.

Attention.  RSLN  devises  various  attention  sub-

networks to capture the most meaningful information

among events and sentences.

Next, modules of each sub-network, CNet, SPNet,

and TPNet, are described as follows. 

4.2    Input Layer of CNet

tij E Si tij

WE

PE

tij

This layer produces the embedding of  each token

 in event  and each sentence . For , we main-

ly  consider  the  information  of  the  word  embedding

( ) provided by a pre-trained model GloVe[24], and

the position embedding ( ).  The embedding of  to-

ken  can be denoted as the sum of them:
 

tij = WE(tij) + PE(tij).

E Si

E(0) S(0)
i

E(0) ∈ Rdmodel×|E| S(0) ∈ Rdmodel×|Si| dmodel
E(0)

S(0)
i

Then the matrix representations of  and  are

denoted  as  and ,  respectively,  where

, ,  and  is  the  di-

mension of our attention sub-networks. In CNet, 

and  are fed into the following encoding layers.
 

4.3    Sentence Encoding Layer (SEL)

E Si

E Si

SEL  is  an  important  and  fine-grained  module  of

CNet,  SPNet,  and  TPNet,  which  aims  at  extracting

information  of  event  and  each  sentence .  SEL

firstly  updates  hidden  states  of  tokens,  and  then

learns  the  vector  representations  for  and .  En-

coders and networks of SEL are defined as follows. 

4.3.1    Intra-Sentence Encoder (ISEnc)

E Si

Based  on  self-attention,  ISEnc  is  used  for  intra-

sentence encoding, i.e.,  encodes sentence-level  seman-

tics in event  and each sentence :
 

EIS = RN(GSA(SA(E(0)))),

SIS
i = RN(GSA(SA(S(0)

i ))),

SA GSA RN

U in SA

U out = SA(U in)

where , ,  and  are  self-attention,  gated

self-attention,  and  residual  network,  respectively.  As

mentioned by previous work[25], for any input , 

(i.e., ) is defined as:
 

U (0) = FFN(MHA(U in, U in, U in)),

MHA FFNwhere  is  multi-head attention,  and  is  a

position-wise fully connected feed-forward network.

SA

U out = GSA(U in)

Considering  not  all  the  tokens  are  related  and

beneficial to DEFI, in addition to conventional self-at-

tention,  we  equip  with  gate  mechanism  to  learn

meaningful  high-level  representations,  and  adopt  one

variant of gated self-attention (i.e., )

that is formally calculated as:
 

U (0) = MHA(U in, U in, U in),

G(0) = σ(FC(0)(U in) + FC(1)(U (0))),

U out = FFN(G(0) ⊙U in + (1−G(0))⊙U (0)),

FC(0/1) tanh
σ ⊙

where  are fully-connected layers with  as

the activation,  is the sigmoid function, and  is el-

ement-wise multiplication operator.

RN

By  integrating  attentions,  our  RSLN  model  is

quite deep and probably exposed to the degradation.

The  solution  is  a  stacked  layer  of  residual  networks

( ) used to control  the output,  and one variant is

computed as:
 

U (0) = GELU(LN(LL(U in))), (3)

 

U out = GELU(LN(LL(U (0))) +U in), (4)

GELU

LN

LL

where  is  the  Gaussian  error  linear  unit  em-

ployed as activation function,  is  a normalization

layer,  and  is  a  linear  layer.  Since  the  DEFI  is  a

document-level  task,  we  also  consider  learning  inter-

sentence  information,  and  further  employ  the  follow-

ing sub-encoders. 

4.3.2    Event Encoder (EVEnc)

E

E

D

Event  is  the  basic  clue  to  guide  the  model  to

identify document-level factuality of . To avoid DE-

FI becoming trivial, events are kept concise and brief

during annotation, and hence contain fundamental in-

formation  for  event-specific  DEFI.  For  example,  in

Fig.1,  E1  includes  the  event  trigger “canceled”,  the

event  argument “Tokyo  Olympics”,  and  the  time

stamp “2021”.  Therefore, we integrate events into 

in  order  to  capture  event-related  semantics,  and  de-

fine EVEnc as:
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SEV-1
i , EEV-1 = CA(SIS

i , E
IS),

SEV-2
i , EEV-2 = GCA(SEV-1

i , EEV-1),

SEV
i = RN(SEV-2

i ),

CA GCA

U in V in

CA U out, V out = CA(U in, V in)

where  and  are  co-attention  and  gated  co-

attention,  respectively.  For  any  input  and ,

 (i.e., ) is calculated as:
 

V out = MHA(V in, U in, U in),

U out = FFN(MHA(U in, V out, V out)).

GCA U out, V out =

GCA(U in, V in)

To filter unrelated information propagating in pre-

vious  attention  layers,  we  exploit  gates  as  well,  and

compute  gated  co-attention  (i.e., 

) as follows:
 

V (0) = MHA(V in, U in, U in),

G(0)
V = σ(FC(0)(V in) + FC(1)(V (0))),

V out = FFN(G(0)
V ⊙ V in + (1−G(0)

V )⊙ V (0)),

U (0) = MHA(U in, V out, V out),

G(0)
U = σ(FC(2)(U in) + FC(3)(U (0))),

U out = FFN(G(0)
U ⊙U in + (1−G(0)

U )⊙U (0)).
 

4.3.3    Topic Encoder (TCEnc)

D

D

D

CA

In order to get important information as much as

possible from some brief texts, we integrate the topic

sentence  into  other  sentences  in  document ,  where

the  topic  sentence  is  the  first  sentence  in  the  main

body of .  Due to  the  characteristics  of  news,  topic

sentences usually summarize the main or core seman-

tics  of ,  and  may  contain  more  information  about

the events than other sentences, including event trig-

gers  and arguments,  time  stamps,  etc.  Therefore,  we

can  extract  beneficial  and  event-related  information

from  topic  sentences  as  well.  Take  the  event  E1  in

Fig.1 as  an example  again.  The sentence S1 involves

several arguments with regard to E1, e.g., event trig-

ger “cancel”,  named  entities “COVID-19” and

“Tokyo  Olympic  Organizing  Committee”,  and  time

stamp “2021”.  Similar  to  the  events,  we  encode  the

topic sentence into other sentences by  to learn in-

teractive information among them,
 

STC-1
i , STC-1

0 = CA(SIS
i , S

IS
0 ),

STC-2
i , STC-2

0 = GCA(STC-1
i , STC-1

0 ),

STC
i = RN(STC-2

i ),

i = 1, . . . , I − 1where . 

4.3.4    Fusion Encoder (FSEnc)

SIS
i SEV

i STC
iWe have got , , and  that are the out-

put  of  ISEnc,  EVEnc,  and  TCEnc,  respectively.  To

eliminate the manifold differences, this encoder is de-

vised to fuse these representations and extract higher-

level  semantic  information,  as  computed  by  the  fol-

lows:
 

SFS-1
i = tanh(LLFS-0(SIS

i ) + LLFS-1(SEV
i )+

LLFS-2(STC
i )),

SFS
i = RN(GSA(SA(SFS-1

i ))),

LLFS-j
j = 1, 2, 3

Si dmodel

S(1)
i = SFS

i

Si

where  ( ) are linear layers. FSEnc us-

es  fully-connected  layers  to  transform  the  dimension

of the representation of  back to , for the rea-

son of keeping the consistency of hidden units and re-

ducing the complexity of the model. And then it em-

ploys self-attention to learn high-level abstract seman-

tics based on the output of previous encoders ISEnc,

EVEnc, and TCEnc. We use matrix  to de-

note  the  matrix  representation  of  encoded  by

FSEnc in SEL. 

4.3.5    Output of SEL

D =

{S0, S1, . . . , SI−1} {S(1)
0 , S(1)

1 , . . . ,

S(1)
I−1}

h(0)
i

Si h(0)
i = V A(S(1)

i ) i = 1, . . . ,

I − 1 V A

uout = V A(U in)

U in

According the above encoders, the document 

 can be denoted as 

.  Next,  we  plan  to  capture  interactive  seman-

tics  among sentence  from the  level  of  the  document.

Therefore, we learn the vector representation  for

each  sentence : ,  where 

.  is  the  Vanilla  attention  pooling  operation

(i.e., ) that is applied to learning vec-

tor representation of any matrix input :
 

α = softmax(uT
s tanh(U

in)),

uout = U inαT,

us

D {Si} D(0) = {h(0)
0 , h(0)

1 , . . . ,

h(0)
I−1}

where  is the parameter. Then the representation of

 contains vectors of , i.e., 

, which is fed into the document encoding layer

in Subsection 4.4. 

4.4    Document Encoding Layer (DEL)

D

D

SA GSA RN

DEL is responsible for learning the representation

of document , and includes one encoder and one in-

tra-document  encoder  (IDEnc).  This  encoder  learns

the intra-document information among sentences, and

calculates the representation of  by a stack of sever-

al , , and  networks:
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D(1) = RN(GSA(SA(D(0)))).

hE

D E

D(1) hE = V A(D(1))

To  acquire  the  final  vector  representation  in

(1) of  with regard to ,  we apply VA pooling on

 and get the output of DEL, . 

4.5    Sentence Selection Policy Network

(SPNet)

πs(as
i |ss

i , θ
s
p)

D

SPNet, or denoted as  formally, is re-

sponsible  for  selecting  sentences  from  document .

Since  SPNet  is  significant  for  promoting  the  perfor-

mance  of  DEFI,  we  plan  to  establish  close  semantic

correlation  between  CNet  and  SPNet,  e.g.,  utilizing

the representations encoded by CNet as the input for

SPNet.  Concretely,  the  state,  action,  and  reward  of

SPNet are defined as follows.

Si

ss
i

1) State.  The  state  of  each  sentence  is  repre-

sented as , which is comprised of three vectors:

ve = V A(EIS) ve

E EIS V A

EIS

● ,  which means  is  the vector of

event  and  is  computed  based  on  using 

pooling, where  is encoded by ISEnc in CNet;

vc
i = V A(D(1)) vc

i

Si D(1)

● , where  is the vector represen-

tation  of  sentence ,  and  is  computed  by  SEL

and IDEnc in CNet;

vsp
i = V A(DSP) DSP

E(0) S(0)
i

● ,  where  is  encoded  by  SEL

and DEL in  SPNet  with  and  as  the  input,

respectively.

V A

Si ⊕
tanh

We make  use  of  in  SEL.  Thus,  the  state  of

each sentence  is denoted as the concatenation ( )

of the above vectors with  as the activation func-

tion:
 

ss
i = tanh(ve ⊕ vc

i ⊕ vsp
i ).

as
i

as
i ∈ {0, 1} ∼ πs

Si

as
i

ss
i πs(as

i |ss
i , θ

s
p)

FCs

2) Action. We set the action  of SPNet as a bi-

nary value, i.e., , where 1 means sen-

tence  is selected, while 0 means not. Formally, the

possibility  distribution  of  is  computed  based  on

state  according to , which is based on

a  stack  of  several  fully  connected  layers  with

GELU as the activation function:
 

πs(as
i |ss

i , θ
s
p) = σ(W s

pFCs(ss
i ) + bs

p),

FCs
k ∈ FCswhere each  can be calculated as:

 

FCs
k(s

s
i ) = GELU(W s

k s
s
i + bs

k).

Si rsi πs

3) Reward.  The  reward  of  SPNet  for  each  sen-

tence  is represented as  that is used to guide 

to select sentences, and is computed as:

 

rsi = ϵs0 log pθc(y|h
(0)
i )− ϵs1

I∗

I
,

Si

πs

h(0)
i ∈ D(0)

y E I∗

I

where the first term is a delay reward of the sentence

 provided by CNet, and can be obtained as follows.

After  completes all  the actions, we feed each sen-

tence  whose  representation  is  encoded by

SEL into the softmax of CNet to compute the proba-

bility according to the annotated label  of .  and

 are the numbers of the selected sentences and total

sentences, respectively. 

4.6    Token Selection Policy Network

(TPNet)

Si

πt(at
j|st

j, θ
t
p)

TPNet  selects  tokens  from each sentence ,  and

can  be  formally  represented  as .  Similar

to  SPNet,  we  also  aim  to  exploit  the  token-level

knowledge  learned  from  CNet.  Hence,  the  input  of

TPNet is derived from CNet. Formally, the state, ac-

tion, and reward of TPNet are defined as follows.

Si tij
st
j st

j

1) State. In sentence , the state of each token 

is  denoted  as .  To  compute ,  we  mainly  employ

the following vectors:

w(1)
j ∈ S(1)

i w(1)
j

tij ∈ Si S(1)
i

● ,  where  is  the  representation  of

the  token ,  and  is  computed  by  SEL  in

CNet, as described in Subsection 4.3;

wtp
j ∈ STP

i STP
i

E(0) S(0)
i

● ,  where  is  calculated  by  SEL  in

TPNet with the input of  and .

tijThen we can get the state of each token  as fol-

lows:
 

st
j = tanh(w(1)

j ⊕wtp
j ).

at
j ∈ {0, 1} ∼ πt

tij tij
at
j

πt st
j

FCt

2) Action. Similar to SPNet, the action of TPNet

is set as a binary integer ,  and 1 de-

notes  token  is  selected,  while  0  denotes  is  dis-

carded.  The  possibility  distribution  of  is  calculat-

ed by  with state  as the input, where  is  a

stack of fully connected layers as well:
 

πt(at
j|st

j, θ
t
p) = σ(W t

pFCt(st
j) + bt

p).

rti
πt

rti

3) Reward. The reward of TPNet is denoted as 

that  is  used  to  guide  to  select  tokens.  Similar  to

previous  work[10, 26],  in  order  to  reduce  the  variance,

we compute  based on the vector representation of

each sentence rather than those of each token:
 

rtj = ϵt0 log pθc(y|V A(S(1)
i ))− ϵt1

J∗

J
,

log pθc

ϕc y E

where  in  the  first  term is  the  output  layer  of

CNet/ ,  is  the  annotated  label  of  the  event 
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D

S(1)

h(0)
i Si h(0)

i

J∗ J

based on document . As for terms, 1) the first term

is  a  delay  reward  of  tokens  produced  by  CNet,  and

can be calculated as the following steps: VA pooling is

applied to  (selected by SPNet) to obtain the vec-

tor representation  for each , and  is fed in-

to to the softmax of CNet to compute the probability;

2) the second term is mainly comprised of  and 

that are the numbers of the selected tokens and total

tokens, respectively. 

4.7    Output of CNet

hE

D E

Finally, ,  which is the vector representation of

document  with regard to the specific event  origi-

nally defined by (1) in Section 3, and is also the out-

put of the document encoding layer in Subsection 4.4,

is fed into the softmax layer to compute the possibili-

ty distribution of the event factuality:
 

p = softmax(WshE + bs).
 

4.8    Model Optimization

Si

D

Si

hE

D

Based on the components and architectures of the

RSLN model  defined above,  the  whole  encoding pro-

cedures mainly include the following steps:  1)  encod-

ing each sentence  by the sentence encoding layer in

CNet, 2) selecting sentences from the document  by

SPNet,  3)  selecting  tokens  from each  sentence  by

TPNet, and 4) learning the vector representation 

of  document  by  the  document  encoding  layer  in

CNet. The whole optimization of the RSLN model is

presented  in Algorithm 1,  where  an  additional  warm

start is adopted by selecting all the sentences and to-

kens to train the RSLN.

Θ

According to the settings of the classification net-

work  CNet  and  policy  networks  SPNet  and  TPNet,

the  total  parameters  ((1)  and  (2)  in Section 3)  of

the RSLN model can be mainly classified as two sets:

θsp θtp πs

πt

1)  and  of  policy  networks  SPNet/  and

TPNet/ ,  respectively,  including  the  parameters  in

SEL and DEL of  them,  and those  parameters  in  the

fully connected layers used to compute the states and

actions;

θc ϕc2)  of  CNet/ ,  including  those  parameters  in

the embedding layer, SEL, DEL, and the softmax lay-

er.

θsp θtp

For  the  optimization  of  policy  networks,  we  up-

date  and  by the REINFORCE algorithm[27] and

policy gradients[28] to maximize the expected rewards.
 

∇θs
p
J(θsp) =

I−1∑
i=0

Rs
i∇θs

p
log πs(as

i |ss
i , θ

s
p),

∇θt
p
J(θtp) =

J−1∑
j=0

Rt
j∇θt

p
log πt(at

j|st
j, θ

t
p),

Rs
i = rsi − b(r̃s) Rt

j = rtj − b(r̃t)

rsj rtj
b(r̃s) b(r̃t)

Rs
j Rt

i

where  and  are  de-

signed  to  estimate  the  reward  of  sentence  and  token

selection  ( , ),  respectively.  The  baseline  values

 and  are approximated by the average of all

the  previous  rewards.  The  setting  of  advantage  esti-

mate  and  using  baseline  values  can  minimize

the variance of the individual weight changes of origi-

nal  rewards  over  time  without  altering  the  expecta-

tion theoretically[27].

Algorithm  1. Optimization  of  Reinforced  Semantic  Learning
Network (RSLN)

C = {(y, E, D)}Nc−1
i=0

EInput: corpus ;  each  event  sample  has

two types of input:

E1) an event  (usually a sentence);

D = {S0, S1, . . . , SI−1} I2) a document  with  sentences.

Output: the trained RSLN model

θc θtp θsp  1: Initialize the parameters , ,  randomly;

  2: Phase 1:

ϕc πt πs

θc θtp θsp

  3:  Warm  start,  i.e.,  train  CNet/ ,  TPNet/ ,  SPNet/ ,
  and update , ,  by selecting all the tokens and sen-

  tences;

  4: Phase 2:

D ∈ C  5: for a document  do

{Si} D  6:        Encode all the sentences  in  by CNet;

Si ∈ D  7:        for a sentence  do

ss
i

as
i ∼ πs

Si

  8:                Calculate  the  state  and  sample  the  action
   for ;

Si  9:                Determine whether to select  or not;

rsi Si πs  10:               Calculate the reward  of  for ;

  11:        end for

Si ∈ D  12:        for a sentence  do

tij ∈ Si j ∈ [0, J)  13:                for a token ,  do

st
i

at
j ∼ πt tij

  14:                        Calculate  the  state  and  sample  the

  action  for ;
  15:                end for

Si  16:                Select tokens of ;

rtj {tij} πt  17:                Calculate the reward  of  for ;
  18:        end for

hE D  19:        Calculate  the  vector  representation  of  by

  DEL in CNet;

θc θtp θsp  20:        Update , , ;
  21: end for

ϕc θc

For the optimization of the classification network

CNet/ ,  the  parameter  set  is  updated  by  back

propagation,  and  the  objective  function  is  computed

as:

1256 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6



 

L(θ) = − 1

N

N−1∑
n=0

log p(yn|θc),

yn E

D N

where  is the annotated label of the event  w.r.t

, and  is the number of samples. 

5    Corpus

To evaluate our model, we utilize ExDLEF as the

benchmark  dataset  whose  English  and  Chinese  sub-

corpora are the extended versions of the DLEF-v2[23].

Concretely, we give statistics of ExDLEF in Table 2.

Labeling the document-level  event factuality  requires

for comprehensive semantic understanding the event-

related document. The differences between DLEF and

ExDLEF  (including  the  DLEF-v2)  mainly  lie  in  the

following aspects.

 
 

Table  2.    Statistics of the ExDLEF Corpus

Sub-Corpus Uu −CT −PS PS+ CT+ Total

English 42 745 51 660 3 532 5 030

Chinese 22 1 504 42 953 2 629 5 150

 

Event Expressions. In DLEF, events are represent-

ed as triggers that are words or phrases. Hence, trig-

ger  mentions  are  annotated  explicitly  in  the  sen-

tences containing them, and the models on DLEF can

make use of them directly. In ExDLEF, an event is a

sentence summarized from the document without an-

notated  triggers.  Therefore,  the  task  defined  on

ExDLEF are more difficult than that on DLEF.

Annotated  Information.  The  DLEF  corpus  anno-

tates  various  information  for  each  sentence-level

event,  i.e.,  speculative  and  negative  cues,  event  trig-

gers,  and  its  sentence-/document-level  factuality.

DLEF-v2  further  annotates  a  document-level  event

(usually a sentence) for each document, and ExDLEF

is comprised of more documents than DLEF-v2.

Input  of  Models.  The  tasks  and  models  defined

and  designed  by  previous  work[6, 8] usually  rely  on  a

variety  of  annotated  elements,  including  event  trig-

gers, speculative and negative cues. Since event men-

tions  and  triggers  in  sentences  are  given  explicitly,

previous  models  employ  these  sentences  directly,

rather than extracting sentences with event mentions.

On the contrary, we re-define DEFI as an end-to-end

task,  which  only  relies  on  the  event,  document,  and

factuality, without other explicitly annotated informa-

tion. Therefore, compared with previous research, the

task  defined  in  this  paper  is  more  difficult,  but  our

RSLN  model  is  more  suitable  for  practical  scenario

and can be applied to real-world applications directly.

−

<

<

−

Size of Corpora. The sizes of the Chinese sub-cor-

pora  are  nearly  the  same  in  DLEF  and  ExDLEF

(4 649 vs 5 150).  However,  in the DLEF corpus,  Chi-

nese  documents  are  much  more  than  English  ones

(4 649 vs 1 727), which means it  is  less fair  to evalu-

ate our model on English texts.  Actually,  due to the

minority of CT  and PS+, both RSLN and RMHAN

(Reinforced  Multi-Granularity  Hierarchical  Attention

Network)[23] get  low  results  on  them  (F1-score 41),

leading to lower MacroF1 55, where MacroF1 means

macro-averaged F1-score.  Therefore,  based  on  the

original  documents,  we  annotate  more  English  sam-

ples  (up  to 5 030 from  China  Daily)  in  ExDLEF.

CT+ events occupy the majority because of the char-

acteristics of news texts. To avoid the extreme imbal-

ance  between  CT+ and  non-CT+,  we  pay  attention

to collecting more CT  and PS+ events during anno-

tation. 

6    Experimentation

In this section, we introduce the experimental set-

tings,  which  are  evaluation  metrics,  implementation

details,  and  baselines.  Then,  we  report  the  perfor-

mance  of  our  proposed  RSLN  model  compared  with

baselines, and present experimental analysis. 

6.1    Evaluation Metrics

−

−

In  the  experiments  evaluating  our  model,  we  fo-

cus  on  the  performance  of  the  three  main  applicable

factuality  values,  CT ,  PS+,  and  CT+,  since  the

events  with  these  values  occupy  98.15%/98.76%  in

English/Chinese  sub-corpus.  The  results  of  Uu  and

PS  are  excluded  from  consideration,  mainly  owing

to their extremely small proportions, which is similar

to previous work[6–8]. We employ F1-score as the main

metrics  to  describe  the  performance  of  each  applica-

ble value.

Moreover,  both  macro-averaged  and  micro-aver-

aged F1-scores are utilized to describe the overall per-

formance. The former averages F1-scores of each cate-

gory.  The  latter,  first  collects  together  the  decisions

(true positives)  for  all  the categories  in  a single  con-

tingency  table,  and  then  applies  the  measure  over

them:
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MacroF1 =
1

3

∑
X

F1(X),

MicroPrecision =

∑
X
TP (X)∑

X
TP (X) +

∑
X
FP (X)

,

MicroRecall =

∑
X
TP (X)∑

X
TP (X) +

∑
X
FN(X)

,

MicroF1 =
2×MicroPrecision×MicroRecall

MicroPrecision+MicroRecall
,

X − TP FP

FN

where ={CT ,  PS+,  CT+},  and , ,  and

 mean “true  positives”, “false  positives”,  and

“false negatives”, respectively. 

6.2    Implementation Details

For  fair  comparison,  10-fold  cross  validation  is

performed  on  both  the  English  and  Chinese  sub-cor-

pus.  Word  embeddings  are  pre-trained  by  GloVe[24]

with  the  dimension  of  300,  the  same  as  the  hidden

units  of  the  attention  layers  in  RSLN.  In  term  of

training,  we  exploit  a  two-phase  strategy  defined  in

Algorithm 1:  the  first  phase  is  set  as  a  warm  start,

and  all  the  sentences  and  tokens  are  selected  during

training  the  model,  where  the  Adam  algorithm[29] is

used as the optimizer. Then, the second phase switch-

es to consider both sentence and token selection, and

continues to update the model by the stochastic gra-

dient descent algorithm[30]. 

6.3    Baselines

We mainly use the following methods as baselines

that can be organized as several groups. 

6.3.1    SEFI Model

SGCN[5] is a sentence-level GCN model that works

on  sentences  and  syntactic  paths.  This  model  re-

quires that the event triggers are given, and utilizes a

simple  voting  mechanism  to  decide  document-level

factuality. 

6.3.2    Pipeline DEFI Models

These  models  employ  pipeline  architectures,  and

may  suffer  from  errors  produced  by  upstream  tasks

(detection of  event  triggers,  speculative  and negative

cues).

LSTM-A[6] employs multi-layer LSTM with vanil-

la attention pooling including both intra- and inter-se-

quence  attentions  to  model  dependency  paths  and

sentences, and considering adversarial training.

BERT-MSF[31] firstly  detects  speculation  and

negation  scopes,  and  then  fuses  them  with  the  sen-

tences  containing  events  using  the  model  based  on

BERT.

ULGN[8] represents  an  uncertain  local-to-global

network  that  models  local  uncertainty  and  global

structure with graph convolution networks.

I H0 = BERT (I) H0 ∈
RdBERT×|I| dBERT |I|

The network detecting event triggers, and specula-

tive  and  negative  cues  is  illustrated  by Fig.3,  whose

performance is reported in Table 3. To be in line with

complicated  attentions  employed  by  this  paper,  we

leverage  BERT[32] as  the  backbone  with  each  sen-

tence  as  the  input: ,  where 

,  is  the dimension of  BERT, and  is

the number of tokens. Then we exploit three residual

networks to encode the output of BERT for the three

tasks,  i.e.,  detection  of  event  triggers,  speculative

cues, and negative cues:
 

H1 = RN 1(H0),

H2 = RN 2(H0),

H3 = RN 3(H0),

where residual networks are defined in (3) and (4). Fi-
 

RN

BERT

RN RN

Sentence
Input Layer

BERT Layer

Residual Layer

Softmax Layer

Event Trigger Detection Speculation Cue Detection Negative Cue Detection

Fig.3.  Overall architecture of the networks for the detection of event triggers, speculative cues, and negative cues.
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nally, the representations of the three tasks are fed in-

to softmax to compute the possibility distributions of

corresponding labels for each token, respectively:
 

ps1 = softmax(Ws1H1 + bs1),

ps2 = softmax(Ws2H2 + bs2),

ps3 = softmax(Ws3H3 + bs3),

Ws1, Ws2, Ws3 ∈ R2×dBERT bs1, bs2, bs3 ∈ R2

Ls(θs)

where , .

The objective functions  is designed as:
 

Ls(θs) =
1

3
((Ls1(θs) + Ls2(θs) + Ls3(θs)),

Ls1(θs) = − 1

N

N−1∑
n=0

log p(y(s1)
n |θs),

Ls2(θs) = − 1

N

N−1∑
n=0

log p(y(s2)
n |θs),

 

Ls3(θs) = − 1

N

N−1∑
n=0

log p(y(s3)
n |θs),

y(s1)
n , y(s2)

n , and y(s3)
n

N

where  are  the  annotated  labels

indicating whether a token is an event trigger, a spec-

ulative  cue  or  a  negative  cue,  respectively.  is  the

number of samples. 

6.3.3    Target-Dependent Classification Models

TEND-C[33] and  TEND-T[34] are  designed  for

learning  target-dependent  document  representations,

where the event is the target in this paper. TEND-C

utilizes LSTM with vanilla attention to compose con-

text-sensitive  sentence  representations,  while  TEND-

T  considers  more  attention  modules  and  integrates

word-to-word alignment scheme.

RLSTM[10] is an LSTM neural network with hier-

archical  reinforcement  learning  (HRL)  and  incorpo-

rates both token and sentence selection. 

6.3.4    Large-Scale Pre-Trained Attention Model

BERT-B[32] is  the  base  version  of  BERT,  i.e.,

BERT-Base-Uncased, with the input set as the linear
concatenation of the event and all the sentences. 

6.3.5    End-to-End DEFI Model

RMHAN[23] is  our conference version that consid-
ers  token  selection  before  sentence  selection,  and  de-
signs stacks of sentence encoders, each of which inte-
grates intra-sentence, topic, and event sub-encoders. 

6.3.6    Variants of Our RSLN Model

CNet  is  the  supervised  classification  network  in

RSLN. It does not consider policy networks or hierar-

chical reinforcement learning.

RSLN-L  is  a  linear  version  of  RSLN.  It  concate-

nates all the sentences into a single long sequence and

considers token selection only.

RSLN-tk2sp is an extended version of RSLN-L. It

first  selects  tokens  in  each  sentence,  and  then  ex-

tracts  the  text  span  with  regard  to  the  event.  The

suffix  can  be  abbreviated  as “from  token  to  span

(tk2sp)”.
RSLN-sp2tk  contains  the  different  order  of  poli-

cies  compared  with  RSLN-tk2sp.  It  first  selects  the

text  span,  and  then  selects  tokens  within  the  span.

Therefore it has the abbreviation of suffix “from span

to token (sp2tk)”.
RSLN-tk2st  shares  the  same  structure  with  the

RSLN model in Section 4 but has a different order of

policies.  It  first  selects  tokens  in  each  sentence,  and

then selects sentences, whose suffix can be abbreviat-

ed as “from token to sentence (tk2st)”.
RSLN-cpnet  has  collapsed  policy  networks  com-

pared  with  RSLN.  For  both  TPNet  and  SPNet,

RSLN-cpnet employs neither SEL nor DEL, and only

considers fully connected layers.

RSLN-st2tk, or RSLN for short, is the model pro-

posed in Section 4. In order to distinguish from other

variants,  RSLN  and  RSLN-st2tk  are  equivalent  to

each other unless particularly stated. Apparently, the

suffix “st2tk” means from sentence to token. 

6.4    Overall Results and Analysis

Table 4 summarizes the overall performance of the

RSLN model  compared with several  baselines  on the

end-to-end DEFI task. To display a set of more per-

suasive  and  meaningful  results, Table 5 also  reports

the performance of our RSLN model and several rep-

resentative  baselines  on  the  DLEF-v2  corpus. Tables

 

Table   3.      Performance  of  the  Detection  of  Event  Triggers,
Speculative Cues, and Negative Cues

Sub-Corpus Task P(%) R(%) F1

English Event trigger detection 87.62 82.70 85.09

Speculative cue detection 65.91 76.42 70.65

Negative cue detection 73.79 81.08 77.24

Chinese Event trigger detection 84.08 77.98 80.87

Speculative cue detection 72.25 65.41 68.62

Negative cue detection 69.57 74.52 71.93
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4 and 5 show that  RSLN performs superior  to  other

models,  proving  that  both  comprehensive  encoding

and text selection is meaningful and effective. Accord-

ing to the inherent adaptive advantages of RSLN, we

analyze  the  comparison  with  baselines  in  the  follow-

ing aspects.

Design  of  Document-Level  Model.  The  perfor-

mance of SGCN is much lower than that of the other

end-to-end document-level models, including RMHAN

and  RSLN.  According  to Section 3,  document-level

event  factuality  requires  the  comprehensive  under-

standing  of  semantics.  However,  SGCN  identifies

event factuality in each sentence separately, and uses

the  most  frequent  sentence-level  value  as  the  docu-

ment-level  one.  But  this  simple  voting  is  not  consis-

tent with the definition of DEFI.

−

Performance  of  Various  Categories  of  Factuality
Values.  For  all  the  models,  the  results  of  CT+  are

higher  than  CT  and  PS+  due  to  the  majority  of

CT+ events.  It  is  not  surprising,  since  DEFI models

−
−

can learn  more  information  from CT+ samples  com-

pared with other values. Hence, the performance of a

model  mainly  depends  on  CT  and  PS+,  and  our

RSLN  achieves  more  improvements  on  CT  and

PS+ than other baselines.

Discrepancy  of  Pipeline  and  End-to-End  Frame-
work. Previous sentence-level (SGCN) and document-

level  (LSTM-A, BERT-MSF,  and ULGN) models  fo-

cus on the task different from this paper, as analyzed

in Section 5 ,  and they usually rely on annotated in-

formation.  We also  employ  them as  baselines  due  to

the  minority  of  relevant  DEFI  models.  It  is  worth

noting  that  our  RSLN  is  an  end-to-end  model.  For

fair  comparison  with  SGCN,  LSTM-A,  and  ULGN,

we first  launch upstream tasks to detect various fac-

tors  (e.g.,  event  triggers,  speculative  cues,  and  nega-

tive cues) whose performance is presented in Table 3,

and  then  predict  document-level  factuality.  Apart

from  errors  predicted  by  those  DEFI  models,  the

main wrong cases are due to cascade errors propagat-

 

Table  4.    Performance (F1-Score) of Various Models on the ExDLEF Corpus for the DEFI Task

Sub-Corpus Model −CT PS+ CT+ MacroF1 MicroF1

English SGCN 46.72 43.04 78.67 56.14 69.01

LSTM-A 44.19 43.45 81.17 56.27 69.21

BERT-MSF 46.65 43.72 83.09 57.82 71.87

ULGN 47.38 45.06 82.26 58.23 71.74

TEND-C 44.74 44.12 82.48 57.11 70.03

TEND-T 49.46 48.87 83.25 60.53 72.01

RLSTM 51.40 50.34 83.88 61.87 73.52

BERT-B 53.92 52.88 83.46 63.42 74.99

RMHAN 57.25 55.41 84.59 65.75 76.33

CNet 52.67 52.13 82.80 62.53 74.08

RSLN-L 50.59 49.87 81.60 60.69 72.64

RSLN-cpnet 56.66 54.06 83.92 64.88 74.92

RSLN-tk2sp 51.49 51.55 81.73 61.59 72.63

RSLN-sp2tk 56.85 54.61 84.05 65.17 75.56

RSLN-tk2st 57.72 56.59 84.41 66.24 76.58

RSLN 59.23 57.88 85.17 67.42 77.48

Chinese SGCN 64.02 50.34 77.90 64.09 68.46

LSTM-A 62.52 52.71 79.85 65.03 69.19

BERT-MSF 63.29 52.88 78.28 64.82 68.93

ULGN 64.43 54.90 78.98 66.10 69.99

TEND-C 63.08 53.79 79.62 65.51 69.44

TEND-T 65.17 56.31 80.08 67.19 70.92

RLSTM 66.35 57.17 80.59 68.04 71.73

BERT-B 72.44 62.25 82.31 72.33 75.62

RMHAN 74.78 65.27 82.53 74.19 77.02

CNet 70.06 61.58 82.02 71.22 74.64

RSLN-L 71.83 61.17 81.55 71.52 74.56

RSLN-cpnet 73.11 63.36 82.49 72.99 75.91

RSLN-tk2sp 69.26 58.61 80.35 69.41 73.07

RSLN-sp2tk 75.09 64.82 83.17 74.36 77.05

RSLN-tk2st 74.96 66.28 82.65 74.62 77.38

RSLN 76.12 67.97 83.14 75.74 78.29
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ed from upstream tasks.

Settings  of  Complicated  Attention  Networks.  The

RSLN  model  obviously  outperforms  those  baselines

with  plain  and  simple  structures,  e.g.,  TEND-C,

TEND-T,  and  RLSTM,  proving  the  stronger  ability

of encoding of attentions (including multi-head atten-

tion)  compared  with  other  methods  (e.g.,  LSTM).

Due to the framework of attention that is able to as-

certain the most useful and relevant texts, RSLN can

not  only  learn  significant  internal  semantics  within

sentences, but also capture interactions at various lev-

els  of  granularity  among  events,  topics,  and  docu-

ments.

Usefulness  of  Hierarchical  Encoding.  Some  base-

lines  ignore  the  structured  characteristic  among

events and documents, and simply concatenate all the

input into one sequence, e.g., BERT-B, RSLN-L. Our

RSLN  obtains  higher  results  than  them,  manifesting

that  linear  input  and  encoding  is  not  conducive  to

distinguish  different  semantics  of  sentences.  We  ar-

gue that a hierarchical model is more capable of cap-

turing  meaningful  features  from  sentences,  especially

from  the  core  ones  of  the  document,  since  sentences

probably hold different factualtiy of the event, i.e., in-

consistency of sentence-level factuality. Meanwhile, it

is  the hierarchical  encoding that makes the model to

select the most useful sentences by SPNet.

Effectiveness of Reinforcement Learning. 1) First-

ly,  compared with  those  models  without  RL for  text

selection, RSLN is able to achieve better performance,

demonstrating  that  policy  networks  can  select  the

most  relevant  and  meaningful  sentences  and  tokens

based  on  RL.  2)  Secondly,  under  the  framework  of

sentence  and  token  selection,  RSLN  is  superior  to

RSLN-tk2st, which means selecting sentences firstly is

more effective than selecting tokens firstly. The main

reason  is  that  if  we  first  launch  token  selection,  the

incomplete  token  sequence  can  affect  the  semantical

integrity  of  sentences  and  may  have  side  effects  on

the  sentence  selection.  3)  Thirdly,  we  also  compare

the  sentence  selection  and  span  selection. Table 4

shows  that  RSLN-st2tk  outperforms  RSLN-sp2tk,

mainly  because  selecting  continuous  spans  with  rela-

tively complete semantics is more difficult than select-

ing  sentences,  because  a  sentence  usually  holds  one

specific  factuality  of  the  event,  while  span  may  in-

clude  several  factuality  values  inconsistent  with  the

document-level  one.  Among  the  variants  of  RSLN,

RSLN-tk2sp  gains  relatively  lower  results,  indicating

that  it  is  not  wise  to  perform  token  selection  before

span  selection.  The  reason  is  probably  that  selecting

spans  relies  on a  few key boundary tokens  that  may

be abandoned during token selection and cause wrong

detection of spans. Therefore, we mainly focus on sen-

tence and token selection in the RSLN model. 

6.5    Ablation Study

This subsection aims to verify the impact of each

key component of the RSLN model, which is ablated

into several simplified models as follows.

1)  w/o  Gate  denotes  that  our  RSLN model  does

not utilize the Gate mechanism in attention sub-net-

works.

2)  w/o  ISEnc/EVEnc/TPEnc/IDEnc  means  it

does  not  consider  ISEnc/EVEnc/TPEnc/IDEnc  in

CNet or policy networks SPNet/TPNet.

3)  w/o  FSEnc  means  it  only  considers  the  fully

connected layer to fuse the output of ISEnc, EVEnc,

and  TPEnc  without  attention  and  residual  layers  in

 

Table  5.    Performance (F1-Score) of Various Models on the DLEF-v2 Corpus for the DEFI Task

Sub-Corpus Model −CT PS+ CT+ MacroF1 MicroF1

English SGCN 45.48 40.80 77.71 54.66 67.20

ULGN 45.87 43.05 81.87 56.93 70.55

RLSTM 49.89 48.80 82.04 60.24 72.39

RMHAN 56.43 55.13 84.35 65.30 76.38

RSLN-sp2tk 56.20 54.88 84.26 65.11 76.23

RSLN-tk2st 57.76 55.67 84.37 65.93 76.61

RSLN 59.12 57.24 85.49 67.29 77.47

Chinese SGCN 60.78 50.63 76.82 62.74 66.52

ULGN 61.07 49.58 76.49 62.38 66.27

RLSTM 64.64 54.83 77.92 65.80 69.51

RMHAN 73.83 65.55 82.60 73.99 77.07

RSLN-sp2tk 74.08 64.52 83.26 73.96 77.13

RSLN-tk2st 74.81 65.67 83.41 74.63 77.58

RSLN 75.67 67.23 83.33 75.41 78.22
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FSEnc.

4) w/o SPNet denotes this model does not incor-

porate sentence selection policy network (SPNet), and

encodes all the sentences indiscriminately.

5) w/o TPNet denotes this model does not utilize

token selection policy network (TPNet),  and encodes

all the tokens.

The performance of the ablation study is shown in

Table 6,  which  can  be  discussed  from  the  following

components in detail.

− − − −
− − − −

All  the  Components.  We  mainly  investigate  TP-

Net, SPNet, encoders in SEL (ISEnc, EVEnc, TCEnc,

FSEnc), and DEL (IDEnc). The removal of each com-

ponent all weaken the performance of the RSLN mod-

el, and the improvement of macro-/micro-averaged F1

vary  among  [ 6.97, 1.35]/[ 7.33, 1.27]  and

[ 7.91, 0.85]/[ 7.94, 0.84]  on  English  and  Chi-

nese sub-corpus, respectively. Thus, we can deem that

all the sub-networks contribute to the RSLN model in

positive ways, and can prove their organic integrity.

Gate  Mechanism  in  Attention  Sub-Networks.  We

get lower performance if we neglect gates in attention

sub-networks, which can manifest that gates are effec-

tive  and  helpful  for  DEFI.  Actually,  gates  can  filter

irrelevant information, which are in line with text se-

lection  and  refinement  in  RSLN,  and  then  can  offer

supplementary clues for policy networks.

Sentence  Encoding  Layer  in  CNet.  Encoders  in

SEL are mainly comprised of ISEnc, EVEnc, TCEnc,

and  FSEnc.  1)  Firstly,  w/o  ISEnc  underperforms

RSLN,  certifying  the  necessity  of  self-attention  for

discovering  valuable  information  (e.g.,  speculation

and negation) at the sentence level. 2) Secondly, w/o

EVEnc/TCEnc  leads  to  more  degradation  in  perfor-

mance,  due  to  the  property  of  events  and  topics.

Events  are  brief  but  indispensable  clues  with  funda-

mental  event-related  information,  e.g.,  event  triggers

and arguments. While topic sentences usually summa-

rize the core idea of the document, and have richer se-

mantics than events.  Therefore,  our model  can boost

more  performance  by  using  TCEnc  than  EVEnc.  3)

Thirdly,  w/o  FSEnc  causes  lower  drops  on  results

than  other  encoders,  which  manifests  its  validity.

FSEnc  is  employed  to  eliminate  the  manifold  differ-

ences  among  representations  learned  by

ISEnc/EVEnc/TCEnc,  and  extract  higher-level  se-

mantics.  Thus,  w/o  FSEnc  causes  less  loss  of  input

texts than other encoders.

−

Document  Encoding  Layer  in  CNet. Table 6 ex-

hibits  that  the  performance  of  the  RSLN  model  de-

clines if neglecting IDEnc in DEL, especially on CT

and PS+, whose inconsistency between the sentence-

level  and document-level  factuality is  relatively obvi-

ous.  The primary function of  IDEnc is  extracting in-

teractive  knowledge  from  sentences,  especially  those

with  speculative  and  negative  meanings.  Hence,

IDEnc  can  determine  whether  speculation  and  nega-

tion propagates to the entire document and affect its
 

Table  6.    Performance of Ablation Study for the RSLN Model

Sub-Corpus Model −CT PS+ CT+ MacroF1 MicroF1

English RSLN 59.23 57.88 85.17 67.42 77.48

w/o Gate −1.86 −2.70 +0.47 −1.36 −0.11

w/o ISEnc −4.18 −4.91 −3.63 −4.23 −4.77

w/o EVEnc −7.42 −7.31 −6.19 −6.97 −7.33

w/o TCEnc −6.39 −8.43 −5.15 −6.65 −6.92

w/o FSEnc −2.84 −2.17 −1.31 −2.10 −2.31

w/o IDEnc −3.51 −3.84 −2.49 −3.27 −3.29

w/o TPNet −2.10 −1.66 −0.30 −1.35 −1.27

w/o SPNet −5.66 −3.70 −2.86 −4.07 −4.10

Chinese RSLN 76.12 67.97 83.14 75.74 78.29

w/o Gate −2.14 −2.81 −1.66 −2.20 −2.22

w/o ISEnc −4.20 −4.69 −4.06 −4.31 −4.57

w/o EVEnc −8.49 −8.21 −6.15 −7.61 −7.55

w/o TCEnc −8.87 −7.49 −7.38 −7.91 −7.94

w/o FSEnc −2.74 −3.38 −2.25 −2.79 −3.19

w/o IDEnc −5.68 −4.79 −2.84 −4.43 −4.21

w/o TPNet −1.16 −1.65 +0.24 −0.85 −0.84

w/o SPNet −4.95 −5.14 −3.83 −4.64 −4.71

Note: The values are F1-scores for the complete RSLN model, and improvements of F1-scores for other models without (w/o) some
components.

1262 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6



factuality,  implying  that  IDEnc  plays  an  important

role  in  deciding which of  the  selected sentences  have

greatest impacts on correct results, especially for non-

CT+ events.

Policy Networks Based on Hierarchical Reinforce-
ment  Learning.  From Table 6,  we  can  observe  that

the performance degrades more when considering w/o

SPNet  than  w/o  TPNet,  which  confirms  that  sen-

tence selection is more beneficial and significant than

token  selection.  The  principal  reason  is  that  sen-

tences are basic units with complete semantics. Com-

pared  with  discontinuous  tokens,  sentences  can  con-

vey more accurate meanings. On the one hand, if we

do  not  consider  sentence  selection  and  encode  all  of

them, those noisy sentences, which are not related to

the  event  or  hold  different  factuality  with  the  docu-

ment,  may mislead  our  model  to  gain  wrong  results.

On  the  other  hand,  if  we  ignore  token  selection  and

feed  all  of  them into  CNet,  the  tokens  that  are  use-

less and ineffective for the events have lower impacts

on the understanding of document-level factuality, be-

cause they attain smaller attention weights computed

by vanilla attention pooling.

Therefore, the above analysis of ablation is able to

validate the components of our RSLN model. 

6.6    Case Study

As  described  above,  the  RSLN  model  considers

both  sentence  and  token  selection.  To  interpret  the

predicted  results  more  convincingly,  this  subsection

displays  qualitative  analysis  on  event  E1  and  E2  by

Fig.4.  We  also  consider  RSLN-sp2tk  that  can  also

achieve  better  results  than  most  other  models  for

comparison in Fig.5. 

6.6.1    Case Study for RSLN

−
As analyzed in Section 1 , the document-level fac-

tuality of E1 in Fig.4(a) is CT , and we need to ex-

tract  negative  information  and  determine  whether

they  can  negate  E1.  For  token  selection,  we  can  see

that the selected tokens that are the most helpful for

DEFI can be classified into two types: 1) negative to-

kens  and  cues,  of  course,  e.g., “deny”, “untrustwor-

thy”, and “not”; 2) event triggers and arguments that

convey  the  elementary  and  essential  information  of

the  event  E1,  e.g., “cancel”, “Tokyo”, “Olympics”,
and “COVID-19”.  Consequently,  these  tokens  can

confirm the ability of SEL and TPNet.

−

−

In  term  of  sentence  selection,  we  observe  that

those  selected  sentences  (especially  S1.3,  S1.4,  and

S1.6) contain negative cues, event triggers, and argu-

ments, and they can summarize the main idea of this

document with regard to E1, as analyzed in Section 1,

certifying the effectiveness of EVEnc, SPNet, and VA.

Next,  we  also  notice  that  although  stating  specula-

tion rather than negation, S1 is also captured, since it

conveys  richer  information  about  event  arguments,

which  can  validate  capability  of  TCEnc.  Finally,  se-

lected  sentences  vary  among  factuality,  i.e.,  specula-

tion/PS+  (S1.1),  negation/CT  (S1.3,  S1.4,  and

S1.6),  and  uncommitted  (S1.5),  and  our  model  gives

the correct result CT , which is owing to IDEnc cap-

turing  event-related  and  meaningful  interactive  fea-

tures among sentences.

Similarly,  we examine the  visualization of  a  PS+

event E2 as shown in Fig.4(b). We can see that valu-

able  captured  tokens  mainly  cover  speculative  words

(“plan”, “possibly”),  event  triggers  (“return”),  and

arguments (“NASA”, “Moon”), which are key syntac-

tic and semantical elements contributing to the factu-

ality. Based on semantics, selected sentences also fall

into two categories: 1) the ones that have triggers and

arguments of E2, regardless of their sentence-level fac-

tuality,  and  2)  those  related  speculative  ones  that

narrate  the  core  semantics  of  the  document  with  re-

gard to E2. 

6.6.2    Case Study for RSLN-sp2tk

−

To  clarify  the  advantages  of  sentence  selection

compared with span extraction, we display the select-

ed  spans  and  attention  weights  of  tokens  for  the

events E1 and E2 computed by RSLN-sp2tk in Fig.5.

RSLN-sp2tk  makes  a  correct  prediction  CT  for  E1

in Fig.5(a), because the extracted span comprises the

mention of  it,  where “deny” holds  the negative posi-

tion without disturbance from other clauses.

−
However,  the  PS+ event  E2  is  predicted  as  false

value CT  in Fig.5(b). We infer that it is mainly due

to  the  negative  semantics  from  the  negative  cues

“not” in  the  extracted  spans “not  interested  in  pay-

ing  for...” and “...  is  not  feasible”,  although specula-

tion is in the span and selected speculative cue “possi-

ble” has been assigned a significant weight. The first

“not” negates another event “Congress is interested in

paying for  returning to  the  Moon”,  while  the  second

“not” denies  E2.  As  for  the  result,  the  negative  se-

mantics has more impacts on E2 than speculation in
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−Fig.4.   Visualizations of  the sentences and tokens selected by RSLN (RSLN-st2tk).  Th events are (a) the CT  event E1 “Tokyo
Olympics is canceled in 2021” and (b) the PS+ event E2 “NASA returns humans to the Moon”. Attention weights are computed by
vanilla  attention  (VA)  pooling,  and  are  visualized  as  background  colors  of  sentence  IDs  and  tokens,  while  no  background  color
means this sentence or token has been discarded. According to the encoding procedure of RSLN, unselected sentences have no select-
ed tokens. To be consistent with selected sentences, we also launch token selection for unselected sentences by the trained TPNet.

 

(b)(a)

− − −
Fig.5.  Visualizations of the span and tokens selected by RSLN-sp2tk for the events (a) E1 “Tokyo Olympics is canceled in 2021”
(CT /CT ) and (b) E2 “NASA returns humans to the Moon” (PS+/CT ), where the formats of labels are (Annotated/Predict-
ed) ones, and the extracted spans are in square brackets.
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the  span,  which  is  distinguished  from the  document-

level factuality.

Hence,  these  two  cases  in Fig.5 show  that  spans

may  be  comprised  of  various  speculation  and  nega-

tion  that  can  cause  interference  to  the  identification

of event factuality, and illustrate that sentence selec-

tion  is  more  reasonable  and  effective  than  span  ex-

traction. 

6.7    Error Analysis

−
As  mentioned  in Subsection 6.4, Table 4 reveals

that  the  performance  of  CT  and  PS+  is  usually

lower than that of CT+ due to the minority of specu-

lative and negative samples. Therefore, the wrong re-

sults mainly come from speculation and negation, and

can  be  classified  as  three  types,  as  exemplified  in

Fig.6.

CT+  events  are  predicted  as  non-CT+  (e.g.,

−

−

CT , PS+). This type of error is mainly due to the

interference from irrelevant speculation and negation.

For  example,  in Fig.6(a),  the  event  E3 “Phil  Valen-

tine died from COVID-19” is a fact CT+ decided by

the  sentence  S3.4.  However,  some  selected  sentences

evaluate  E3  as  non-CT+  values,  e.g.,  S3.1  and  S3.3

commit to it as PS+ according to the speculative cues

“a chance of” and “possibility”, and S3.2 holds PS ,

because E3 in S3.2 is governed by the speculative cue

“probably” and  negative  cue “not”.  Actually,  S3.1,

S3.2,  and  S3.3  are  before  the  current  event  on  the

timeline,  and cannot  affect  E3 semantically.  But  our

model fails  to discard these non-CT+ mentions lead-

ing to the wrong results.

−

Non-CT+ events are predicted as CT+. It is pri-

marily because our model fails to extract correspond-

ing speculative or negative for CT  or PS+ event. In

Fig.6(b),  the event E4 is  PS+ inferred from the sen-

tences  S4.2  and  S4.3,  but  our  model  predicts  E4  as
 

−

Fig.6.  Visualizations of error cases, in which the sentences and tokens are selected by the RSLN model. The events are (a) E3 “Phil
Valentine died from COVID-19” (CT+/PS+), (b) E4 “Two employees of Fukushima nuclear power plant were exposed to nuclear
radiation” (PS+/CT+), and (c) E5 “Ukraine joins NATO” (CT /PS+). The formats of labels are (Annotated / Predicted) ones.
For simplification, only several representative sentences (e.g., those selected by SPNet, or containing event mentions) are listed.
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CT+,  mainly  owing  to  S4.1. Fig.6(b)  visualizes  that

S4.1  (the  first  sentence  in  the  document)  is  assigned

relatively  high  attention  weight  and  holds  the  value

CT+  about  E4.  S4.4  mentions  another  CT+  event

“Radiation were attached to two other male employ-

ees”.  As  for  S4.2  and  S4.3  with  speculative  informa-

tion  that  are  primary  clues  for  PS+,  S4.2  is  not  se-

lected by RSLN, and S4.3 has lower attention weight

than  S4.1.  We  conjecture  that  the  speculative  cues

“suspected” in S4.2 and “presumably” in S4.3 appear

less  frequently than other  ones  (like “may”, “likely”,
and “possible”),  and  cannot  learn  enough  informa-

tion to get a higher weight from the training set.

−

−

Non-CT+ (mainly CT , PS+) events are predict-

ed  as  another  non-CT+  value.  The  main  reason  is

that our model is confused by various speculation and

negation, and cannot determine which one to concen-

trate on. In Fig.6(c), the event E5 “Ukraine joins NA-

TO” is negated by S5.1 and S5.3 that state the core

semantics of the document, and is annotated as CT .

But  there  are  also  other  sentences  (S5.2  and  S5.4)

holding PS+ accounting for the wrong result, and are

not filtered out. Moreover, S5.2 and S5.4 obtain high-

er weights,  especially S5.2 with speculative cues “ap-

pear” and “may”.
These  error  cases  exemplify  the  significance  of

speculation and negation in the DEFI task. We need

to  design  an  appropriate  DEFI  model  that  can  not

only extract speculative and negative information, but

also  determine  whether  this  information  can  govern

the event from the view of the document. 

7    Conclusions

This  paper  is  devoted  to  end-to-end  document

event  factuality  identification  (DEFI),  and  can  be

concluded as the following aspects.

We presented a clear definition of  the end-to-end

DEFI  task  that  only  considers  the  event,  document,

and factuality as input for training.

We proposed a reinforced multi-granularity hierar-

chical  network  model  named  Reinforced  Semantic

Learning Network (RSLN) as the solution. RSLN can

not only capture semantics  using encoders  with hier-

archical  structure  at  different  levels  of  granularity,

but also select relevant and meaningful sentences and

tokens  employing  policy  networks  with  hierarchical

reinforcement  learning.  Therefore,  the  RSLN  model

can  solve  the  problems  including  end-to-end  model-

ing  formulation,  comprehensive  encoding  network,

and text selection mechanism.

We contributed a novel corpus called ExDLEF to

assess  our  RSLN  model,  and  this  dataset  is  in  line

with the end-to-end task. Experimental results mani-

fest that RSLN outperforms the state-of-the-arts.

In the future work,  we plan to launch more fine-

grained DEFI tasks, e.g., identifying factuality of sev-

eral  events  simultaneously,  and  extracting  evidential

sentences of them to explore high-level interpretabili-

ty. Furthermore, we will  also explore cross-document

event factuality identification. 
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