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Abstract    This paper proposes a novel method for early action prediction based on 3D skeleton data. Our method com-

bines the advantages of graph convolutional networks (GCNs) and adversarial learning to avoid the problems of insuffi-

cient spatio-temporal feature extraction and difficulty in predicting actions in the early execution stage of actions. In our

method, GCNs, which have outstanding performance in the field of action recognition, are used to extract the spatio-tem-

poral features of the skeleton. The model learns how to optimize the feature distribution of partial videos from the fea-

tures of full videos through adversarial learning. Experiments on two challenging action prediction datasets show that our

method performs well on skeleton-based early action prediction. State-of-the-art performance is reported in some observa-

tion ratios.
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1    Introduction

Early  action  prediction  recognizes  actions  before

they  are  executed  completely[1, 2].  Unlike  traditional

action  recognition,  which  needs  to  recognize  the  ac-

tion from full videos, early action prediction only ana-

lyzes  and  predicts  the  action  from  a  part  of  full

videos.  Because  it  can  predict  labels  at  the  early

stages of action execution, it plays an important role

in security, self-driving, and home service robots.

Early  action  prediction  is  more  challenging  than

action recognition because it is very difficult to recog-

nize the action from only a part of a video, especially

when the action can only be observed at a very early

stage.  As  shown  in Fig.1,  partial  videos  lack  signifi-

cant  information  compared  with  full  videos.  At  the

same time, many actions are very similar in the earli-

est  stages,  such  as  answering  the  mobile  phone  and

playing with a mobile phone. In the early stages of ac-

tion  execution,  their  performances  are  almost  always

holding a mobile phone and there are no easy-to-dis-

tinguish  features.  One  of  the  leading  research  direc-

tions in the community is determining how to mine as

many features as possible from these partial videos to

help model prediction.

Currently, many studies propose inputting full and

partial  videos  simultaneously  and  letting  the  model

learn the feature distribution or representation of full

videos  when  extracting  partial  video  features[1, 3–5].

Many  methods  are  based  on  RGB videos  or  RGB-D

videos[1, 3],  and  most  methods  use  convolutional  neu-

ral networks (CNNs) or long short-term memory net-

works  (LSTMs) as  feature  extractors  to  mine knowl-

edge[1, 3–5].  However,  in  videos  based  on  3D  human
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skeletons,  CNNs  and  LSTMs  do  not  use  the  natural

graph  structure  of  human  skeletons,  and  the  spatio-

temporal  features  between  joints  are  not  sufficiently

mined.  At  the  same  time,  we  note  that  adversarial

learning  is  often  used  to  optimize  feature  extraction

networks[3, 4, 6].  However,  these  methods  train  full

videos together with partial videos, causing the mod-

el  to  fail  to  obtain  the  correct  full  video  features  to

guide the partial video training at the beginning.

This  paper  combines  adversarial  learning  with

graph  convolutional  networks  (GCNs),  proposes  an

adversarial  GCN  based  on  skeleton-based  early  ac-

tion prediction, and extracts full video features using

a pretrained GCN.

We use a two-stream GCN (2s-GCN) as a feature

extractor  to  well  extract  spatio-temporal  features  of

skeleton  sequences.  At  the  same  time,  an  attention

mechanism is added on this basis,  which can flexibly

calculate  the  attention  weight  of  each  joint.  High-

weight  joints  are  displayed,  while  low-weight  joints

are hidden, to focus attention on important joints. To

better  utilize  full  videos  to  help  the  feature  extrac-

tion  of  partial  videos,  we  use  adversarial  learning.

One specific feature of adversarial learning is the clar-

ity  of  purpose.  By  adversarial  learning,  fake  samples

can learn from real samples explicitly, and full videos

(real samples) can be better used to help the feature

extraction of partial videos (fake samples). When the

real  samples  are set  as  full  videos and the fake sam-

ples are set as partial videos, the adversarial learning

structure  can  effectively  guide  the  feature  extraction

of  fake  samples  through  the  latent  features  learned

from full videos.

Our  overall  framework  is  presented  in Fig.1.  In

our method, GCNs are applied to extract spatio-tem-

poral features of skeleton joints, and adversarial learn-

ing,  which is  widely used in computer vision such as

object detection[7, 8], is used to optimize this GCN. In

addition  to  improving  the  model's  prediction  accura-

cy, adversarial learning does not bring additional pa-

rameters to the prediction model. The pretrained and

frozen  parameter  feature  extractor  simultaneously

shortens  the  training  time  of  the  whole  framework.

Experimental  results  show  that  our  method  achieves

excellent results in early action prediction.

The main contributions of our work are as follows.

1)  We propose  a  GCN based on adversarial  learning

for early action prediction. It can extract spatio-tem-

poral features in videos and optimize the feature dis-

tribution.  2)  We  demonstrate  that  adversarial  learn-

ing can improve the  performance of  models  for  early

action  prediction.  3)  We  achieve  excellent  results  on

two  challenging  action  prediction  datasets  NTU

RGB-D 60 and SYSU 3D-HOI.

The  remainder  of  this  paper  is  organized  as  fol-

lows: Section 2 describes recent studies related to our

work. Section 3 introduces  our  approach,  including

data processing, networks, and the overall framework.

The  results  of  the  experiments  are  presented  in Sec-

tion 4. Finally, in Section 5 we give a conclusion. 

2    Related Work
 

2.1    Skeleton-Based Action Recognition

Human skeleton videos are more robust than tra-
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ditional RGB videos because they avoid the influence

of  environmental  factors  such  as  lighting.  Therefore,

action  recognition  methods  based  on  skeleton  data

have attracted considerable attention[9–21]. Among the

deep learning methods, early studies mainly use CNNs

and recurrent neural networks (RNNs) as feature ex-

tractors  for  action  recognition[11, 12, 21–23].  Currently,

GCNs are widely used in skeleton-based action recog-

nition due to their  ability to fully utilize the natural

graph  structure  of  the  human  skeleton[9, 14–18, 24–31].

Most  of  these  GCNs  are  improved  from  the  spatio-

temporal graph convolutional network (ST-GCN) pro-

posed by Yan et al.[15], which achieves good results on

the  skeleton  datasets  by  fully  mining  the  feature  in-

formation of skeleton neighbor nodes in both the spa-

tial and temporal dimensions. 

2.2    Early Action Prediction

Early action prediction can be regarded as action

recognition  with  limited  input,  which  is  more  chal-

lenging because it usually only observes a part of ac-

tion execution information. Early work mainly uses a

two-stream  network  or  an  improved  loss  function  to

extract  features  fully  and  encourage  network  predic-

tion  early[2, 32, 33],  such  as  Aliakbarian et  al.[32] and

Kong et  al.[33] extracted  features  through  a  two-

stream  network.  These  methods  only  mine  features

from partial videos and do not utilize the guiding role

of  full  video  features.  Now,  many  researches  have

turned  to  the  methods  of  using  full  videos  to  coach

the  training  from  partial  videos[1, 3–5].  For  example,

Kong et al.[3] mapped partial video features to the fea-

ture space of full videos through encoding and decod-

ing based on the variational auto-encoder (VAE) and

adversarial  learning.  Ke et  al.[4] used  adversarial

learning  to  minimize  the  variation  between  partial

and full  videos,  therefore  partial  videos  can learn  la-

tent  global  features  from full  videos.  However,  Ke et
al.[4] processed  the  skeleton  data  into  the  form  of

RGB images  and employed a  CNN model  to  extract

features,  which  compromises  the  superiority  of  the

skeleton data.  At the same time,  the way they train

with  full  and  partial  videos  is  not  conducive  to  the

model getting guidance from full video features at the

beginning  of  training.  Recently,  some  studies  have

made  predictions  by  training  the  network  to  supple-

ment  some  missing  features  or  data  in  partial

videos[34, 35].  Specifically,  Zhao et  al.[35] used  network

propagation  residuals  to  supplement  subsequent  ac-

tion information and introduced Kalman filters to im-

prove  error  accumulation.  Chen et  al.[34] used  the

trend of actions, generated skeleton data through ad-

versarial  learning  and  deep  reinforcement  learning,

and then used the predicted skeleton data to identify

the  action.  None  of  these  methods  combines  the  ad-

vantages  of  GCNs  and  adversarial  learning.  Mean-

while, none of the adversarial learning-based methods

takes advantage of the pretrained model. 

3    Proposed Approach

t T
r t/T

t = 0.2× T

In the present  work,  each training video contain-

ing  complete  action  execution  information  is  divided

into  10  parts,  representing  either  a  different  video

progress or a partial  video. Assuming a partial  video

has  frames,  and its  corresponding  full  video  has 

frames, the observation ratio  can be defined as .

For example, when the observation ratio is 0.2, it rep-

resents , that is, the first 20% frames of a

full video are cut into a partial video. In this section,

the  overall  framework  is  first  introduced,  and  then

each of its components is presented in detail. 

3.1    Overall Framework

Ff

Fp

Fp

As  shown  in Fig.1,  the  proposed  framework  con-

sists of two sets of input data, two two-stream GCNs

(2s-GCN-pre  and  2s-GCN),  a  discriminator  (D-Net),

and  a  set  of  fully  connected  layer  networks.  The  in-

put  data  includes  two  parts:  full  videos  and  partial

videos. Partial videos are cut from the full videos ac-

cording  to  the  progress  of  different  videos.  Here,  2s-

GCN-pre  extracts  the  full  videos,  and  then  the  fea-

tures  are  transferred  to  the  D-Net.  The  partial

videos  are  extracted  by  2s-GCN  and  then  the  fea-

tures  are  transferred  to  the  D-Net.  The  D-Net

needs to judge whether the input features come from

a  full  or  a  partial  video.  At  the  same  time,  2s-GCN

needs to update the parameters when extracting fea-

tures  to  fool  the  discriminator  so  that  it  cannot  be

classified correctly, that is, let the discriminator think

that  comes from a full video. The proposed frame-

work aims to minimize the feature difference between

full  and partial videos, allowing 2s-GCN to learn the

feature  distribution  in  full  videos  when  extracting

partial  video  features.  After  adversarial  learning,  2s-

GCN also  passes  features  into  fully  connected  layers

for action prediction. 

3.2    Data Processing

A GCN is  implemented  as  a  feature  extractor  to
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fully  use  the  human  skeleton's  natural  graph  struc-

ture. Furthermore, the model's input is also the origi-

nal  3D  skeleton  coordinate  information,  therefore

there is no need to convert the skeleton coordinates to

the form of RGB images as the input[4].

C × T × V ×M

C × (r × T )× V ×M C

T

V

M

r

As shown in Fig.1, the model's input includes two

parts:  full  videos  and  partial  videos.  Full  videos  are

the  original  data  of  each  dataset,  whereas  partial

videos are cut from their respective full videos. A par-

tial  video  always  starts  at  the  first  frame  of  its  full

video and ends with different video progress. The in-

put of a full video is denoted as , and

the  input  of  the  partial  video  can  be  expressed  as

. Among them,  represents the

number of channels,  represents the number of video

frames,  represents the number of joint points in the

skeleton in a frame,  represents the number of peo-

ple in the action video,  that is,  the number of  skele-

tons,  and  represents  the  observation  ratio.  In  the

experiment,  the  input  dimension  of  the  partial  video

is consistent with the full video by padding with 0.

Ts

In  addition,  we  propose  a  frame  number  normal-

ization  (FNN) to  deal  with  the  problem of  the  large

differences of the number of frames between videos in

the dataset. We set a fixed frame number  (100 in

Ts Ts

Ts

Ts

Ts

the experiments). When the frame number of a video

is more than , FNN divides this video into  parts,

and then randomly samples a frame in each part, to-

taling  frames.  When  the  number  of  frames  of  a

video is less than , the video will be linearly inter-

polated and filled as  frames.

9× T × V ×M

Spatio-temporal  geometric  features,  such  as  rela-

tive coordinates and interframe differences, are added

to the original 3D coordinates to enhance the data in-

put in the data processing[26, 30, 31]. These features are

concatenated along the channel. That is, the final in-

put dimension of a video is . 

3.3    Two-Stream Graph Convolutional

Networks

In  this  paper,  2s-GCN  is  used  to  extract  spatio-

temporal features in skeleton videos, which consists of

two  ST-GCNs  (ST-GCN-1  and  ST-GCN-2)[15].  A

mask matrix inspired by [26] and [36] is used to modi-

fy the input of ST-CGN-2 so that ST-GCN-2 pays at-

tention  to  the  nodes  that  are  not  active  in  the  first

stream network. The model's overall structure is pre-

sented in Fig.2. Here, ST-GCN-1 can use all skeleton
 

+

...

✖

1

0

1

1 1

1 1

0

0

0

0

FC Layer FC LayerConcat

Output

Feature-1

Feature-2

ST-GCN-1

ST-GCN-2







w

Fig.2.  Graph convolutional network structure. It is mainly composed of two ST-GCN networks. The first ST-GCN modifies the in-
put of the second ST-GCN network according to its feature-weighted graph. The two ST-GCNs output their features (Feature-1 and
Feature-2), and  represents the weight of the fully connected layer.

1272 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6



nodes,  and  the  input  of  ST-GCN-2  depends  on  the

feature weighting map of ST-GCN-1. The specific cal-

culation method can be understood as follows.

First,  the  feature  weighted  map  is  calculated  be-

fore  the  global  average  pooling  of  the  original  input

through  ST-GCN-1.  Then,  the  importance  of  each

joint to the action classification can be calculated ac-

cording to the weight of the fully connected layer cor-

responding to the action ground-truth label:
 

scorec(t, v) =
∑
k

wc
kfk(t, v),

c k t

v t

v fk
k

v t

wc
k

Mask

where  is  the  ground-truth label  of  the  action, , 

and  represent the channel, the -th frame, and the

-th joint of the skeleton video, respectively,  repre-

sents  the  feature  of  the -th  channel  after  the  joint

point  of  the -th frame passes through ST-GCN-1,

and  represents  the  weight  parameter.  From  the

scores  of  all  joints,  the  matrix  used  to  mask

the nodes can be calculated:
 

Mask = ε(1− softmax(scorec)− δ),

softmax

δ ε

where  represents the activation function and

 represents the threshold,  represents the step func-

tion, making the value greater than 0 as 1, otherwise

0. This matrix can set part of the joint information to

0 to affect the input of ST-GCN-2. Finally, the input

of ST-GCN-2 network is given as follows:
 

x2 = x⊙Mask,

xwhere  is  the  origin  input.  As  shown  in Fig.1 and

Fig.2,  the  proposed  2s-GCN network  will  output  the

features of the two streams, respectively. It should be

noted that the two streams will calculate the cross-en-

tropy  loss.  The  loss  function  will  be  introduced  in

Subsection 3.4. 

3.4    Adversarial Learning

Inspired  by  the  work  in  [3]  and  [4],  adversarial

learning  is  implemented  to  optimize  the  model.  As

shown in Fig.1, the feature distribution of 2s-GCN is

optimized  to  improve  the  ability  of  2s-GCN  for  ac-

tion prediction through an adversarial learning frame-

work.  The main trained model  is  2s-GCN, which ex-

tracts  partial  video  features  and  will  learn  a  better

feature distribution from the full videos by adversari-

al  learning  with  D-Net.  To  provide  the  correct  full

video  features  at  the  beginning  of  training,  the  pre-

trained 2s-GCN-pre is employed as the feature extrac-

tor of full  videos.  The parameters of 2s-GCN-pre are

frozen  so  that  it  does  not  participate  in  the  training

of  the  overall  framework  and  avoids  interfering  with

the discriminator training and 2s-GCN.

D-Net  is  the  key  to  adversarial  learning  in  the

proposed  framework.  It  is  responsible  for  judging

whether the source of features input into it is from a

full or a partial video. The proposed D-Net consists of

two fully connected layers,  uses the sigmoid function

as the activation function to output the predicted val-

ues,  and  the  binary  cross-entropy  function  (BCE

Loss)  is  used  as  the  loss  function  to  measure  errors.

The labels of full  and partial videos are set to 1 and

0, respectively. The loss of D-Net is shown as follows:
 

lossD =
1

2
(lossDF

+ lossDP
)

= − 1

2N

N∑
i

(log(fpi) + log(1− pi)),

lossDF
lossDP

N

i pi fpi

where  and  are the D-Net loss of the full

videos and partial videos, respectively,  is the num-

ber  of  samples,  is  the  current  sample;  and 

represent the prediction of the D-Net network for the

partial and full videos, respectively.

In the framework of Fig.1, D-Net must work hard

to distinguish features to identify whether the feature

source  is  a  full  or  a  partial  video.  The  2s-GCN net-

work that extracts partial video features must try to

fool  D-Net  while  extracting  partial  video  features  so

that  it  mistakenly  believes  that  the  features  come

from a full  video.  This  adversarial  process  allows 2s-

GCN  to  learn  the  feature  distribution  from  the  full

video.  For  2s-GCN,  the  loss  function  of  adversarial

learning is also binary cross-entropy. The labels of the

partial  videos  are  set  to  1,  and  the  loss  can  be  ex-

pressed as follows:
 

lossAD = − 1

N

N∑
i

log(pi).

After  learning  the  feature  distribution  of  full

videos through adversarial learning, the output of the

feature by 2s-GCN will be input to the fully connect-

ed layer for action prediction. Each stream of 2s-GCN

will  calculate  the  loss  and  output  the  prediction  re-

sult. Then, the output results of the two streams will

be added as the final output of the 2s-GCN network,

where  multiclass  cross-entropy  is  used  as  the  loss

function.  The  prediction  loss  of  the  network  can  be

expressed as follows:
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lossPred = lossmPred + losss1Pred + losss2Pred

= − 1

N

N∑
i

yi(log(Pi) + log(P s1
i ) + log(P s2

i )),

losss1Pred losss2Pred lossmPred

P s1
i P s2

i Pi

Pi = P s1
i + P s2

i

where , ,  and  represent  the  to-

tal  prediction  loss  of  the  first  stream,  the  second

stream, and the model, respectively, ,  and 

represent  the  output  of  the  first  stream,  the  second

stream, and 2s-GCN, respectively. And .

Finally, the loss function of 2s-GCN can be provided

as follows:
 

lossS = lossPred + αlossAD, (1)

α

α

where  represents the weight parameter used to con-

trol the strength of adversarial learning. The value of

 will be discussed in Section 4.

In  this  framework,  partial  videos  can  learn  the

feature  distribution  of  full  videos  by  minimizing  the

feature difference between partial videos and their full

videos. This is done to enhance the model's early ac-

tion  prediction  ability.  The  model  performs  action

prediction  by  minimizing  the  loss  between  partial

video features and ground-truth labels. 

4    Experiments

The  proposed  method  is  evaluated  on  two  chal-

lenging action prediction datasets, NTU RGB-D 60[13]

and SYSU 3DHOI[37], where only the skeleton data is

used.  In  the  experiments,  the  prediction  results  of

both  2s-GCN and  2s-GCN with  the  proposed  adver-

sarial  learning  framework  (Ad-2s-GCN)  are  reported

for  comparison.  Following this,  the results  of  the ex-

periments will be analyzed. 

4.1    Implementation Details

The  number  of  fully  connected  layer  units  in  D-

Net is  set  to 128 to determine the source of  the fea-

tures.  For  the  NTU  RGB-D  60  dataset,  the  initial

learning rate of 2s-GCN is 0.1 and divided by 10 ev-

ery  20  epochs,  the  maximum number  of  iterations  is

60,  and  the  dropout  probability  value  between  the

spatial  graph  convolutional  layer  and  the  temporal

convolutional layer is set 0.5 to avoid overfitting. The

largest  spatial  neighborhood  distance  in  the  adjacen-

cy matrix is set to 3, and the temporal window size is

set  to  5.  For  the  SYSU  3D-HOI  dataset,  the  initial

learning rate of 2s-GCN is 0.001 and is divided by 10

in 60, 90 and 110 epochs, the maximum number of it-

Ts

erations  is  120,  and  the  dropout  probability  value  is

set  to  0.2.  The  largest  spatial  neighborhood  distance

in the adjacency matrix is set to 3, and the temporal

window size is set to 7. In the experiments, ST-GCN

is first pre-trained, and then the pre-trained ST-GCN

is  used  to  form 2s-GCN.  The  value  of  in  FNN is

set to 100 for best performance. In adversarial learn-

ing  training,  D-Net  and  2s-GCN  are  alternately

trained. In an epoch of training, the parameters of 2s-

GCN are first frozen to optimize D-Net, and then the

parameters  of  D-Net  are  frozen  to  optimize  2s-GCN.

The advantage of this training is that the parameters

of both parties do not affect each other, allowing the

model to achieve a better effect.

r

It should be noted that in the experiments, videos

with  different  observation  ratios  in  the  training  set

are  separately  trained.  Then,  videos  with  the  same

observation ratio in the test set are tested. For exam-

ple,  videos  are  trained  with  an  observation  ratio  of

0.2, and videos are tested with an observation ratio of

0.2. In other words, in the proposed method, the ob-

servation ratio  is a prior condition.

All  experiments  are  performed  on  four  NVIDIA

GeForce  GTX 1080  graphics  cards  and one  NVIDIA

GeForce RTX 3090 graphics card. The code is imple-

mented in PyTorch. 

4.2    Results on the NTU RGB-D 60 Dataset

The  NTU  RGB-D  60  dataset  is  a  large-scale  in-

door action dataset containing 56 880 video clips col-

lected by Microsoft Kinect v2 from three different an-

gles, with 40 experimenters performing 60 actions. In

the experiments, the cross-subject setting recommend-

ed by the authors in [13] is strictly followed. By divid-

ing  40  experimenters  into  two  groups, 40 320 videos

are  used  for  training,  while  the  remaining 16 560

videos are used for testing.

The  detailed  results  (prediction  accuracies)  are

shown  in Table 1.  2s-GCN  is  represented  using  par-

tial  videos  to  train  2s-GCN  with  a  fully  connected

layer  for  early  action  prediction.  Bold  data  indicates

the best performance in the corresponding data type.

As seen from Table 1, with the help of the adversari-

al learning framework, the proposed 2s-GCN network

achieves  considerable  improvement  in  early  action

prediction. For example, when the observation ratio is

0.2,  i.e.,  only  the  first  20%  of  an  action  execution

video  is  observed,  the  prediction  result  (accuracy)  of

2s-GCN is  39.74%.  In  comparison,  the  prediction  re-
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sult of the presented Ad-2s-GCN is 41.20%. The accu-

racy  of  2s-GCN  in  the  adversarial  learning  frame-

work  is  improved  by  1.46%.  Furthermore,  when  the

observation ratio is increased to 0.4, the proposed ad-

versarial learning framework can continue to help 2s-

GCN improve the prediction accuracy by 1.40% (from

72.17% to 70.77%).

The findings from the present studies are also com-

pared  with  those  of  previous  researches[1, 4, 32, 38–42].

The  RGB-D  in Table 1 means  simultaneously  using

the  dataset's  RGB,  depth,  and  skeleton  videos.  In

contrast,  Skeleton  denotes  that  only  the  skeleton

video data is used, which is the data type implement-

ed in the present study. For some observation ratios,

Ad-2s-GCN  using  only  skeleton  data  outperforms

Teacher-Student[1] using  RGB-D  data.  For  example,

when  the  observation  ratio  is  0.4,  the  prediction  re-

sult of Teacher-Student[1] is 58.45%, while the predic-

tion result of Ad-2s-GCN is 72.17%, which is 13.72%

higher than that of Teacher-Student[1]. In contrast to

Local+LGN[4],  which  also  uses  skeleton  data,  it  fails

to  utilize  the  human  skeleton's  graph  structure  fully

and  does  not  perform as  well  as  Ad-2s-GCN on  this

dataset.  For  example,  when  the  observation  ratio  is

0.6, the prediction result of Ad-2s-GCN is 3.98% high-

er than that of Local+LGN[4] (81.00% vs 77.02%).

The above results show that the proposed Ad-2s-

GCN has  an  excellent  performance  in  improving  the

base network (2s-GCN) in the early observation stage. 

4.3    Results on the SYSU 3D-HOI Dataset

The  SYSU  3D-HOI  dataset  is  an  RGB-D  video

action  dataset  captured  using  a  Microsoft  Kinect  v1

device. A total of 480 videos consist of 12 different ac-

tions  performed  by  40  experimenters.  The  cross-sub-

ject evaluation method proposed in [37] is strictly fol-

lowed in the experiment conducted in the current pa-

per. That is to say, 240 action execution videos of 20

experimenters  are  randomly  selected  for  the  training

set,  and  240  videos  of  the  remaining  experimenters

are used for the test set. For 30 divisions of the train-

ing and test sets,  the average of the 30 experimental

results is taken as the final prediction result.

Detailed  prediction  results  are  shown  in Table 2.

On  this  dataset,  the  proposed  adversarial  learning

framework  can  still  improve  the  prediction  ability  of

the base network. For example, when the observation

ratio is 0.2, the prediction result of 2s-GCN is 57.25%,

while  the  prediction  result  of  Ad-2s-GCN is  59.25%,

which  is  2.00%  higher  than  that  of  2s-GCN.  When

the  observation  ratio  increases  to  0.4,  the  effect  of

Ad-2s-GCN  is  better,  and  the  improvement  to  the

baseline reaches 4.61%. That is,  2s-GCN is improved

from 72.32% to 76.93%. Even if the observation ratio

is  1.0,  our  adversarial  learning  framework  does  not

damage  the  performance  of  the  baseline  model

(85.15% vs 85.10%). In this dataset, adversarial learn-

ing has produced excellent performance, and the pre-

diction accuracy of baseline model has been improved

to varying degrees in five different observation ratios.

When the  observation  ratio  is  0.4,  the  prediction

of Ad-2s-GCN is 76.93%, which is 2.72% better than

the 74.21% of Local+LGN[4]. When the observation is

large,  the  performance  of  Ad-2s-GCN  is  still  much

better than that of Local+LGN[4]. For example, when

 

Table  1.    Prediction Accuracy (%) on the NTU RGB-D 60 Dataset

Model Data Type Observation Ratio

0.2 0.4 0.6 0.8 1.0

KNN[38]* RGB-D 9.56 16.04 25.97 34.49 37.02

RankLSTM[39]* RGB-D 16.48 37.74 55.94 64.41 65.95

DeepSCN[40]* RGB-D 21.46 39.93 54.61 60.18 58.62

MSRNN[38]* RGB-D 20.33 41.37 59.15 67.38 69.24

Teacher-Student[1] RGB-D 35.85 58.45 73.86 80.06 82.01

MTLN[41]+ Skeleton 8.34 26.97 56.78 75.13 80.43

LSTM[42]+ Skeleton 7.07 18.98 44.55 63.84 71.09

Muti-Stage-LSTM[32]+ Skeleton 27.41 59.26 72.43 78.10 79.09

Local+LGN[4] Skeleton 32.12 63.82 77.02 82.45 83.19

2s-GCN Skeleton 39.74 70.77 80.39 84.82 87.13

αAd-2s-GCN ( =0.001) Skeleton 41.20 72.17 81.00 85.01 87.51

Note: * indicates that the data comes from the experiment cited in [1], + indicates that the data comes from the experiment cited in [4].
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the observation is 0.8, the difference is 1.84% (86.26%

vs  84.42%).  Compared  with  the  method  using

RGB+D  data,  Ad-2s-GCN  which  only  uses  skeleton

data  still  has  advantages  in  some  observation  ratio.

For  instance,  Ad-2s-GCN  is  83.24%  at  an  observa-

tion ratio  of  0.6,  which is  1.57% higher  than 81.67%

of Teacher-Student[1].

From  the  above  results,  our  approach  on  SYSU

3D-HOI achieves the performance of SOTA (state-of-

the-art),  which  greatly  exceeds  the  previous  research

work[4]. 

4.4    More Evaluations
 

4.4.1    Using MAE Instead of Adversarial

Learning

Ff Fp

lossAD

α = 0.001

To verify the effectiveness of adversarial learning,

the  mean  absolute  error  (MAE)  function  is  directly

used  as  the  loss  function  to  calculate  the  difference

between the extracted features of full videos and par-

tial  videos (  and  in Fig.1).  In other words, the

MAE loss  is  used  instead  of  the  adversarial  learning

loss  in (1).  Experiments are conducted on the

NTU RGB-D 60 dataset,  and the specific  results  are

shown in Table 3.  In the experiments,  the MAE loss

is multiplied by the adversarial loss weight 

for a fair comparison.

It can be seen that the performance of Ad-2s-GCN

is significantly better than that of 2s-GCN+MAE. We

believe  that  the  reason  is  that  the  features  of  full

videos may have some noise for action prediction. The

model may learn the wrong information if it is direct-

ly passed to partial videos for learning without screen-

ing.  Compared  with  the  learning  method  of  directly

calculating  MAE,  the  proposed  adversarial  learning

method will  properly evaluate the difference between

the  features  of  the  full  videos  and  the  partial  videos

and  impose  different  degrees  on  the  learning  process

of  the  partial  videos  due  to  the  existence  of  the  dis-

criminator, which is a strong classifier. The penalty is

used  to  guide  its  learning,  and  the  robustness  is

stronger. 

4.4.2    Effect  of  Adversarial  Learning  Weight  on

the Model

αThe adversarial learning weight  in (1) is tested

on  the  NTU  RGB-D  60  dataset  and  the  SYSU  3D-

HOI dataset, with the specific results shown in Table 4.

The proposed framework shows different effects when

the  weights  are  0.001,  0.01,  and  0.1  on  the  two

datasets,  respectively.  This  is  because  the  model

needs  to  optimize  itself  according to  both the adver-

 

Table  2.    Prediction Accuracy (%) on SYSU 3D-HOI Dataset

Model Data Type Observation Ratio

0.2 0.4 0.6 0.8 1.0

KNN[38]* RGB-D 42.50 55.00 61.25 65.00 62.08

RankLSTM[39]* RGB-D 57.08 71.25 75.42 77.50 76.67

DeepSCN[40]* RGB-D 51.75 58.83 67.17 73.83 74.67

MSRNN[38]* RGB-D 56.67 75.42 80.42 82.50 79.58

Teacher-Student[1] RGB-D 63.33 75.00 81.67 86.25 87.92

LAFF[2]+ Skeleton 29.58 35.42 53.33 58.75 54.17

MTLN[41]+ Skeleton 26.76 52.86 72.32 79.40 80.71

LSTM[42]+ Skeleton 31.61 53.37 68.71 73.96 75.53

Muti-Stage-LSTM[32]+ Skeleton 56.11 71.01 78.69 80.31 78.50

Local+LGN[4] Skeleton 58.81 74.21 82.18 84.42 83.14

2s-GCN Skeleton 57.25 72.32 80.42 84.33 85.10

αAd-2s-GCN ( =0.1) Skeleton 59.25 76.93 83.24 86.26 85.15

 

Table   3.      Prediction  Accuracy  (%)  Using  MAE  Instead  of
Adversarial Learning

α=0.001Model ( ) Observation Ratio

0.2 0.4 0.6 0.8 1.0

2s-GCN+MAE 39.08 71.21 81.11 84.98 87.10

Ad-2s-GCN 41.20 72.17 81.00 85.01 87.51

 

Table   4.      Prediction  Accuracy  (%)  of  Different  Adversarial
Learning Weights

Dataset αWeight ( ) Observation Ratio

0.2 0.4 0.6 0.8 1.0

NTU RGB-D 60 0.001 41.20 72.17 81.00 85.010 87.51

0.010 39.73 72.07 80.39 84.510 87.58

0.100 38.70 71.04 81.89 85.390 87.04

SYSU 3D-HOI 0.001 58.99 76.33 83.22 86.125 86.50

0.010 58.78 75.94 82.92 86.310 86.56

0.100 59.25 76.93 83.24 86.260 85.15
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sarial learning loss and the predicted classification loss

in the presented framework. In other words,  2s-GCN

not only needs to learn the feature distribution of full

videos from fooling D-Net, but also needs to be based

on the ground truth labels to learn action prediction.

When the adversarial learning weight is too large, 2s-

GCN focuses more on learning features from the con-

frontation with D-Net, while ignoring learning predic-

tion from real labels, thus weakening the original ac-

tion  prediction  ability.  In  contrast,  when  the  adver-

sarial learning parameters are small, the presented 2s-

GCN gains  little  help  from adversarial  learning,  and

thus only learns the predictive power from the cross-

entropy loss with the ground truth labels. 

4.4.3    Full Video and Partial Video Joint

Learning

In the proposed model, 2s-GC-pre, which extracts

full  video  features,  is  the  pretrained  model.  At  the

same time, the method of training full videos is test-

ed together with training partial  videos.  The test re-

sults  on  the  NTU  RGB-D  60  dataset  are  shown  in

Table 5. In Table 5, Ad-wo-pre denotes jointly train-

ing full videos and partial videos. The prediction loss

of full and partial videos is added as the final loss of

the network. Finally,  to avoid confusion, the authors

refer  to  [4]  to  set  a  pseudo-label  to  distinguish  full

videos  from  partial  videos.  The  experimental  results

show that the effect of using pre-trained 2s-CGN-pre

is significantly better than that of joint training. 

Ts4.4.4    Effect of  on FNN

Ts

Ts

Ts

Ts

In order to further explore FNN, we conduct abla-

tion experiments with  values of 100, 200, and 300

on  the  NTU  RGB-D  60  dataset,  respectively.  The

specific  results  are  shown  in Table 6.  It  can  be  seen

from Table 6 that the best effect is achieved when 

is 100. According to the information in Fig.3, we be-

lieve that the reason is that 77% of the videos frames

in  the  NTU  RGB-D  60  dataset  are  less  than  100

frames,  and  99%  of  the  videos  frames  are  less  than

200  frames,  therefore  100  is  a  reasonable  parameter,

and the same goes for dataset SYSU 3D-HOI. There-

fore, we believe that when applying FNN, the setting

of  needs to be set according to the frame number

distribution  of  the  dataset,  and  generally  the  maxi-

mum number of frames is taken as the value of .
  

TsTable  6.    Prediction Accuracy (%) of Different 

Model Observation Ratio

0.2 0.4 0.6 0.8 1.0

2s-GCN-FNN-100 39.74 70.77 80.39 84.82 87.13

2s-GCN-FNN-200 37.25 69.20 80.04 84.67 85.97

2s-GCN-FNN-300 40.45 68.67 78.35 82.40 86.23
  

4.4.5    Effectiveness of FNN

Due  to  the  large  differences  of  the  number  of

frames  of  datasets,  we  introduce  FNN  data  process-

ing  to  improve  the  performance  of  the  model.  The

specific  results  are shown in Table 7 and Table 8.  In

the experiments, the performance of 2s-GCN and Ad-

2s-GCN  has  been  greatly  improved.  This  is  because

the model will not affect its prediction due to the dif-

ference of the number of frames between videos after

 

Table   5.      Prediction  Accuracy  (%)  of  Jointly  Trained  Full
and Partial Videos

α = 0.001Model ( ) Observation Ratio

0.2 0.4 0.6 0.8 1.0

Ad-wo-pre 33.46 71.82 81.26 85.04 87.20

Ad-2s-GCN 41.20 72.17 81.00 85.01 87.51

 

5%

46%
33%

12%
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77%

22%
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Fig.3.  Distribution of the number of video frames of (a) dataset NTU RGB-D 60 and (b) dataset SYSU 3D-HOI.
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FNN processing,  so  that  it  can better  learn  the  con-

tent of action videos. 

5    Conclusions

In  this  paper,  we  presented  a  method  for  human

early action prediction. We first proposed a novel ad-

versarial  graph  convolutional  framework.  A  two-

stream graph convolutional  network was  used as  the

baseline to fully extract features of actions. Adversari-

al  learning  optimizes  the  features  distribution  and

greatly improves the performance of the baseline. By

using  adversarial  learning,  the  performance  of  the

baseline  is  improved  by  an  average  of  0.81%  on  the

NTU RGB-D 60 dataset and by an average of 2.28%

on  the  SYSU  3D-HOI  dataset.  We  then  proposed  a

new  data  preprocessing  method  FNN,  which  can  re-

duce  the  impact  of  differences  of  the  number  of

frames  on  model  learning.  The  performance  of  the

baseline  without  FNN is  improved  by  an  average  of

1.85% on  the  NTU RGB-D 60  dataset  and  an  aver-

age of 7.40% on the SYSU 3D-HOI dataset. In the fu-

ture,  we will  further study a more lightweight model

for early action prediction. 
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