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Abstract    Gradient-domain rendering methods can render higher-quality images at the same time cost compared with

traditional ray tracing rendering methods, and, combined with the neural network, achieve better rendering quality than

conventional screened Poisson reconstruction. However, it is still challenging for these methods to keep detailed informa-

tion,  especially  in  areas  with  complex  indirect  illumination  and  shadows.  We  propose  an  unsupervised  reconstruction

method that separates the direct rendering from the indirect, and feeds them into our unsupervised network with some

corresponding auxiliary channels  as two separated tasks.  In addition,  we introduce attention modules into our network

which can further improve details. We finally combine the results of the direct and indirect illumination tasks to form the

rendering results. Experiments show that our method significantly improves image quality details, especially in scenes with

complex conditions.
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1    Introduction

Monte Carlo ray tracing methods are widely used

in many fields due to their flexibility and versatility.

However,  the  methods  also  suffer  from  slow  conver-

gence,  significant  image  noise  at  a  sampling  rate  of

low  spp  (samples  per  pixel),  and  expensive  expendi-

ture at a sampling rate of high spp.

Gradient-domain  rendering[1] uses  spatial  correla-

tion to alleviate the problem of excessive image noise

at low spp. This method additionally outputs the im-

ages'  horizontal  and  vertical  gradients,  and  these

high-frequency  details  provide  constraints  on  image

reconstruction,  thus  allowing  the  screened  Poisson

solvers  to  produce  better  results.  Since  image  recon-

struction is essentially an optimization iteration prob-

lem,  adding  more  constraints  benefits  the  problem's

solution.  As  a  result,  more  and  more  auxiliary  fea-

tures  are  beginning  to  be  introduced  into  the  recon-

struction process. These new constraints undoubtedly

optimize  the  quality  of  the  reconstructed  image,  but

they also significantly increase the time and resource

consumption of image rendering and reconstruction.

The  emergence  of  deep  neural  network  methods

has led to new directions of exploration for image re-

construction.  Well-trained  network  models[2–4] have

shown  good  enough  performance  to  replace  the

screened  Poisson  solvers  regarding  reconstruction

quality and processing efficiency. GradNet[2] has even

reduced the expense of training by applying unsuper-

vised networks  to  image  reconstruction,  thus  making

deep  neural  networks  more  competitive.  However,

these  currently  existing  methods  make  maintaining

some  indirect  illumination  and  shadow  details  diffi-

cult.  Some of  the denoising methods of  Schie et  al.[5]

keep details  by distinguishing between direct  and in-

direct illumination. This direct and indirect illumina-

tion separation has succeeded in traditional ray trac-
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ing methods. However, there is currently no gradient-

domain  algorithm separating  direct  and  indirect  illu-

mination.  Separated  direct  and  indirect  illumination

have  different  lighting  properties,  which  helps  the

subsequent  network  process  and  optimize  illumina-

tion independently better  to  reconstruct  lighting and

shadow details in different dimensions. Naturally, the

gradient  information  can  be  easily  separated  for  di-

rect  and  indirect  illumination,  followed  by  a  recon-

struction stage on direct and indirect illumination in-

dependently.

In this paper, we decompose the rendering task in-

to two separate rendering tasks of direct and indirect

illumination,  supplemented  with  auxiliary  features

and gradient channels. Then, the two separated tasks

pass  through  the  rendering  pipeline  relatively  inde-

pendently. Our method combines the direct and indi-

rect illumination reconstruction results only in the fi-

nal stage. We have experimentally demonstrated that

our  method  does  not  result  in  additional  energy  loss

or  quality degradation.  Moreover,  the final  rendering

results  are  of  higher  quality  regarding  detail  recon-

struction than those of  traditional  methods,  especial-

ly  in  indirect  illumination  and  shadows,  because  the

high-quality  direct  illumination  channels  are  pro-

cessed  separately.  Through  ablation  experiments,  we

have  also  demonstrated  that  both  the  illumination

separation process and the network model's improve-

ment  positively  impact  the  quality  of  reconstruction

results.

In summary, our main contributions are:

● a gradient-domain rendering process for network

reconstruction  that  separates  the  direct  and  indirect

illumination to improve the final reconstruction quality;

● an  unsupervised  network  with  an  attention

module  that  can  better  preserve  illumination  details

while removing noise. 

2    Related Work
 

2.1    Gradient-Domain  Rendering  and  Image

Reconstruction

In  addition to  using color  information,  the  gradi-

ent-domain rendering methods introduce spatial infor-

mation  to  assist  Monte  Carlo  rendering  in  conver-

gence, also known as image gradients. Since the semi-

nal  work of  gradient-domain Metropolis  transport by

Lehtinen et  al.[6],  the  gradient-domain  methods  have

been  also  extended  to  path  tracing  by  Kettunen et
al.[7].  The  combination  of  other  related  techniques

with  gradient-domain  methods  also  brings  different

advantages. For example, Manzi et al.[1] applied bidi-

rectional path tracing to improve the ray path.

In  gradient-domain  rendering,  image  reconstruc-

tion  usually  implies  using  a  screened  Poisson  solver

by Bhat et al.[8] or iteration-based optimization meth-

ods  by  Rousselle et  al.[9].  For  better  results,  subse-

quent work[10–12] usually used additional auxiliary fea-

tures as new constraints, increasing the time cost and

memory  overhead.  He et  al.[13] proposed  a  non-uni-

form sampling method based on a gain control strate-

gy, using different spp for high-frequency and low-fre-

quency regions to improve the rendering quality in a

targeted manner. 

2.2    Deep Learning for Denoising and

Gradient-Domain Rendering

In recent years, deep learning networks have been

applied  positively  in  traditional  Monte  Carlo  path-

tracking image denoising[14–17]. Han et al.[18] built net-

work  extraction  features  from  G-buffers  and  P-

buffers,  respectively,  and  weighted  the  results  of  the

two  to  obtain  the  final  denoising  result.  Alpay  and

Akyuz[19] conducted  higher  spp  at  lower  resolutions

and finally  passed  the  network,  which  performed de-

noising and upsampling to restore  resolutions.  Zhang

et al.[20] used an automatically selected feature set to

denoise  volume  rendering  results.  Firmino et  al.[21]

used the confidence interval method to use the result

only  when  the  denoising  network  result  is  beneficial

and reduces  the  impact  of  the  network at  high sam-

pling  numbers.  Currius et  al.[22] proposed a  real-time

denoising network for hair rendering. In contrast, the

application of deep networks to gradient-domain ren-

dering  is  somewhat  later.  To  the  best  of  our  knowl-

edge, Kettunen et al.[3] firstly combined deep learning

with  gradient-domain  rendering  and  achieved  results

beyond  traditional  Monte  Carlo  path-tracing  image-

denoising.  However,  Kettunen et  al.[3] used  a  super-

vised network to perform denoising.

In  contrast,  the  training  datasets  for  supervised

networks require many high-quality images as ground

truth,  which  is  a  considerable  computational  over-

head.  Unsupervised  learning,  on  the  other  hand,  due

to  its  nature,  can  avoid  the  computation  for  ground

truth, and thus focuses the vast majority of its effort

on the training dataset, thus allowing the dataset size

to  be  increased.  Unsupervised  networks,  therefore,

have certain unique advantages. Guo et al.[2] present-

ed  unsupervised  deep  learning  solution  to  screened
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Poisson  reconstruction  in  gradient-domain  rendering.

The unsupervised deep learning solution achieved bet-

ter  results  than  traditional  screened  Poisson  recon-

struction  and was  comparable  to  the  supervised  net-

work.  Xu et  al.[4] proposed  an  unsupervised  convolu-

tional neural network for image reconstruction in gra-

dient-domain  volumetric  photon  density  estimation.

However, all these methods still need to be improved

to keep illumination details while removing noise, es-

pecially in areas with detailed shadows and indirect il-

lumination. Our method focuses on unsupervised net-

works  to  keep  illumination  details  by  separating  di-

rect and indirect illumination. 

3    Background

The  key  idea  of  gradient-domain  rendering  is  us-

ing  highly  correlated  shift  paths  of  the  base  path  to

estimate  finite  differences  between  adjacent  pixels.

These  finite  differences  are  generally  referred  to  as

gradients.

The  color  channel  (base  image)  and  the  gradient

channels  output  from  the  gradient-domain  renderer

are shown in Fig.1. For the final result, the gradient-

domain  rendering  reconstructs  the  final  image  from

the typically more noisy color channel and less noisy

gradient channels by solving a screened Poisson equa-

tion[23].
 

Î = argmin
I

∥α(I − Ib)∥n +

∥∥∥∥( HdxI
HdyI

)
−

(
Idx
Idy

)∥∥∥∥n

,

(1)

αwhere  is  used  to  control  the  weight  between  the

Ib
Idx

Idy
Ib Hdx

Hdy

Î

gradient and the color,  is  the color image channel

generated  by  the  gradient-domain  renderer,  and

 are  the  horizontal  pixel  gradient  and the  vertical

pixel gradient of , respectively. In contrast,  and

 are  the  finite  difference  operators  in  the  vertical

and horizontal directions, respectively. The final out-

put  image  minimizes  both  its  pixel  difference  and

gradient difference from the input image.

L2

L1

In  the  reconstruction  process,  the  result  is  unbi-

ased when using the  norm, but it usually results in

a poor visual experience with anomalous data. The re-

sult of  reconstruction is much better visually, but

unfortunately, it is biased[6, 7, 24]. 

4    Our Method

Fig.2 presents an overview of our method. Our re-

constructed  models  have  the  same  structure  and  do

 

(a) Screened Poisson
Reconstruction

(b)

(c)

Fig.1.   Basic  process  of  gradient-domain  rendering.  (a)  Color
channel. (b) Gradient channels. (c) Reconstruction image.

 

Renderer

Scene Data

Direct Illumination

Indirect Illumination

Auxiliary

Features

Reconstruction

Model

Direct Illumination

Reconstruction Result

Indirect Illumination

Reconstruction Result

Reconstruction

Result

Fig.2.  Overview of our method. The direct and indirect illumination datasets are fed into the same reconstruction models for inde-
pendent image reconstruction, and the same auxiliary features are shared between them. The individual reconstruction results are
summed to obtain the final reconstructed image.
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not significantly differentiate between direct and indi-

rect  illumination.  A well-trained network has general

reconstruction capabilities for direct and indirect illu-

mination and does not require a different design. Al-

though  our  reconstruction  models  use  the  same  net-

work  structure,  the  two  reconstruction  models  have

different  parameters  after  the  final  training  because

they use different data during the training phase. 

4.1    Illumination Separation

In  our  method,  the  direct  and  indirect  illumina-

tion  are  separated,  and  the  gradient  data  is  applied

separately. Therefore, compared with (1), our method

can be expressed by the following formula:
 

Î = ψd(xd) + ψi(xi)

= ψd(Idb , I
d
dx, I

d
dy, F ) + ψi(I ib, I

i
dx, I

i
dy, F ),

ψd ψi

xd xi

Idb , I
d
dx, I

d
dy

I ib, I
i
dx, I

i
dy

F

where  and  represent  the  reconstruction  net-

work model of direct illumination and the reconstruc-

tion  network  model  of  indirect  illumination,  respec-

tively.  and  represent the training sample set of

direct and indirect illumination, respectively. 

represent the base color, horizontal gradient, and ver-

tical  gradient  channels  of  direct  illumination,  respec-

tively.  Similarly,  represent  the  base  color,

horizontal gradient, and vertical gradient channels of

indirect illumination, respectively. Note that, both the

direct illumination samples and the indirect illumina-

tion samples  use  the  same feature  channels .  After

the radiance calculations of direct and indirect illumi-

nation are completed, radiance data are added togeth-

er to obtain the final denoising result.

Fig.3 shows the illumination separation results  of

a kitchen scene. We can notice the fact that the noise

scales of direct illumination are different from those of

indirect illumination. It is reasonable to treat the di-

rect  and  indirect  illumination  separately.  After  the

two  separate  reconstruction  tasks  are  completed,  the

images are superimposed to form the final reconstruc-

tion result. 

4.2    Network Architecture

As  shown  in Fig.4 and Fig.5,  our  network  archi-

tecture  extends  from  GradNet[2],  whose  reliability  of

the multi-branch structure was proven. Therefore our

method follows this structure.

The individual structure of each branch is similar

to U-net[25], with branches connected to each other in

the upsampling phase by a residual structure. The da-

ta-branch  is  designed  to  extract  low-frequency  con-

tents  from  noisy  images,  and  the  gradient-branch  is

designed to extract high-frequency details so that on-

ly  the  gradient  images  are  involved  in  the  gradient-

branch.

Ib F

Idx Idy

In our network,  and  are the input image and

related  auxiliary  channels,  respectively,  as  the  input

of the data-branch, which are used to extract low-fre-

quency  data;  and  are  the  horizontal  gradient

and the  vertical  gradient  of  the  input  image,  respec-

tively,  as  the  gradient-branch  input  for  extracting

high-frequency details.

The  edge  information  and  subtle  structural  fea-

 

(a) (b)

(c)

(f)

(d)

(e)

Fig.3.   Illumination  separation  results  of  a  kitchen  scene,  in-
cluding base color and two gradient channels for direct and in-
direct illumination, respectively. (a) Color channel of direct il-
lumination. (b) Color channel of indirect illumination. (c) Ver-
tical gradient channel of direct illumination. (d) Vertical gradi-
ent  channel  of  indirect  illumination.  (e)  Horizontal  gradient
channel  of  direct  illumination.  (f)  Horizontal  gradient  channel
of indirect illumination.
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tures of objects are what we want the network to pay

special  attention  to  and  retain  as  much  as  possible.

At the same time, the rendering noise caused by low

spp is  ignored by the network as  useless  information

as much as possible. Based on the above motivations,

we introduce the attention module. It allows the net-

work to distinguish between details of different impor-

tances  as  much  as  possible.  The  attentional  module

uses  the  classical  CBAM[26] (convolutional  block  at-

tention  module)  structure,  which  is  only  used  in  the

upsampling  stage.  The  introduction  of  the  attention

module  effectively  eliminates  the  noise  in  the  recon-

struction result, making the final result much cleaner.

At the same time, the judgment of the partial edge of

the object is more accurate, and the partial edge de-

tails are effectively distinguished.

We  also  try  to  introduce  other  network  models,

such  as  the  classic  U-net-Block[25],  to  replace  part  of

the  structure  in  the  network  or  apply  the  attention

module to other steps, such as skip connections. How-

ever, the final result proves that these more complex

structures cannot bring positive feedback for the final

reconstruction.  In  our  experiments,  we  find  interest-

ing  rules.  Macroscopically  speaking,  the  more  com-

plex  the  convolutional  structure  of  the  network  and

the more convolutional layers, the more difficult it is

to remove the noise.  The network mistakenly retains

this noise that should have been eliminated as a fea-

ture.  The  introduction  of  the  attention  module  can

eliminate  this  noise  within  a  specific  range,  but  the

excessive  use  of  the  attention  module  will  cause  the

details that should be preserved to be blurred or even

destroyed.  Therefore,  our  final  network  structure

reaches the balance between denoising and detail pre-

serving. 

4.3    Loss Function

For  unsupervised  networks,  the  most  important

thing is the design of the loss function.

LData LGrad

L1st

The  loss  function  applied  to  the  final  network

training consists of the following three components: a

data loss , a gradient loss , and a first-order

loss . They can be expressed in the following form:
 

LTotal = α× LData + LGrad + β × L1st.

α

Based  on  the  existing  loss  function[2],  which  per-

forms well,  we adjust  the  weights  of  some of  its  loss

terms  to  fit  our  improved  network  architecture.  The

data  loss,  gradient  loss,  and  first-order  loss  take  a

similar strategy as in GradNet[2]. Parameter  is used

to  adjust  the  effect  of  the  color  channel  on  the  final

loss  function.  In  supervised  networks,  this  term  is

usually adjusted to be close to 1.0 to be visually close

to the ground truth. However, due to the lack of reli-

able ground truth in unsupervised networks, it is diffi-

cult to trust the loss results of color channel as in su-

 

8
32

64 128

2
32

64
128

Residual

Blocks
512 256 128

Conv(3  3, Stride 2) + LReLU Deconv(4  4, Stride 2) + ReLU Skip Connection

Deconv(4  4, Stride 2) + Conv(3  3, Stride 1) + ReLU CBAM-Attention Module

dx

b

dy





Fig.4.  Overview of our network architecture. Our network adopts the results of dual branches, where different branches correspond
to channels with distinct features. Attention modules are only added at the upsampling stage to prevent too many attention mod-
ules from mistaking noise for features for retention.

 

10 64 64 7

Skip Connection

(b)(a)

Conv(3  3, Stride 1) + LReLU

Conv(3  3, Stride 1)

dx

b

dy



Fig.5.  Auxiliary sub-models of the main network. The residual
block  is  of  classical  design,  while  the  G-branch  only  provides
the loss function for the main network. (a) Residual block. (b)
G-branch.
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α

β

pervised networks. We adjust the value of the param-

eter  to try out its effect on the final result and fi-

nally settle on 1.0 with the same weight as the gradi-

ent  loss.  The  parameter  will  increase  slowly  with

the epoch, and eventually, stabilize at 2. 

4.4    Dataset Preparation

×
×

Since  unsupervised  networks  are  trained  without

the  ground  truth,  it  is  much  easier  to  generate  only

relatively  low-quality  training  samples.  Although

GradNet[2] open-sources  its  associated  dataset,  we

cannot use it directly as its data samples do not sepa-

rate direct and indirect illumination. To ensure exper-

imental fairness and maintain consistency in the data

size, we choose seven scenes from Benedikt Bitterli①,

and generate 100 frames for each scene at 64 spp, fi-

nally acquiring 700 frames of images with high-resolu-

tion  (1 280 720).  We randomly  intercept  20  patches

of  256 256  size  from  each  frame  image,  which  ulti-

mately constitute a training dataset containing 14 000

samples.  In  comparison,  the  GradNet[2] dataset  con-

tains 12 654 samples,  which  has  roughly  the  same

number of samples as ours.

For  each  frame,  the  renderer  generates  the  base

images and the corresponding gradients with our gra-

dient-domain  path  tracer  extended  from  Manzi et
al.[23] at  a  sampling  rate  of  64  spp,  along  with  three

additional  buffers  (i.e.,  albedo,  normal,  and  depth).

The albedo buffer is recorded for the first non-specu-

lar hit point on the path, which has been normalised

to  the  range  [0,  1].  The  normal  buffer  records  the

same  point,  but  it  needs  to  be  normalised  to  the

range [0, 1]. The depth buffer records the location of

the hit point and uses the scene location information

to  complete  the  normalisation  to  the  range  [0,  1].

Therefore,  the  albedo,  normal,  and depth buffers  are

all normalised before entering the network. Occasion-

ally, there will be additional buffers with non-numer-

ic values, and those are set to zero.

For  the  construction  of  the  validation  set,  we

choose  two  scenes  (BATHROOM,  CLASSROOM)

used in the training set and render the results under

different spp with a new perspective and parameters.

Also,  three  entirely  new  scenes  (KITCHEN-1,

KITCHEN-2,  and  DININGROOM)  are  selected,  and

their  results  under  different  spp  are  rendered.  Five

scenes  are  combined  to  form  the  final  validation  set

while generating their ground truth at 81 960 spp as a

reference for final comparison. 

4.5    Training

β1 β2

Our  network  is  implemented  based  on  the  Py-

Torch  framework[2].  We  use  some  of  the  same  base

parameters  as  in  Guo et  al.[2] to  train  our  network.

We use mini-batch SGD (stochastic gradient descent)

and  apply  the  Adam  solver[27] for  training  with  the

moment  parameters  =  0.5  and  =  0.999.  We

tune the learning rate with the basic learning rate of

0.000 1 and the power of 0.95 every other epoch. The

initial weights of the network are initialized using the

method mentioned in He et al.[28]. We use an NVIDIA

GTX 3090 GPU for training and execute 151 epochs.

The  training  samples  are  fed  into  the  network  in

batches of 32, and four processes are trained in paral-

lel  simultaneously. Ninety percent of the samples are

used  as  the  training  set,  and  the  remaining  ten  per-

cent as the validation set. 

5    Results and Discussion

To evaluate  our  method,  we  compare  it  with  ex-

isting  unsupervised  network  reconstruction  tech-

niques.  Afterwards,  we  analyze  in  detail  the  various

design choices  in  our  models.  Finally,  we discuss  the

performance of the method again under different spp

inputs.  The  reference  images  are  generated  by  path

tracing at an extremely high sampling rate. 

5.1    Runtime Performance

×

We compare  the  average  time  taken  by  the  net-

work to infer the test data samples. The average time

taken by GradNet[2] to infer a frame of 720 1 080 res-

olution is 265.54 ms, while the average time taken by

our network to infer the same frame is 283.86 ms. Al-

though  our  network  adds  additional  structures  com-

pared with GradNet[2], the increased time overhead of

our network is not readily noticeable but with signifi-

cant  quality  improvement.  On  the  other  hand,  our

method does not aim at real-time rendering, and the

slight  increase  in  time  overhead  is  perfectly  accept-

able for offline rendering. 
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5.2    Quality Evaluation

L1

We  compare  our  method  with  classical  screened

Poisson  image  reconstruction  method  (using )[1]

and  the  existing  state-of-the-art  unsupervised  net-

work GradNet[2]. As shown in Fig.6, our method per-

forms  better  in  terms  of  the  RelMSE (relative  mean

square error) score and the details of image preserva-
 

L1

L1

Fig.6.  Image reconstruction results using our method, compared with existing reconstruction methods:  Possion reconstruction[1]

and GradNet[2] in five scenes:  KITCHEN-1 (64 spp),  KITCHEN-2 (32 spp),  BATHROOM (32 spp),  CLASSROOM (64 spp),  and
DININGROOM (16 spp) (from line 1 to line 5, respectively). (a) Reconstruction results with our method. (b) Details of the input
image. (c) Details of the  reconstruction[1]. (d) Details of GradNet[2]. (e) Details of our method. (f) Ground truth.
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tion,  especially in the conservation of  indirect illumi-

nation and shadow details. The reconstruction results

of  different  methods  for  different  scenes  under  other

evaluation  metrics  are  shown  in Table 1.  It  can  be

seen  that  our  method  has  the  best  results  in  almost

all  scenes  under  different  evaluation  criteria,  includ-

ing  two  different  LPIPS  (learned  perceptual  image

patch similarity) methods and SSIM (structural simi-

larity  index  measure),  and  only  in  the  KITCHEN-2

scene,  its  SSIM score  is  slightly  smaller  than that  of

GradNet[2] by a very small margin.
 
 

Table  1.    Reconstruction Quality Comparisons with Existing
Methods

Scene Method SSIM LPIPS
(ALEX)

LPIPS
(VGG)

KITCHEN-1 Input 0.859 8 0.622 7 0.580 1

L1
[1] 0.961 3 0.194 8 0.235 3

GradNet[2] 0.980 7 0.104 2 0.170 3

Ours 0.982 4 0.096 7 0.168 2

KITCHEN-2 Input 0.923 8 0.510 3 0.497 4

L1
[1] 0.986 3 0.152 6 0.177 5

GradNet[2] 0.990 2 0.052 2 0.090 5

Ours 0.990 1 0.045 5 0.083 3

BATHROOM Input 0.826 1 0.416 2 0.418 6

L1
[1] 0.842 2 0.095 1 0.195 3

GradNet[2] 0.810 2 0.064 7 0.180 8

Ours 0.924 0 0.053 6 0.175 4

CLASSROOM Input 0.946 2 0.376 7 0.399 9

L1
[1] 0.989 8 0.070 2 0.136 3

GradNet[2] 0.988 9 0.032 0 0.080 3

Ours 0.991 2 0.029 7 0.077 2

DININGROOM Input 0.835 8 0.530 8 0.550 8

L1
[1] 0.892 9 0.191 8 0.334 7

GradNet[2] 0.958 3 0.073 1 0.146 9

Ours 0.975 5 0.067 4 0.132 8

Note: The lowest error is marked in bold.
 

It is clear that the unsupervised method has a sig-

nificant  improvement  over  the  classical  method,  and

the results of our method without illumination separa-

tion will  be evaluated in Subsection 5.3 to determine

the network performance improvement further. 

5.3    Ablation Experiments

In the ablation experiments, we focus on compar-

ing the impact of  the illumination separation process

and the network structure with the attention module.

Impact  of  Illumination  Separation. Figs.7(a)  and

7(b) both use the GradNet[2] network, while introduc-

ing the illumination separation process in Fig.7(b). It

can be seen that the shaded boundaries are more ex-

plicit in the latter, while the RelMSE decreases. This

illustrates the positive impact of the illumination sep-

aration  process  on  the  final  results.  The  positive  ef-

fects of illumination separation are also illustrated in

Figs.7(c) and 7(d), while using our network structure.

Our network with illumination separation also outper-

forms the one without. We can conclude that both for

GradNet[2] and our network,  the illumination separa-

tion process has resulted in a more confident results.
  

(a) (b)

(d)(c)

Fig.7.  Ablation experiment results. (a) Method without the at-
tention  module  and  without  illumination  separation,  RelMSE:
0.026 2. (b) Method without the attention module and with il-
lumination  separation,  RelMSE: 0.020 8.  (c)  Method  with  the
attention module and without illumination separation, RelMSE:
0.023 5. (d) Method with the attention module and with illumi-
nation separation, RelMSE: 0.017 7.
 

Impact  of  the  Network  Structure  with  the  Atten-
tion Module. Figs.7(a) and 7(c) show results of differ-

ent  network  structures  without  illumination  separa-

tion. Fig.7(a)  use  the  original  network of  GradNet[2],

while Fig.7(c)  adds  the  attention  module.  It  can  be

seen that  the  noise  is  better  removed after  introduc-

ing  the  attention  module,  also  the  objective  evalua-

tion metric RelMSE is reduced. The results of differ-

ent  networks  with  illumination  separation  (Figs.7(b)

and 7(d))  also  show  the  positive  effect  of  the  atten-

tion  module. Fig.7(d)  shows  results  of  our  method,

where  both  the  attention  module  and  the  illumina-

tion  separation  process  are  introduced,  the  shadow

shape  and  the  noise  problems  are  considerably  im-
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proved. The objective evaluation metric RelMSE is al-

so reduced to a greater extent, suggesting that the use

of  both  the  attention  module  and  the  illumination

separation  process  can  further  enhance  the  noise  re-

moval capability of the network.
 

5.4    Performance Under Different Spp

20 210

To test  the  effect  of  our  network  under  different

spp  inputs,  we  have  generated  a  total  of  11  sets  of

test  data  with  different  spp,  with  the  corresponding

spp ranging from  to .  However,  limited by the

error size, we only show some of the results. Especial-

ly  in  higher  spp,  the  difference  between  different

methods is minimal, and it is not easy to show specif-

ic differences.

The RelMSE evaluations of our method and exist-

ing  methods  under  different  spp  are  shown  in Fig.8.

Although our method uses only 64 spp of input dur-

ing  training,  it  shows  superior  reconstruction  ability

for different spp of the test set. Although at a higher

spp,  the  final  denoising  results  of  different  methods

are  similar  because  the  quality  of  the  initial  image

generated by the  renderer  is  sufficient.  However,  our

method has  more  evident  advantages  in  low spp im-

ages  with  more  noise  and  poorer  quality.  While  the

RelMSE evaluation index is lower, the visual effect is

also cleaner.
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RelMES: 0.207 6 RelMES: 0.002 2RelMES: 0.003 8RelMES: 0.058 9 RelMES: 0.014 0

RelMES: 0.043 5 RelMES: 0.002 2RelMES: 0.003 5RelMES: 0.016 2 RelMES: 0.006 7

RelMES: 0.042 3 RelMES: 0.002 1RelMES: 0.003 2RelMES: 0.015 6 RelMES: 0.006 2

(b) (c) (d) (e)

L1

Fig.8.   Results  of  our  method  compared  with  other  methods  in  different  spp.  Evaluations  are  performed  at  different  spp  in  the
KITCHEN-2 scene. The classical screened Poisson reconstruction method[1] is used in  reconstruction, and the existing unsuper-
vised network reconstruction[2] is used in GradNet reconstruction. (a) 1 spp. (b) 4 spp. (c) 16 spp. (d) 64 spp. (e) 256 spp.
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6    Conclusions

We proposed a gradient-domain rendering process

for  network  reconstruction  that  separates  direct  and

indirect  illumination to  improve  the  final  reconstruc-

tion  quality.  The  illumination  separation  process  ef-

fectively preserves extra detail  in the final  result,  es-

pecially indirect illumination and shadow. Meanwhile,

we presented an unsupervised network with an atten-

tion module, which can better preserve features while

removing  noise.  The  introduction  of  the  attention

module  improves  the  network's  ability  to  deal  with

noise  to  a  certain  extent,  making  the  final  results

more clean and friendly in terms of visual effects.

Several interesting future work can be done in the

following  areas.  The  processing  flow  of  illumination

separation should have a certain generality to the net-

work reconstruction method. It may be possible to use

this  flow  in  other  methods  for  further  improvement

and  optimization.  It  may  also  be  helpful  to  distin-

guish  between  material  types,  such  as  distinguishing

between diffuse and specular results for separate pro-

cessing. Combining with the temporal domain is also

an interesting idea, making full  use of the continuity

between frames to improve the quality of single-frame

generation further. 
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