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Abstract    Recurrent neural networks (RNNs) have been heavily used in applications relying on sequence data such as

time series and natural languages. As a matter of fact, their behaviors lack rigorous quality assurance due to the black-box

nature of deep learning. It is an urgent and challenging task to formally reason about the behaviors of RNNs. To this end,

we first present an extension of linear-time temporal logic to reason about properties with respect to RNNs, such as local

robustness, reachability, and some temporal properties. Based on the proposed logic, we formalize the verification obliga-

tion as a Hoare-like triple, from both qualitative and quantitative perspectives. The former concerns whether all the out-

puts resulting from the inputs fulfilling the pre-condition satisfy the post-condition, whereas the latter is to compute the

probability  that  the  post-condition  is  satisfied  on  the  premise  that  the  inputs  fulfill  the  pre-condition.  To  tackle  these

problems, we develop a systematic verification framework, mainly based on polyhedron propagation, dimension-preserving

abstraction, and the Monte Carlo sampling. We also implement our algorithm with a prototype tool and conduct experi-

ments to demonstrate its feasibility and efficiency.
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1    Introduction

Neural networks (NNs) have achieved remarkable

performance  in  a  variety  of  challenging  tasks  in  the

past  few  years,  such  as  image  recognition[1],  natural

language processing[2], speech processing[3], and multi-

view  clustering[4].  Therefore,  it  is  desired  to  deploy

neural networks in safety-critical applications as well,

for instance,  autonomous driving[5] and medical  diag-

nostics[6].  However,  various  concerns  have  arisen  due

to  the  black-box  nature  of  neural  networks,  which

hinders their applications in safety-critical domains[7].

For  example,  it  is  extremely  difficult  to  explain  the

decisions  of  a  neural  network[8].  Furthermore,  neural

networks  have  been  shown  to  be  fundamentally  vul-

nerable to minor input perturbations. It means that a

small  perturbation  to  a  correctly  handled  input  may

induce  unexpected  results[9, 10].  Therefore,  there  is  a

pressing need to formally reason about the behaviors

of neural networks before deploying them.

Recently,  dozens  of  verification  approaches  for

neural  networks have been proposed[11–14] by leverag-
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ing  techniques  such  as  constraint  solving  and  ab-

stract  interpretation.  However,  all  these  approaches

are  designated  for  verifying  feed-forward  neural  net-

works  such  as  fully  connected  feed-forward  networks

(FNNs)  and  convolutional  neural  networks  (CNNs),

and cannot  be  directly  applied to  verifying recurrent

neural networks (RNNs). Indeed, in contrast to feed-

forward neural networks which only consider the cur-

rent  input,  an  RNN considers  the  current  input  and

intermediate  results  of  the  previous  computation,

namely that  it  can memorize  previous  computing re-

sults based on its internal memory over sequential in-

puts.  Until  recently,  some efforts  have been made to

verify RNNs[15–21]. Unfortunately, almost all the exist-

ing  methods  are  limited  in  qualitatively  verifying

properties in linear constraints (e.g., robustness), and

largely  ignoring  the  sequential  nature  of  inputs/out-

puts of RNNs. To the best of our knowledge, only [15]

and  [21]  support  qualitative  reasoning  about  RNNs

using temporal logic over input/output sequences and

only  [22]  supports  quantitative  RNN  verification

against  RNNs.  Though  temporal  properties  could  be

expressed in linear constraints when the lengths of in-

put/output  sequences  are  bounded,  it  is  more  intu-

itive  and  succinct  to  express  properties  in  temporal

logic and the verification approaches provide a gener-

ic  framework  for  reasoning  about  the  behaviors  of

neural networks[14].

LTLf [x]
[x]

N (φ{N}ψ)k
φ ψ

In  order  to  reason about  the  behaviors  of  RNNs,

we  in  this  paper  present  a  temporal  logic,  called

,  which  is  an  extension  of  LTLf (i.e.,  linear-

time  temporal  logic  on  finite  traces),  where  ad-

dresses the special symbol x corresponding to the des-

ignated vector in a vector sequence. This logic is able

to specify properties such as robustness,  reachability,

and  other  temporal  properties  over  input/output  se-

quences.  We formalize the verification problem of  an

RNN  as a Hoare-like triple, , where the

pre-condition  (resp. post-condition ) describes the

property of the input (resp. output) sequences, and k
is  the  length bound of  the  input  sequences.  We con-

sider  both  the  qualitative  and  quantitative  perspec-

tives  of  the  verification  problem,  where  the  former

concerns  whether  all  the  outputs  resulting  from  the

inputs fulfilling the pre-condition satisfy the post-con-

dition,  and  the  latter  is  to  compute  the  probability

(or,  ratio)  of  the  satisfaction  of  the  post-condition

conditioned by the pre-condition. Arguably, quantita-

tive  verification  is  far  more  useful[23],  since  it  could

provide  a  probabilistic  guarantee  of  the  behaviors  of

RNNs.

Why  do  we  concern  about  recurrent  networks?

First and foremost, such neural networks have impor-

tant applications in many fields, such as computer vi-

sion[24],  natural  language  processing[25],  and  speech

processing[3].  Second,  an  FNN is  a  special  case  of  an

RNN;  namely,  an  FNN can  be  regarded  as  an  RNN

without “looping”.  Last  but  not  least,  as  an  RNN

deals with data sequences, there exist important tem-

poral patterns in the input/output ends.

Model  checking  of  NNs  is  never  straightforward,

and the difficulty partially lies in the large quantity of

parameters and the complexity of the data processing

procedure during computation. Moreover, in addition

to an affine transformation, each layer also includes a

non-linear  activation  function,  which  enables  an  NN

to  fit  a  (continuous)  function  with  arbitrary  preci-

sion[26].

LTLf [x] φ

φ

From the algebra perspective, using a rectified lin-

ear  unit  (ReLU)  as  the  activation  function  for  NNs

may make them easier  to  deal  with.  In  this  case,  an

NN  essentially  establishes  a  piece-wise  linear  map-

ping.  Thus,  if  the  input  space  is  a  union  of  several

polyhedra (called a bundle), the output space is also a

bundle. Indeed, given an  formula , the col-

lection of all vector sequences initially satisfying  is

isomorphic to a bundle.

LTLf [x]
When performing model checking on RNN against

, there are several technical challenges.

1) First of all, a polyhedron can be uniquely deter-

mined via a set of vertices and extreme directions (a

polyhedron is said to be unbounded whenever the di-

rection set is not empty), and we need to compute a

series  of  intermediate  polyhedra,  which  is  called  for-

ward propagation. It can be found that the number of

vertices  increases  dramatically  during  the  forward

propagation. To alleviate this issue, we need to find a

“larger” (or, an abstract) polyhedron with fewer ver-

tices to tightly enclose it. The challenging part is that

the  abstracted  one  must  have  the  same  dimension,

the reason of which will be explained in Section 4.

0/0

2) For a polyhedron, we need to perform abstrac-

tion to relax the number-explosion of  vertices,  which

might lead to “infeasible counterexamples”. Thus, re-

finement is  required.  Meanwhile,  we need to perform

the quantitative computation. Here, we use the Monte

Carlo  approach,  namely,  doing  sampling  when  com-

puting the ratio, which induces the problem that if we

abstract the polyhedron by replacing it with one of a

higher dimension, it will result in a  dilemma, be-
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cause the probability of obtaining a sample within the

feasible area is 0.

3) To determine the feasibility of a “point” (corre-

sponding to a sequence) within the output space,  we

need to do the “backward propagation”, for which we

have  to  find  a  way  to  compute  the  preimage  of  the

transformation.

4)  Given  that  a  polyhedron  may  be  unbounded,

performing  abstraction  must  be  more  cautious.  We

must  ensure  that  the  volume  of  the  increased  part

must  be  an  infinitesimal  value  in  comparison  to  the

concrete one.

5) Lastly, it should be pointed out that we in gen-

eral  simultaneously  have  more  than  one  polyhedron

during the verification process.  These polyhedra may

have different dimensions. Though the polyhedra with

the  largest  dimension  may  dominate  the  final  result,

we cannot discard those with lower dimensions in the

intermediate  steps,  as  a  polyhedron's  dimension  may

be  lowered  after  propagation  whenever  the  transfor-

mation is degenerated.

In this paper, we show how to address the above

challenges  and  present  a  systematic  model  checking

framework. In addition, to the best of our knowledge,

this is the first work unifying qualitative and quanti-

tative verification of RNNs and we implement a pro-

totype,  called  Bidirectional  Propagation  &  Monte

Carlo  Based  Model  Checker  (BPMC2),  and  the  pre-

sented framework is experimentally evaluated with re-

spect to BPMC2.

LTLf [x]

The  remainder  of  this  paper  is  organized  as  fol-

lows. Section 2 introduces some basic notions and no-

tations  related  to  recurrent  neural  networks.  In Sec-

tion 3, we formally define the syntax and semantics of

,  and  the  goals  of  qualitative  and  quantita-

tive  model  checking.  We  elaborate  the  technical  de-

tails for verification in Section 4, and experimental re-

sults  are  provided  in Section 5.  In Section 6,  we  dis-

cuss some related work on RNN verification. Finally,

we conclude the paper in Section 7. 

2    Preliminaries
 

2.1    Vectors and Operations

a b c

c1 c2
b b1

In this paper, we use lowercase letters like , , ,

,  and  to  range  over  scalars,  use  bold  lowercase

letters such as , , and x to range over vectors, and

use bold uppercase letters to refer to matrices, such as

M M1 N b

M b[i] M [i] (i+ 1)

b (i+ 1) M

R>0

M KerM
{v | Mv = 0}

, ,  and .  For  each  vector  (resp.  matrix

),  we  denote  (resp. )  as  the -th

scalar  of  (resp.  the -th  row  of ).  We  de-

note the set of positive real numbers as . As usu-

al, we denote the kernel of  as , which is the

set .

b1, . . . , bn b

b =
∑n

i=1
cibi

ci ⩾ 0
∑n

i=1
ci = 1 b

b1, . . . , bn
span{b1, . . . , bn} {

∑n

i=1
aibi}

b1, . . . , bn

Given a set of vectors , we call  a non-

negative combination of them if ,  where

each . If in addition  holds, we call 

a  convex-combination  of .  Meanwhile,  we

denote  for the set , name-

ly, the linear space spanned by .

τ = b1, b2, . . . , bk τ ∈ Rn1, n2, ..., nk bi ∈ Rni

len(τ ) = k τ ∈ (Rn)k

ni = n

τ

bi τ

(bT
1 , b

T
2 , . . . , b

T
k)

T Jux(τ )

Vector sequences are the heavily used mathemati-

cal structures in this paper and we use Greek bold let-

ters  to  range  over  them.  For  a  vector  sequence

, we write  if ,

and let . Particularly, we write  if

each .  For  convenience,  we  sometimes  directly

view  as  a  common vector,  which  is  the  juxtaposi-

tion  of  all s.  Namely,  is  isomorphic  to

, denoted as .

M ∈ Rm×n RanM = {Mb |
b ∈ Rn} KerM = {b ∈ Rn | Mb = 0}

M

Given  a  matrix ,  let 

 and  let ,  which

are called the range and the kernel of , respective-

ly.

M

UDV U V

D

D =

(
D′ 0
0 0

)
D′ = diag(b1, . . . , bk)

bi > 0 UDV

M

V T

(
(D′)−1 0
0 0

)
UT M+

M

From the  standard  theory  of  linear  algebra,  each

real matrix (not necessarily square)  can be decom-

posed  as  where  and  are  unitary  matri-

ces,  and  is  a  quasi-diagonal  matrix,  i.e.,

,  where  and

each .  Here,  is  called the singular value

decomposition  (SVD)  of .  In  this  case,  we  denote

the  matrix  by , called  the

Moore-Penrose inverse of .

M ∈ Rm×n

U ∈ Rm×m V ∈ Rn×n

D′ ∈ Rk×k k ⩽ min{m,n}
KerM RanM

U = (u1, . . . , um) V T = (v1, . . . ,

vn) RanM = span{u1, . . . ,uk}
KerM = span{vk+1, . . . ,vn}

Supposing  and  its  SVD  is  given  as

above,  we  have  and ,  and  also

suppose that , where . Then,

both  and  can be succinctly represent-

ed as follows. Let  and 

,  and  then  we  have 

and .

An  important  application  of  the  Moore-Penrose

inverse  is  to  represent  the  preimage  space  of  linear

mappings.

Mx ∼ bTheorem 1. The solution space of  is not
empty① if and only if
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V = Ker(I −MM+) ∩ {c | c ∼ b} ̸= ∅,

{M+c+ d | c ∈ V ,
d ∈ KerM}
and in this case, the solution space is 

.
M+Proof. According to the construction of , one

can immediately examine that
 

MM+M = M and (MM+)T = MM+

M ∈ Rm×n U = {c ∈ Rm |
c ∼ b} d,d′ ∈ Rn

hold. Suppose that  and let 

, then for any  we have:
 

((I −MM+)d)T(Md′) = dT(I −MM+)Md′

= dT(M −M )d′ = 0,

(I −MM+)d ∈ (RanM )⊥

d ∈ Rn Md′ RanM
and this indicates that  for

any , because  ranges over .

Mx = c ∈ U
c ∈ RanM

For  each x having ,  we  have  that

. Nevertheless, we on the other hand have
 

c = MM+c+ (I −MM+)c,

c = MM+c (I −MM+)c = 0
(I −MM+)c ∈ (RanM )⊥

c ∈ Ker(I −MM+) ∩ U = V

hence  we  have  and ,

because .  In  other  words,

we have .

Mx = c = MM+c

In  this  case,  the  solution  space  w.r.t.

 is definitely
 

{M+c+ d | d ∈ KerM},

and this concludes the proof. □
Mx = bCorollary 1. The solution space of  is not

empty if and only if
 

(I −MM+)b = 0,

{M+b+ c |
c ∈ KerM}
and  in  this  case,  the  solution  space  is 

.
f: Rm → R

f: (Rn)m → Rn

Each mapping  can be lifted into its vec-

torized form . That is,
 

f(b1, . . . , bm) = (c1, . . . , cn)
T,

bj = (bj, 1, . . . , bj, n)
T ci = f(b1, i, . . . , bn, i)

f V
f(V) {f(v) | v ∈ V}

where  and .

For convenience, for a mapping  and a space , we

let  be the space .

In  this  paper,  we are  particularly  concerned with

the ReLU function, defined as
 

ReLU (x) =

{
x, x ⩾ 0,

0, x < 0.

n > 0 X ⊆ {1, 2, . . . , n}
ReLUX : Rn → Rn

ReLUX((b1, . . . , bn)
T) = (c1, . . . , cn)

T

Meanwhile, let , for each , and

then  we  have  the  function ,  de-

fined as , where

 

ci =

{
bi, i ̸∈ X,
bi + abs(bi)

2
, i ∈ X.

ReLU

ReLU {1, ..., n} Rn

ReLU {i} ReLU i

Hence, the vectorized lifting of  coincides with

 w.r.t. the domain . In what follows,

we directly write  as .

Proji
b = (b1, . . . , bn)

T Proji(d) = (b1, . . . ,

bi−1, 0, bi, . . . , bn)
T ReLU i(b)

Proji(b) bi ⩽ 0

Meanwhile, another operator utilized in the paper

is  the  projection  operator .  For  a  vector

,  we  define  that 

.  Then,  coincides  with

 in the case of . 

2.2    Polyhedra

Ax ⩽ b
A

b

In a view of algebra, a polyhedron is the solution

space  of  a  (finite)  set  of  linear  inequalities 

where  is a coefficient matrix, x is a vector variable,

and  is  a  constant  vector.  We  call  such  a  kind  of

representation of polyhedra the H-representation.

X
Indeed,  from the  geometry  perspective,  a  polyhe-

dron  can also be characterized by
 

X =

{
k∑
i=1

aivi +
m∑
j=1

bjdj

∣∣∣ ai, bj ⩾ 0,
∑
i

ai = 1

}
,

vi dj vi
dj

where s  and s  are  given  vectors,  and  each  is

called a vertex and  is a recession direction (or just

direction). This is called the V-representation.

X
v

X

For  a  polyhedron  in  the  V-representation,  a

vertex  is  said  to  be  extreme  if  it  is  not  a  convex

combination  of  any  other  two  elements  belonging  to

. Likewise, a direction is extreme if it cannot be the

convex combination of any other directions.

According  to  the  Weyl-Minkowski  theorem  (for

example,  see  [27]),  one  can  convert  interchangeably

one representation to the other. Nevertheless, no con-

verting  approach  that  can  be  adopted  in  determinis-

tic  polynomial  time  is  known  so  far  for  either  direc-

tion.

X
dimX = n

For  a  polyhedron ,  we  say  its  dimension  is n,

denoted by , if:

n+ 1 v0,v1, . . . ,vn
{vi − v0 | i = 1, . . . , n}

1)  there  exist  points  making

the set  linearly independent;

{ui − u0 | 1 ⩽ i ⩽ m}
m > n u0,u1, . . . ,um ∈ X

2)  every  set  is  linearly  de-

pendent provided that  and ;

X =
∪n

i=1
Xi Xiin addition, for a space  where each  is

a polyhedron, we define
 

dimX = max
1⩽i⩽n

dimXi.

In what follows, we call such a union of finitely many

polyhedra a polyhedron bundle (or, simply bundle).

Zhen Liang et al.: Qualitative and Quantitative Model Checking Against RNNs 1295



For a bundle, the subspace consisting of all  poly-

hedra with the highest dimension is called the majori-

ty part of it. 

2.3    Recurrent Neural Networks

An  RNN consists  of  one  input  layer,  one  output

layer, and a sequence of hidden layers. The number of

neurons  in  each layer  is  called  its  width.  In  contrast

to FNNs, neurons of a hidden layer of RNNs contain

memory  units,  which  retain  their  previous  states

when computing the current state,  together with the

outputs  from  the  previous  layer.  The  operation  be-

tween two adjacent layers in an RNN is the composi-

tion of an affine transformation and a nonlinear acti-

vation, such as ReLU, sigmoid, and so on. An exam-

ple RNN is shown in Fig.1, and besides the input (in

blue)  and  output  layers  (in  green),  it  also  has  three

hidden layers (in red).
 
 

Fig.1.  Example RNN.
 

W U b

W

U

b

L

N

To model an RNN, we associate each pair of two

adjacent layers with three parameters , , and ,

where  (black  arrows  in Fig.1)  is  the  connection

weight matrix among neurons of two adjacent layers,

 (blue  arrows  in Fig.1)  is  the  memory  weight  ma-

trix  among  neurons  in  the  same  layer,  and  is  the

bias vector of neurons in each layer. Therefore, an -

layer RNN  can be represented by a sequence of tu-

ples
 

(W1,U1, b1), (W2,U2, b2), . . . , (WL−1,UL−1, bL−1),

1 ⩽ ℓ < L Wℓ

ℓ (ℓ+ 1)

Uℓ bℓ
(ℓ+ 1)

where  for  every ,  is  the  weight  matrix

between  the -th  layer  and  the -th  layer,  and

 and  are the memory weight matrix and the bias

vector of the -th layer, respectively. The input

layer  generally  does  not  include  the  memory  mecha-

nism or bias vector.

NSuch an RNN  corresponds to a function
 

fN = fL−1 ◦ · · · ◦ f2 ◦ f1,

fℓ
k ∈ N+ τ

τ0, τ1, . . . , τk

where each  is determined in the following way. For

any  and sequence ,  we may obtain  a  series

of vector sequences  defined as

τ0 = τ1) ;

τi−1 = c′
1, . . . , c

′
i−1, ci, ci+1, . . . , ck

τi = c′
1, . . . , c

′
i−1, c

′
i, ci+1, . . . , ck

2)  suppose ,

then , where
 

c′
i = ReLU (Wℓ · ci +Uℓ · c′

i−1 + bℓ),

c0 = ci
c′
i

ℓ

i

and we particularly let  0 —  intuitively,   and

 correspond to the input and output of the -th lay-

er at time step , respectively;

fℓ(τ ) = τk3) then we let .

When  all  the  memory  weight  matrices  are  zero

matrices, RNNs degenerate into FNNs.

Therefore, we can unroll the computation process

of RNNs in two directions. One direction is the com-

putation from the input layer to the output layer ac-

cording to the network structure, named spatial direc-

tion,  and the  other  direction unrolls  the  network ac-

cording to time steps, called temporal direction. Fig.2

illustrates  the  unrolling  of  the  RNN shown  in Fig.1,

where  the  spatial  unrolling  is  presented  from  left  to

right,  while  the  temporal  unrolling  is  presented from

top to bottom. All the color marks in Fig.2 mean the

same as those in Fig.1.
 
 

...

Time Step=1

Time Step=2

Time Step=3

Time Step=

Fig.2.  Unrolling illustrations of the RNN in Fig.1.
 

As  a  matter  of  fact,  RNNs  become  FNN-similar

networks via unrolling, and however, there lie signifi-
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cant  differences  between  the  unrolled  RNNs  and

FNNs.  For  one  thing,  in  view  of  the  network  struc-

ture,  we  extend  the “loops” from  the  previous  time

step to the next one. There still exist the weights con-

necting  the  neurons  belonging  to  the  same  network

layer in the unrolled RNNs, as shown in Fig.2. There-

fore,  the  unrolled  RNNs  just  look  similar  to  FNNs

and the inherent “loops” have not been broken essen-

tially. For another thing, from the perspective of the

computing  process,  due  to  the  existence  of “loops”,
the  computing  process  in  the  unrolled  RNNs  works

the same as that in RNNs, i.e., the inputs of the next

time  step  depend  on  the  previous  outputs.  Thus,  it

needs  iterative  computation  in  the  information  flow

between  adjacent  layers,  which  is  different  from  the

direct one-step propagation in FNNs and is  illustrat-

ed in Fig.3.

Therefore,  these  differences  render  the  FNN-spe-

cific verification methods difficult and inapplicable for

RNN verification. However, the unrolling process pro-

vides us with a global  idea of  considering the input/

output information, or the hidden states. In Section 3,

we define the model checking problem on RNNs. 

3    RNN Model Checking: Problem Definition
 

3.1    Specification Language

To perform model  checking,  we  use  an  extension

LTLf [x]

τ = b0, b1, . . . , bk

bi Xx
bi+1

 of  LTLf as  the  specification  language,  be-

cause  both  the  inputs  and  outputs  of  an  RNN  are
vector sequences with finite lengths. Meanwhile, since
what  we  are  really  concerned  about  are  the  numeric
relations  among the  data  generated  during  computa-
tion,  we  employ  terms  to  refine  the  atomic  proposi-
tions  in  the  base  logic.  To  this  end,  we  use  a  fixed
symbol x to  designate  the  present  input/output  vec-
tor.  For  example,  let  be  the  input
sequence,  then  at  the i-th  step  (or  moment), x just
corresponds  to ,  and  we  further  let  stand  for

 for  convenience.  Formally,  we  use  the  following
abstract grammar to define terms in such logic:
 

t ::= x | c | Mt | t+ t | Xt,

c M

t

τ = b0, b1, . . . , bn−1 i

[[t]]
τ , i

where  and  range  over  (constant)  real  vectors

and real  matrices  having proper  shapes,  respectively.

In addition,  the interpretation of  a  term  w.r.t.  the

sequence  and a position  is given

by . Inductively:

[[x]]
τ , i

=

{
bi, if 0 ⩽ i < n,
0, otherwise;

1) 

[[c]]
τ , i

c2)  for a constant vector ;

[[Mt]]
τ , i

= M [[t]]
τ , i

3) ;

[[t1 + t2]]τ , i = [[t1]]τ , i + [[t2]]τ , i4) ;

[[Xt]]
τ , i

= [[t]]
τ , i+1

5) .

LTLf [x]Subsequently,  formulas  of  such  exten-

sion are defined as:
 

     

× × × × × ×











Fig.3.  Overview of the polyhedron propagation.
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φ ::= ⊤ | t∼t | ¬φ | φ ∨ φ | Xφ | φUφ,

τ i

and semantics of such formulas are also given w.r.t. a

vector sequence  and a position , namely that:

τ , i |= ⊤1)  trivially holds;

τ , i |= t1∼t2 [[t1]]τ , i∼ [[t2]]τ , i2)  if and only if ;

τ , i |= ¬φ τ , i ̸|= φ3)  if and only if ;

τ , i |= φ1 ∨ φ2 τ , i |= φ1 τ , i |=
φ2

4)  if and only if  or 

;

τ , i |= Xφ τ , i+ 1 |= φ5)  if and only if ;

τ , i |= φ1Uφ2 k <

len(τ ) τ , k |= φ2 τ , j |= φ1 j

i ⩽ j < k

6)  if  and only if  there  is  some 

 such  that  and  for  each 

with .

τ |= φ

i = 0

In addition, we directly write  in the case of

.

∧
→

We define derived Boolean connectives such as ,

 as  usual,  and  also  define  the  following  derived

temporal connectives for convenience:

Fφ def
= ⊤Uφ;1) 

Gφ def
= ¬F¬φ;2) 

φ1Rφ2
def
= ¬(¬φ1U¬φ2).3) 

[[φ]]
n, k

{τ ∈ (Rn)k | τ |= φ}
For  any  given n and k,  let  be  the  set

.

X
X

Remind that in this  logic,  the operator  acts  as

both  a  function  and  a  connective.  Indeed,  is  com-

municative  and  distributive  with  other  operators,

namely:

[[XMt]]
τ , i

= [[MXt]]
τ, i

;1) 

[[X(t1 + t2)]]τ , i = [[X(t1) + X(t2)]]τ , i ;2) 

[[X(t1∼t2)]]n, k = [[Xt1∼Xt2]]n, k ;3) 

[[X¬φ]]
n, k

= [[¬Xφ]]
n, k

;4) 

[[X(φ1 ∨ φ2)]]n, k = [[Xφ1 ∨ Xφ2]]n, k ;5) 

[[X(φ1Uφ2)]]n, k = [[(Xφ1)U(Xφ2)]]n, k .6) 

[[φ]]
n, k

Rn×kTheorem 2.  composes a bundle in .
T

φ

y ∈ Rn×k

i

Proof. We  define  a  translator  which  elimi-

nates  all  temporal  connectives  in  and equivalently

transform it in a Boolean combination of inequalities

w.r.t. some variable . Inductively, for a posi-

tion :

T (c, i) = c1) ;

T (x, i) =


[
0in, n

... In
... 0(k−1)n, n

]
y, if i < k,

0n×1, if i ⩾ k,

2) 

In n n

0m, n m n

where  is  the  identity  matrix  with  size  by ,

whereas  is the zero matrix with size  by ;

T (Mt, i) = MT (t, i)3) ;

T (t1 + t2, i) = T (t1, i) + T (t2, i)4) ;

T (Xt, i) = T (t, i+ 1);5) 

T (t1∼t2, i) = T (t1, i)∼T (t2, i)6) ;

T (¬ψ, i) = ¬T (ψ, i)7) ;

T (φ1 ∨ φ2, i) = T (φ1, i) ∨ T (φ2, i)8) ;

T (Xψ, i) = T (ψ, i+ 1)9) ;

T (φ1Uφ2, i) =
∨k−1

j=i

(
T (φ2, j) ∧

∧j−1

t=i
T (φ1, t)

)
10) .

T (φ, 0)

Rn×k

τ , i |= φ

Jux(τ ) T (φ, i)

Then, we just let  be the resulting description,

which  corresponds  to  a  bundle  within .  Indeed,

one can show case by case that  if and only if

 is within the solution space of . □ 

3.2    Qualitative and Quantitative Model

Checking

N n

m fN
N LTLf [x] φ

ψ k ∈ N

Given an RNN  with the input width  and the

output  width ,  let  be  the  corresponding  func-

tion determined by ; given two  formulas 

and , a parameter  of sequence length, then:

fN ([[φ]]n, k)) ⊆ [[ψ]]
m, k

1)  the  goal  of  qualitative  model  checking  is  to

check whether  holds;

2)  the  task  of  quantitative  model  checking  is  to

compute the ratio
 

vol(fN ([[φ]]n, k) ∩ [[ψ]]
m, k

)

vol(fN ([[φ]]n, k))
,

vol(X ) Xwhere  is the volume of the bundle , which is

explained below.

(φ{N}ψ)kWe use  to  denote  the  model  checking

result. For the qualitative case, it is a Boolean value,

whereas for the quantitative case, it is some probability.

Rn n+ 1

S
V = {v0,v1, . . . ,vn}

vi = (vi, 1, vi, 2, . . . , vi, n)
T vol(S) =

(1/n!)abs(detV ) V

To define the volume of  a bundle,  we begin with

the  bounded  case.  According  to  the  definition,  a

bounded bundle can be partitioned into finitely many

disjoint bounded polyhedra. Within the Hilbert space

, a polyhedron that has exactly  extreme ver-

tices is called a simplex. Suppose the simplex  is de-

termined via a set of vertices  wh-

ere . Then, we have 
[28], where det  is

 

detV = det

v1 − v0

v2 − v0

· · ·
vn − v0

 =

∣∣∣∣∣∣∣
v1, 1 − v0, 1 . . . v1, n − v0, n
v2, 1 − v0, 1 . . . v2, n − v0, n

...
...

...
vn, 1 − v0, 1 . . . vn, n − v0, n

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1 v0, 1 . . . v0, n
1 v1, 1 . . . v1, n
...

...
. . .

...
1 vn, 1 . . . vn, n

∣∣∣∣∣∣∣ .
XSubsequently,  for  a  polyhedron  consisting  of
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n+ 1

X
V̂ = {v0,v1, . . . ,vt} t > n+ 1

v0 n

n

n

V̂

V ′ = {vi1 , . . . ,vin} ⊂ V̂

V ′

more  than  extreme  vertices,  we  need  to  parti-

tion it into a (finite) set of simplexes. Suppose a poly-

hedron  is  built  up  upon  an  extreme  vertex  set

 where .  First  of  all,  we

fix the vertex  and choose other  vertices to com-

pose a simplex.  The issue is  that we must guarantee

that “all  the  remaining  vertices  are  located  on  the

same side of the hyperplane determined by the  cho-

sen  vertices”.  In  this  case,  we  say  that  these  cho-

sen vertices constitute a promising subset of .  For-

mally, suppose that , then the

function of the hyperplane containing  is
 

PV ′(x) =

∣∣∣∣∣∣∣
1 x1 x2 . . . xn
1 vi1, 1 vi1, 2 . . . vi1, n
...

...
...

. . .
...

1 vin, 1 vin, 2 . . . vin, n

∣∣∣∣∣∣∣ = 0.

V ′Consequently,  is promising iff
 

PV ′(v0)× PV ′(v) ⩾ 0,

v ∈ V̂ \ V ′ prom(V )

V

for  each .  With  denoting  all

promising subsets of , we then have
 

vol(X ) =
∑

V ′∈prom(V )

abs(PV ′(v0))

n!
. (1)

X

X

Lastly, for an unbounded polyhedron , we need

to  temporarily  compute  the  volume  of  the  intersec-

tion of  and the polyhedron
 

−M ⩽ xi ⩽M, i = 1, 2, . . . , n,

XM

M

M

(the  intersection  is  denoted  by )  using  the  afore-

mentioned approach.  Here,  we need to treat  as  a

symbol,  rather  than  a  concrete  value.  As  a  result,

what we get is a polynomial about . From (1), we

obtain two polynomials:
 

hX (M) =
n∑
i=0

aiM
i, hY(M) =

m∑
j=0

bjM
j,

XM YMfor  and , respectively. Then, by definition, we

have
 

vol(X )

vol(Y)
= lim

M→∞

n∑
i=0

aiM
i

m∑
j=0

bjM
j

=


0, n < m,
an
bm
, n = m,

∞, n > m.

M

Since the technique computing the volume of un-

bounded bundles  requires  viewing parameter  as  a

symbol, it is called the symbolic approach. 

4    Verification Framework

We  put  the  emphasis  on  the  quantitative  model

checking algorithm. The approach is mainly based on

the so-called “polyhedron forward propagation”.  Giv-

en an RNN
 

N =(W1,U1, b1), (W2,U2, b2), . . . , (WL−1,UL−1, bL−1),

n m

φ ψ k

X0,X1, . . . ,

XL−1 X0 = [[φ]]
n, k

XL−1 = fN (X0)

(with  the  input/output  width  and ),  pre-condi-

tion , post-condition , and length bound , ideally,

the  process  computes  a  series  of  bundles 

,  where  and .  To ac-

complish this, we also need to produce a series of in-

termediate bundles
 

Xℓ, 0,Xℓ, 1, . . . ,Xℓ, k,

Xℓ+1 Xℓ Xℓ, 0 = Xℓto obtain  from , where  and
 

Xℓ, i+1 = ReLUXi
(Aℓ, i · Xℓ, i + dℓ, i), (2)

Xℓ+1 Xℓ, kand  is just . In (2), components are given as

below.

Aℓ, i =

 Inℓ+1×(i−1)

Inℓ+1

Uℓ Wℓ

Inℓ×(k−i−1)

1) 

i ⩾ 1for each ; and particularly,
 

Aℓ, 0 =

(
Wℓ

Inℓ×(k−1)

)
.

nℓ N ℓHere,  is the width of 's -th layer.

dℓ, i = (0T

nℓ+1×i, b
T
ℓ ,0

T

nℓ×(k−i−1))
T

m

m

2) ,  here 0  is  the

zero vector with length .

Xi = {i · nℓ+1 + j | 1 ⩽ j ⩽ nℓ+1}3) The index set .

W U I

n m s

Fig.3 illustrates  the  above  polyhedron  propaga-

tion figuratively, where the arrows in black, blue, and

blue represent the matrices , , and , respective-

ly.  A  block  stands  for  the  whole  network  layer  in

Fig.1 in the same color and only the first hidden lay-

er is displayed here. Without loss of generality, we as-

sume  the  dimensions  of  the  input,  output,  and  the

first  hidden  layer  to  be , ,  and ,  respectively,

meeting the formalization need.

X v d v > 0

d ⩾ 0

The above process is  rigorous,  and unfortunately,

we  will  encounter  the “vertex  number  explosion”
problem.  Let  us  see  how it  happens.  Just  consider  a

polyhedron  with  vertices and  directions (

and ), and since the number of vertices and di-

rections  will  not  increase  after  an  affine  transforma-
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tion,  we  only  need  to  focus  on  the  ReLU  operation.

Since we always have
 

ReLUX = ReLU i1 ◦ReLU i2 ◦ · · · ◦ReLU ir ,

X = {i1, i2, . . . , ir}

ReLU i

provided  that ,  we  thus  just  need

to  study  the  ReLU  operation  w.r.t.  a  single  coordi-

nate, i.e., . It can be observed that ReLU does

not preserve convexity, which means that one polyhe-

dron might be transformed into a bundle②.

i X d1
d2 O(d1 × d2)

ReLU i(X )

It is notable that for a polyhedron, the number of

extreme  directions  is  bounded  by  its  dimension,  and

the  number  does  not  exceed  the  maximum  network

width  multiplying  the  length  of  input  sequences.  In

contrast, suppose the numbers of vertices having non-

negative  and  negative -th  coordinates  in  are 

and ,  respectively;  then  we  will  have 

vertices in the bundle  in total.

X
X ′

For  this  reason,  we  need  to  do  some  abstraction

(more accurately, approximation) of the intermediate

bundles to reduce the vertex number. In addition, for

every  polyhedron  member  in  the  bundle,  its  ab-

straction  must fulfill the following requirements.

X ′ ⊇ X1) ;

dimX ′ = dimX2) ;

X ′ \ X3)  is bounded.

To achieve this, we need two auxiliary algorithms.

ReLU i(X )

X
1) The first is used to compute  from a

polyhedron .

2)  The  second  is  related  to  the  polyhedron  ab-

straction, which preserves the dimension, but reduces

the number of vertices.

ReLU i(X ) X

X
V R

Computing  from  Polyhedron . The

point  of  this  algorithm  is  to  avoid  the  inter-conver-

sion between H- and V-representations. An algorithm

that  can  be  done  in  polynomial  time  is  given  below.

Suppose that  is characterized by the extreme ver-

tex set  and the extreme direction set . Let
 

ei = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0)T,

Hi {x | xTei = 0}
i

0 ReLU i(X )

Hi

X0 Hi

X1

and  let  be  the  coordinate  plane 

(i.e.,  the  set  consisting  of  points  whose -th  coordi-

nate is ). One should be aware that  may

contain at most two polyhedra — the one “above” 
(denoted by ) and the one “within”  (denoted by

).

1)  First  of  all,  the  vertex  sets  of  the  resultant

polyhedra can be determined as follows. Let
 

V ′ = {v ∈ Hi | ∃v1,v2 ∈ V, ∃1 ⩾ c ⩾ 0,

s.t. v = cv1 + (1− c)v2}
∪ {v ∈ Hi | ∃v′ ∈ V, ∃d ∈ R, ∃c ⩾ 0

s.t. v = v′ + cd},

X0 {v ∈ V | vTei ⩾ 0}
∪V ′ X1 {ReLU i(v) | v ∈ V,vTei ⩽ 0}
∪V ′

and  then  the  vertex  set  of  is 

, and that of  is 

.

X0

X1 d1 d2 dT
1 · ei < 0

dT
2 · ei > 0

2)  Second,  we  establish  the  direction  sets  for 

and . For two directions  and  with 

and , we let
 

comb(d1,d2) = (dT
2 · ei)dT

1 − (dT
1 · ei)dT

2 ,

R′ = {comb(d1,d2) | d1,d2 ∈ R,dT
1 · ei < 0,

and dT
2 · ei > 0} X0

R′ ∪ {d ∈ R | dT · ei ⩾ 0} X1

R′ ∪ {ReLU (d) | d ∈ R,dT · ei ⩽ 0}

and  let 

,  and  then  the  direction  set  of  is

 and the  direction  set  of 

is .

X0 X1 ∅Remind that  (and/or ) might be  if its ver-

tex set is empty. We illustrate the algorithm upon 2-

dimensional  example  polyhedra  in Fig.4 and Fig.5,

which are with respect to the bounded and unbound-

ed  cases,  respectively. Fig.4 shows  the  detailed  algo-

rithm  process  on  each  dimension,  while Fig.5 only

shows the processing results on the dimensions.

{X0,X1}
ReLUi(X )

Theorem  3.  is  precisely  the  bundle  of
.

X = X⩾0 ∪ X⩽0

X⩾0 X⩽0 X
xi ⩾ 0 xi ⩽ 0

ReLU i(X ) = ReLU i(X⩾0) ∪ReLU i(X⩽0)

X⩾0 X⩽0 ReLU i

ReLU i(X⩾0) =X⩾0

ReLU i(X⩽0) = Proji(X⩽0)

Proof. First,  we have that ,  where

 and  are the intersections of  with the poly-

hedra determined by  and ,  respectively.

Thus, . For

both  and , the operation  is linear. In

addition,  we  definitely  have  and

.

X⩾0The vertice set of  can be categorized into two

parts.

v X
eT
i · v ⩾ 0

1) The first part contains the vertices  of  such

that ;

X xi = 0

2)  the  other  part  is  constituted  with  vertices  of

the intersection of  and the plane .

d X⩾0Meanwhile, an extreme direction  of  must be ei-

ther of the following two cases.

X
eT
i · d ⩾ 0

1)  It  is  an  (extreme)  direction  of ,  and

;

xi = 0

2)  or  it  is  located  in  the  newly  generated  face

.
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②Actually, from the perspective of topology[29], such a bundle must be a “complex” — it consists of a set of simplexes, and the
common part of each adjacent two is a simplex with lower dimension.



X⩾0

X0

For both cases, one can check that  coincides

with  —  though during  the  construction,  we  may

introduce some non-extreme vertices and directions.

X1

ReLU i(X⩽0) ReLU i(X ) = {X0,X1}
Likewise,  we  can  also  see  that  is  precisely

.  We  thus  have .

□
Rn

X ⊆ Rn dimX = m

m < n R

Rm

Polyhedron  Abstraction. Indeed,  within ,  for  a

given  polyhedron  with  and

,  we  can  use  a  rigid  linear  deformation  to

transform it into the space  in the following way.

m+ 1 p0,p1, . . . ,

pm ∈ X {pi − p0}1⩽i⩽m
vi = pi − p0 {ui}1⩽i⩽m

{vi}1⩽i⩽m

Suppose  that  we  have  points 

 and  the  set  is  linearly  inde-

pendent,  and  then  let ,  let  be

the orthogonal basis obtained from  via ap-

plying Gram-Schmdit orthogonalization. Then just let
 

R : v 7→ (c1, . . . , cm)
T,

ci = (v − p0)
Tuiwhere .  The  following  claims  are

straightforward to check.

RTheorem  4. For  the  linear  transformation  we
have:

X R(X )1) it is a bijection from  to ;
R vol(R(X )) = vol(X )2)  is rigid, namely, we have .

R

R−1(t) = Ut+ p0 U = (u1, . . . ,um)

In  addition,  the  inversion  of  is  given  by

, where .

m

X V

R Rm

The abstraction algorithm is an extension of Yu's

work  presented  in  [30]  (Algorithm  1  in  [30],  here-

inafter  referring  it  as  AoYu),  which  is  an  iterative

truncation procedure, starting from an initial over-ap-

proximated  polyhedron.  During  each  iteration,  it  se-

lects  a  cutting  hyperplane  (c.f.  lines  2–4,  11–13  of

AoYu) and computes the new polyhedron after trun-

cation (c.f.  lines  7–10 of  AoYu).  Given an -dimen-

sional  polyhedron ,  with  the  extreme vertex  set 

and direction set , we first transform it into  us-

ing  the  aforementioned  rigid  deformation,  and  then

the followings are performed.

m ei =1)  To  initialize  the -simplex,  still  let 
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Fig.4.  Process of the ReLU algorithm on a 2D example (bounded). (a) Original polyhedron. (b) Proceeding w.r.t. the 1st coordinate.
(c)–(d) Intermediate results. (e)–(f) Proceeding w.r.t. the 2nd coordinate. (g)–(i) Polyhedron bundle of the final results.
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(0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
m−i−1

)
vµ = (minv∈V eT

1 · v, · · · ,
minv∈V eT

m · v)T X ′ =
∩m+1

i=1
Hi

,  let 

, and then let  where
 

Hi =

{
{x | (x− vµ)

Tei ⩽ 0}, 0 ⩽ i ⩽ m,
{x | (x− vµ)

Ts ⩽ c}, i = m+ 1,

s, cand  can be obtained by solving the optimization

problem:
 

s, c = argmax
t=(t1, ··· , tm), b

#{p ∈ V | (p− vµ)
Tt = b}

s.t.


(v − vµ)

Tt ⩽ b, v ∈ V,

ti ⩾ 0, i = 1, . . . ,m,
b ⩾ 0.

m2)  We  update  the  vertices  of  the  initial -sim-

plex with
 

V ′ = cvx({vi + adj | vi ∈ V,dj ∈ R, a ∈ R} ∩ X ′),

cvx(S)
S

to deal with unbounded ones. The  function re-

turns the vertex set of the convex hull of  with the

QuickHull algorithm[31].

3) Each iteration will increase the number of ver-

tices.  Finally,  we  replace  the  loop  condition  with  a

bound  of  the  (designated)  vertex  number  or  the  ap-

proximation precision.

The  above  abstraction  algorithm  guarantees  Re-

X ′

R = (v,d)

v′ = v + b · d ∈ X b ∈ R
d X

X ∩R ̸= ∅ R \ X

X ′ \ X
X ′ \ X

quirements  1–3  mentioned  in Section 4.  Requirement

1 is  obvious  and requirement 2  is  guaranteed by the

rigid transformation. To see why requirement 3 holds,

we  need  to  observe  the  following  fact:  let  be  the

abstracted  polyhedron  and  then  for  each  ray
③,  according  to  the  construction,  there

must  exist  some  for  some .

Since  is also a recession direction of , we can de-

clare that  — more accurately,  is a

bounded  line  (a.k.a.,  a  segment).  It  implies  that

 is  bounded  —  otherwise,  there  must  exist

some ray in , which is unbounded.

N

f ♯N

Notably,  what  we  have  yielded  is  a  polynomial

time  algorithm. Fig.6 demonstrates  the  different

stages of the algorithm upon a 2D unbounded polyhe-

dron.  Therefore,  the  propagation  upon  with  ab-

straction also determines a mapping between bundles.

We denote the mapping by  in what follows.

vol(X )/vol(Y) = 0

dimX <dimY

A Speculative Optimization Approach. Recall that

a bundle might consist of polyhedra with different di-

mensions,  and  we  have  that  from

Measure Theory if . Also, it can be seen

that  the  dimension  of  a  bundle  cannot  increase  dur-

ing the propagation — it can sometimes decrease if it

is applied to a degenerated (or, singular) linear trans-
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Fig.5.  Process of the ReLU algorithm on a 2D example (unbounded). (a) Original polyhedron. (b)–(c) Results of proceeding w.r.t.
the 1st coordinate. (d)–(e) Results of proceeding w.r.t. the 2nd coordinate (i.e., final results).
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(v,d) X ′ v ∈ X ′ d

{v + a · d | a ⩾ 0}
 

③Here, we use a tuple  to denote a ray within , which means  and  is a recession direction. It corresponds to the
set .



d

formation, or is applied to a ReLU operation. For this

reason,  we  can  tentatively “discard” some  polyhedra

whose dimensions are lower than some threshold . If

we find that

 

dim(f ♯, dN ([[φ]]
n, k

) ∩ [[ψ]]
m, k

) ⩾ d

f ♯, dN

f ♯N
d

′

d
′

d

holds, we can be confident that such an optimization

strategy is promising, where  is the adaptation of

 with such discarding. Otherwise, we need to set a

smaller  threshold ,  and  a  compensatory  computa-

tion  for  some  discarded  parts  is  required,  which

means  an  economical  computation  only  involving

the  polyhedra  whose  dimensions  fall  in  between 

and .

f ♯, dN f ♯N

Note that such a strategy only works for quantita-

tive model checking. Also, we in what follows do not

explicitly distinguish  and .

Because  we  have  introduced  abstraction  during

the  propagation,  to  pursue  the  accuracy,  we  need  to

do the refinement.  Note that  this  is  required only in

the following situations.

f ♯N ([[φ]])n, k ̸⊆ [[ψ]]
m, k

1)  For  doing  qualitative  model  checking,  when

 holds.

f ♯N ([[φ]])n, k

dim(f ♯N ([[φ]])n, k) = dim(f ♯N ([[φ]])n, k ∩ [[ψ]]
m, k

)

2)  For  the  quantitative  case,  once  we  find  that

the  majority  part  of  is  bounded  and

 holds.

X = f ♯N ([[φ]])n, k Y = X ∩ [[ψ]]
m, k

Indeed,  let  and ,

other  cases  for  quantitative  model  checking  can  be

handled as follows.

dimY < dimX dimY = dimX
Y

X (φ {N} ψ)k = 0

1) For the case , or 

and the majority of part of  is bounded but not the

case of , then we surely have .

dimX = dimY
X Y

(φ {N} ψ)k

2)  If  and  both  the  majority  of

parts  of  and  are  unbounded,  then  the  value

 can be computed using the symbolic  ap-

proach introduced in Section 3.

Key  techniques  for  doing  refinement  are  the

Monte Carlo sampling and the backward propagation.

Let us elaborate them in the followings.

X f−1
N (X )

Backward  Propagation. Just  recall  the  construc-

tion of  the rigorous propagation,  for any given space

,  we may compute  in  a  backward manner.

This is simply based on the following trivial facts.

g : v 7→ v + b b

g−1(v) = v − b

g−1(V) = {v − b | v ∈ V}

1) First,  for a mapping ,  where  is

a constant vector, we have , and hence

.

ReLU−1
i ({v})2) Then  is defined as:
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Fig.6.  Illustrations for the vertex reduction algorithm of an unbounded polyhedron. The algorithm starts from the input polyhedron
(a), the black arrow indicates the extreme direction), and constructs the initial simplex (b) in the first quadrant. Then preprocess-
ing is done to ensure the infinitesimal requirement because of the boundlessness (c), (d). Lastly, the polyhedron is refined with the
truncation iteration as AoYu (e). (a) Input polyhedron. (b) Initialization. (c) Preprocessing. (d) Cutting infinity. (e) Refinement.
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  {v}, vi > 0,
∅, vi < 0,
{(v1, . . . , vi−1, u, vi+1, . . . , vt)

T | u ⩽ 0}, vi = 0,

v = (v1, . . . , vi−1, vi, vi+1, . . . , vt)
T.where 

ReLU−1
X =ReLU−1

ir
◦ · · · ◦ReLU−1

i2
◦ReLU−1

i1

X = {i1, i2, . . . , ir}
3) ,

if .

f−1
N (X )

∅

p f−1
N ({p}) ∩ [[φ]]

n, k
̸= ∅

Thus, together with Theorem 1, we can obtain the

preimage  in  a  step-wise  manner.  Practically,

more  than  one  preimage  would  be  generated  during

this process, which may be further involved in the fol-

lowing  backward  propagation.  To  mitigate  this  case,

we  retain  a  point  set  (with  a  limitation  of  the  total

number)  sampling  from  the  set  regions  during  the

propagation procedure. If the point set becomes  af-

ter one backward step, the process is terminated ear-

ly (called the early stop mechanism). In what follows,

we say that  is feasible if .

Refinement  for  Qualitative  Model  Checking. For

qualitative model checking, we need to decide if
 

f−1
N

(
f ♯N ([[φ]]n, k) \ [[ψ]]m, k

)
∩ [[φ]]

n, k
= ∅

holds.  Instead  of  proceeding  in  a  monolithic  fashion,

we  can  partition  the  postimage  into  several  parts

(e.g.,  a  simplex),  and  each  time  just  compute  the

preimage of one simplex. The verification can be ter-

minated immediately if a non-empty preimage of any

part is detected.

Refinement  for  Quantitative  Model  Checking. To

evaluate how often a given property holds, we adopt a

Monte Carlo sampling based method for quantitative

ϵ

p̂

±ϵ 1− δ

p

model checking, which is widely utilized in the field of

statistical model checking[32], ranging from safety veri-

fication[33],  and  risk  analysis[34],  to  resilience  assess-

ment[35].  More  precisely,  for  an  error  specified  by

users, the estimate  does not lie outside the ground

truth  with  a  confidence  probability .  Sup-

pose  that  a  system has  true  probability  of  satisfy-

ing the given property, and then according to [32],
 

Prob(|p̂− p| ⩾ ϵ) ⩽ δ, if N ⩾ ⌈(ln 2− ln δ)/(2ϵ2)⌉,

δ = 2e−2Nϵ2 ϵ

where N is  the  sample  number  and  the  required

bound  of N is  termed  the  Chernoff  bound[36].  Con-

versely, a given sample number N guarantees a confi-

dent probability  with respect to error .

B
f ♯([[φ]]

n, k
)

B

nφ nψ
B {p}

Let  be a hyper-cube subsuming the majority of

part  of  but  with  the  same  dimension  (we

can find such  with the approach introduced in the

abstraction algorithm). We initialize two integer vari-

ables  and  with  0,  and  we  uniformly  sample

within the region . For each sample , we do the

followings:

p1)  decide  the  feasibility  of  using  the  backward

propagation;

p nφ 1

p |= ψ 1 nψ

2) if  is  feasible,  we increase  by ;  and if  in

addition  holds, we also add  to .

nψ/nφ
(φ{N}ψ)k
We finally take  as the corresponding value

of , once a required quantity of samples has

been  testified,  such  as  the  Chernoff  bound  with  re-

spect to a tolerant error and a confidence probability.

In  summary, Fig.7 depicts  the  whole  verification

framework  against  RNNs,  with  the  main  techniques
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Fig.7.  Overview of the verification framework.
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utilized  in  the  framework.  Along  with  the  blue  ar-

rows,  the  forward  propagation  completes  and  the

qualitative  model  checking  finishes,  whereas,  the

quantitative  result  is  obtained  via  the  Monte  Carlo

sampling and the backward propagation along the red

arrows.

L dℓ
ℓ ∈ {1, 2, · · · , L}

Rd1×k

p0 v0

φ

k × (L− 1)

Complexity  and Scalability  Analysis. The analysis

is conducted from two aspects, i.e., the original verifi-

cation framework without the polyhedron abstraction

and  the  speculative  optimization  strategy,  and  the

verification  framework  with  the  polyhedron  abstrac-

tion  and  the  speculative  optimization  strategy.  We

consider  an -layer  RNN  with  layer  width ,

.  Its  input  sequence  length  is k and

the  input  vector  is  in  the  shape .  Assume  that

there  include  extreme vertices  and  extreme di-

rections  depicting  the  input  region  according  to  the

pre-condition .  The whole verification process takes

 steps  of  forward  polyhedron  propagation

totally.

p
v

O(p(v + p)) O(v2)

Rn n

Rd1×k

v2
k(L−1)

0

d1 × k

d1

Firstly,  the  complexity  and  scalability  are  ana-

lyzed  for  the  original  verification  framework  without

the  polyhedron  abstraction  and  the  speculative  opti-

mization.  In  this  case,  supposing  that  there  exist 

extreme  vertices  and  extreme  directions  represent-

ing  the  polyhedron,  their  numbers  would  increase

quadratically at most at the end of the following one-

step  forward  propagation,  in  and 

time,  respectively.  The number  of  extreme directions

in space  is  bounded by  and the input space  is

, and then the numbers of extreme vertices and

extreme  directions  would  increase  to  and

,  respectively,  after  the  whole  verification  pro-

cess in the worst case, which is computationally pro-

hibitive with respect to large input width  and in-

put sequence length k, and greatly limits the scalabili-

ty of the proposed framework.

O(Mn5) n M

O(s) s

Secondly, we take the polyhedron abstraction and

the  speculative  optimization  strategy  into  account.

The overall complexity of the polyhedron abstraction

is  the  same  as  that  of  Yu's  algorithm[30],  i.e.,  about

,  where  is  the  space  dimension  and  is

the  iteration  number.  The  iteration  number  signifi-

cantly depends on the approximation precision. As for

the  speculative  optimization,  it  is  with  complexity

 and  is  the  polyhedron number  within  a  bun-

dle.  It  can  be  seen  that  such  abstraction  is  not  a

lightweight  complexity  algorithm;  however,  it  re-

duces the vertex number significantly and the follow-

ing  forward  propagation  duration  further.  Moreover,

the  speculative  optimization also  makes  great  contri-

butions  to  the  scalability  of  the  verification  frame-

work.

In  summary,  the  original  verification  framework

can  achieve  exact  polyhedron  propagation,  yet  with

high  computational  complexity  and  limited  scalabili-

ty. However, the polyhedron abstraction and specula-

tive optimization techniques alleviate the dilemma to

a great extent, with a bit of precision sacrifice. 

5    Experiments

LTLf [x]

In  this  section,  we  exhibit  the  experimental  re-

sults  of  the  proposed  approach  and  place  more  em-

phasis on demonstrating the expressive capabilities of

.  The verified properties  are categorized into

non-temporal  properties  and  temporal  ones  herein,

where  the  former  includes  common  properties  in  the

existing  work,  such  as  robustness,  adversarial  exam-

ples,  and output reachability,  and the latter includes

properties  that  have  been  hardly  considered  so  far.

Moreover,  we  also  record  some  illustrative  experi-

ment  details  to  highlight  the  quality  and  perfor-

mance of the key techniques proposed in the verifica-

tion framework.

A  prototype  toolkit  BPMC2 has  been  developed

based  on  our  verification  framework.  All  the  experi-

ments  herein are  run on the platform with Windows

11 system and the 11th Gen Intel® CoreTM i7-11800H

@ 2.30 GHz and RAM 16 GB.

N1 N2 N3 N4 N5

N3

Experiment  Setting. In  our  experiments,  five  aca-

demic  RNN  instances , , , ,  and  are

constructed,  which  are  all  decision  networks  for  se-

quence  classification  problems,  to  illustrate  the  feasi-

bility  of  the  proposed  framework.  Parameters  of  all

the networks are randomly generated.  The networks'

structures and input sequence lengths k are shown in

Table 1.  Taking  the  network  as  an  example,  its

input-width and output-width are 2 and 3, respective-

ly,  and  it  has  four  hidden  layers  with  dimensions  7,

10, 10 and 7, respectively.
  

Table  1.    Network Structures and Input Sequence Lengths

Network Network Structure Input Length

N1 2-3-3-2 3

N2 2-7-10-10-7-3 3

N3 8-6-6-2 6

N4 1-2-2 3

N5 1-6-2 3
  

5.1    Verification of Non-Temporal Properties

According  to  the  taxonomy  presented  in  [7],  the
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main non-temporal properties of neural networks and

their  corresponding  descriptions  are  displayed  as  fol-

lows.

ϵ

Robustness. It  generally  means  the  evaluation  of

effects  induced by perturbations affecting the inputs.

More clearly, it analyzes whether the classification re-

sults  remain  unchanged  if  an -perturbation  is  ap-

plied to the inputs.

Adversarial  Examples. They  refer  to  the  input

samples  that  cause  neural  networks  to  make  a  false

prediction (or, classification).

Output  Reachability. It  indicates  whether  an out-

put  range  or  a  state  can  be  reached,  which  is  often

used to verify the safety of neural networks.

N1 N2 N3

In  this  subsection,  we  study  these  properties

against the recurrent neural networks ,  and .

ρ N1 N2

N3

Robustness. As  for  robustness,  we  randomly  gen-

erate the input sequences  for the networks , 

and , as shown in Table 2, which are classified in-

to  the  1st,  the  3rd,  and  the  1st  class  via  the  corre-

sponding network's prediction, respectively.
 
 

Table  2.    Network Input Sequences

Network Original Input Sequence

N1 (–0.36, 0.5)T, (–0.71, 1.38)T, (1.79, –2.33)T

N2 (–1.24, 0.48)T, (0.61, 0.92)T, (–1.7, –0.23)T

N3 (–3.4, 8.0, –5.0, 9.5, 3.6, –1.4, –0.4, –0.7)T,
(–4.1, –0.2, 9.6, –3.3, –3.7, –5, –11.2, 2.8)T,
(6.7, 11.6, –2.8, 6.8, 0.2, 7.6, 7.1, 5.1)T,
(–7.5, 2.2, –4.8, –3.3, 1.8, –0.6, 5.9, 7.2)T,
(–3.6, 8.8, 1.8, –5.6, –0.4, 0.9, –0.1, 8.7)T,
(–5.2, –0.6, –3.9, 3.9, 5.4, 2.5, –1.9, –0.9)T.

 

N1 N2 N3

ρ N1

Qualitative  (quali.  res.)  and  quantitative  (quan.

res.)  model  checking  results  on  those  networks  are

given  in Table 3.  The  verification  duration  on  net-

work ,  and  averagely takes 1 second, 6 sec-

onds,  and  15  seconds,  respectively.  Taking  the  fifth

row  as  an  example,  it  declares  that “for  input  se-
quence  on network ,  adding 0.05 to  the 1st  ele-

ment of the input on the 3rd timestep ((i, j)/i=(3, 1))

is robust (100%), while subtracting 0.1 from both ele-
ments of the input on the 3rd timestep ((i, j/)i=3) is
not robust, with 99.3% of the outputs satisfying the ro-
bustness.”

The  pre-condition  and  post-condition  correspond-

ing to the 2nd–5th (resp. rightmost four) columns can

be formulated as
 

eT
j (X

ix−Mi · Jux(ρ)) < ϵ
 

(resp. Xix−Mi · Jux(ρ) < (ϵ, ϵ)T),

X5x > X6x, Mi(
0 · · · 0︸ ︷︷ ︸

i−1

I2 0 · · · 0︸ ︷︷ ︸
K−i

)
e1 = (1, 0)T

e2 = (0, 1)T

respectively  and  where  is  the  matrix

 and  the  vectors ,

.

ϵ

N1

Adversarial  Examples. For  an  unrobust  input  re-

gion, we now intend to detect the existence of adver-

sarial example(s) for a given perturbation . The veri-

fication  results  are  shown  in Table 3.  Herein,  we  fo-

cus on the network  and the others are similar. In

this experiment, the pre-condition is
 

−ϵ <
K∧
i=1

∧
j=1,2

eT
j (X

ix−Mi · Jux(ρ)) < ϵ,

X5x > X6x

ϵ

ρ

and the post-condition is . Experimental re-

sults  are  shown  in Table 4.  For  a  concrete  value

(the  3rd  column),  it  yields  the  concrete  adversarial

examples,  and  elements  that  have  been  changed  (in

comparison  with )  are  written  in  bold  (in  the  2nd

column),  and  the  number  of  changed  input  elements

is in the 1st column.

Reachability. In this setting, we say that an input

is unsafe if it yields an output that is “close” enough

to  both  categories,  namely,  specified  with  the  post-

condition
 

−ϵ < ((eT
1 − eT

2 )(X
3x)) < ϵ,

 

Table  3.    Verification Results on the Robustness Property

Network (i, j)/i ϵ Quali. Res. Quan. Res. (i, j)/i ϵ Quali. Res. Quan. Res.

N1 (3, 1) –0.05 Sat 1.000 1 +0.05 Sat 1.000

(3, 1) –0.10 Sat 1.000 2 +0.10 Sat 1.000

(3, 1) –0.20 Sat 1.000 2 –0.45 Unsat 0.996

(3, 1) +0.05 Sat 1.000 3 –0.10 Unsat 0.993

(3, 1) +0.10 Unsat 0.705 3 +0.10 Unsat 0.870

N2 (1, 1) +0.10 Unsat 0.884 1 –0.01 Sat 1.000

(1, 2) –0.20 Unsat 0.717 1 –0.05 Sat 1.000

(1, 2) –0.15 Unsat 0.725 2 –0.10 Sat 1.000

N3 3 –0.10 Sat 1.000 5 –0.10 Sat 1.000

4 –0.10 Sat 1.000 6 –0.10 Sat 1.000
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True
N1 ϵ = 0.02

ρ′ = (−0.36, 0.50)T, (−0.71, 1.38)T, (1.79,−2.43)T

N1

but with the pre-condition  with respect to net-

work . Taking , we detect an unsafe input

 for

. 

5.2    Verification of Temporal Properties

N4 N5

Compared  with  other  networks,  the  exclusive

structural  feature of  RNNs lies  in the memory units,

which  is  the  reason  for  their  utilization  in  sequence

processing.  Therefore,  the  temporal  properties  upon

RNNs  can  be  defined,  whereas  they  have  been  paid

little  attention  so  far.  We  conduct  experiments  by

verifying some temporal properties indicating conver-

gence to a great extent. In this subsection, the experi-

ments  are  carried  out  on  networks  and .  The

first  property  is  specified  in  the  input  sequence,

declaring  that “whenever  the  input  is  monotonically
increasing,  would  the  sample  be  divided  into  the  sec-
ond  class?” The  second  property  is  to  justify “if  the
input at the second time step is at most 0, would the
probability that the sample belongs to the second class
decrease monotonically?” and the last one is to verify

“whether  the  sample  would  be  classified  into  the  sec-
ond class if the input at the first time step is smaller
than the one at the second time step?”

N4 N5

N5

The  first  property  and  the  second  property  are

verified on network  and the last one is on . As

illustrated in Table 5, the first property is Unsat with

0.174  of  the  outputs  satisfying  the  post-condition,

whereas  the  second  is  Unsat  with  the  probability

0.694 3.  As  for  the  last  property,  it  completely  holds

on  network .  The  verification  duration  for  these

properties takes about 0.04, 0.15, and 0.4 seconds re-

spectively. 

5.3    Performance Demonstrations

LTLf [x]
In this subsection, except the above-mentioned ex-

pressive capabilities of the specification logic 

and  the  efficacy  of  our  proposed  verification  frame-

work,  we  show  some  running  details  of  the  verifica-

tion  processes  to  demonstrate  the  quality  and  effec-

tiveness  of  the  key  technique,  i.e.,  the  polyhedra  ab-

straction with speculative optimization.

N3

Herein,  we  make  some  comparisons  between  the

original verification process and the one coupled with

the  polyhedron  abstraction  and  the  speculative  opti-

mization in  terms of  computation time and memory,

with respect  to  the  verification examples  on network

 in Table 3.  The  computation  time  and  the  total

memory space of the original and integrated cases are

listed  in Table 6,  corresponding  to “-o” and “-a” la-

beled columns, respectively.

On the one hand, it can be observed that with the

polyhedron abstraction and the speculative optimiza-

tion techniques, the verification process can be accel-

erated greatly, which mainly stems from the fact that

the polyhedron abstraction reduces the following com-

putational  burden  and  the  speculative  optimization

discards lower-dimensional polyhedra during the veri-

fication process.

On the other hand, the verification process,  com-

bined  with  polyhedron  abstraction  and  speculative

optimization,  takes  a  little  more  memory space  com-

pared with the original  verification framework.  It  re-

sults  from  the  fact  that  the  polyhedron  abstraction

process  occupies  more  memory,  while  the  speculative

optimization has discarded some polyhedra in the fol-

lowing process.

Considering  the  performance  of  the  verification

duration and memory spaces,  polyhedron abstraction

and  speculative  optimization  are  necessary  to  be

adopted for verification acceleration. Moreover, as the

final  verification  conclusions  show,  it  is  notable  that

robustness still holds in all the cases even when some

over-approximation is  introduced during the  abstrac-

tion  process.  However,  it  is  of  great  importance  to

carefully  balance  the  verification  precision  and  com-

putation efficiency of the polyhedron abstraction pro-

 

Table  4.    Model Checking Results on Adversarial Examples

Changed
Unit (s)

Adversarial
Example

ϵ

1 (–0.36, 0.50)T, (–0.71, 1.38)T, (1.79, –2.39)T 0.06

1 (–0.36, 0.35)T, (–0.71, 1.38)T, (1.79, –2.33)T 0.15

2 (–0.36, 0.47)T, (–0.71, 1.38)T, (1.79, –2.39)T 0.09

2 (–0.36, 0.50)T, (–0.71, 1.47)T, (1.87, –2.33)T 0.17

3 (–0.36, 0.50)T, (–0.71, 1.43)T, (1.85, –2.27)T 0.15

3 (–0.36, 0.44)T, (–0.71, 1.38)T, (1.73, –2.38)T 0.17

 

Table  5.    Experimental Results of Model Checking upon Temporal Properties

Property Pre-Condition Post-Condition Proportion

Property 1 ∀i.1 ⩽ i ⩽ 2 → Xi+1x ⩾ Xix eT1 (X3x) ⩽ eT2 (X3x) 0.174 0

Property 2 X2x ⩽ 0 ∀i.1 ⩽ i ⩽ 2 → (eT1 (Xi+1x) < eT1 (Xix)) 0.694 3

Property 3 X1x ⩽ X2x eT1 (X3x) ⩽ eT2 (X3x) 1.000 0
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cess according to practical cases. 

6    Related Work

So far, the work on verification of RNNs is rather

scarce.  The  most  common  approach  is  to  convert

RNNs to FNN-similar networks and verify them with

the mature methods for the latter. Akintunde et al.[15]

first  proposed  the  idea  of  unrolling,  which  concate-

nates the structure of an RNN for different timesteps,

thus  degenerating  an  RNN to  an  FNN-like  network.

To overcome the difficulty caused by scale explosion,

Jacoby et al.[16] used invariant inference to deal  with

the  loop  structure  and  considered  the  loop  as  an  in-

put  element  added to  the  input  layer.  In  this  paper,

we utilize the “unrolling” idea and leverage a tempo-

ral  logic  specification  to  reason  about  the  properties

of RNN.

Different  from  converting  to  FNN-like  networks,

Ko et al.[17] proposed the POPQORN algorithm based

on linear approximation, and as far as we know, it is

the  first  framework  to  provide  a  quantified  robust-

ness evaluation of RNNs. Later,  Du et al.[18] present-

ed Cert-RNN based on the zonotope abstraction, and

Ryou et al.[19], very recently, proposed Prover relying

on  linear  programming  and  polyhedron  abstraction,

both  of  which  obtain  more  precise  and  scalable  re-

sults than the prior work. The listed work mainly fo-

cuses on robustness, and ignores the temporal proper-

ties  of  the  input/output  sequences  of  RNNs.  In  our

work, we take the entire input/output sequences into

consideration  and  verify  some  non-trivial  temporal

properties  as  well.  Moreover,  the  quantified  robust-

ness  evaluations  specify  the  robust  input  regions  but

to what extent the robustness property holds in unro-

bust  input  ones  is  not  taken  into  account,  both  of

which are tackled in our framework. In this paper, the

motivation  that  we  select  polyhedra  as  abstract  do-

mains for the RNN verification, instead of zonotopes,

polytopes  or  star  sets,  is  mainly  three-fold.  Firstly,

polyhedra  are  compatible  with  our  specification  lan-

guage,  which  means  that  the  conversion  between

them is easy to implement and understand. Secondly,

polyhedron  sets  (i.e.,  polyhedron  bundles  defined  in

the paper) are closed under the ReLU operator. While

zonotopes  do  not  hold  this  property,  meaning  that

their computation introduces more wrapping effect in

the verification. Last but not least, polyhedra can de-

pict  unbounded  constrained  regions,  but  polytopes

and star  sets  cannot.  Besides,  a  bounded polyhedron

is  a  polytope  essentially  and  any  bounded  polyhedra

can be represented as star sets[37].

The RNN verification scheme proposed by Zhang

et  al.  in  2020[20],  based  on  reachability  analysis,  is

more related to our paper. RNNs are abstractly inter-

preted by polytope propagation and fixed point analy-

sis,  and  then  RNNs  are  verified  against  cognitive

tasks.  In  this  paper,  we  circumvent  the  exponential

increase  in  the  vertex  number  through  the  whole

polyhedron  propagation  with  V-representation  and

verify the properties quantitatively.

Statistic model checking on automata in [22],  an-

other  related  work  to  ours,  provides  probabilistic  re-

sults of the robustness verification of RNNs. However,

the results  of  [22]  based on sampling are  approxima-

tions of the ground truth (cannot specify whether an

input  region  is  robust  or  not).  Our  proposed  frame-

work can derive qualitative results to show the prop-

erty satisfiability, not only limited to robustness, and

provide probabilistic (quantitative) results when prop-

erties do not hold.

In addition, researchers also attempt to utilize au-

tomata  and  other  computational  models  to  conduct

formal modeling of RNNs. RNN behaviors can also be

modeled  and  verified  by  labeled  transition  systems,

deterministic finite automata and rule extraction, and

context-free  grammars  and  probabilistic  automata.

The  early  automata  extraction  technology  mainly

used  hierarchical  clustering  analysis  to  analyze  the

continuous  state  space  of  recurrent  neural

networks[38],  and some scholars  proposed a  sampling-

based method to extract automata[39]. 

7    Conclusions

LTLf [x]
In  this  paper,  we  proposed  a  specification  lan-

guage  and an alternative verification frame-

work  unifying  qualitative  and  quantitative  model

checking for RNNs. The key data structure utilized to

do the model checking is the polyhedron abstract do-

main  and  the  polyhedron  forward  propagation  is  in-

troduced for ReLU RNNs. To alleviate the vertex ex-

plosion  during  the  propagation  process,  we  put  for-

ward  the  (dimension-preserving)  polyhedron  abstrac-

 

Table  6.    Comparisons on Computation Time and Memory

i Timeo (s) Timea (s) Memo (MB) Mema (MB)

3 15.405 1.181 93.2 95.2

4 13.974 1.155 93.6 95.2

5 14.500 1.112 93.3 95.0

6 13.701 1.115 93.9 95.4
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tion  and  leveraged  polyhedron  refinement  to  achieve

most precise  results  possible  for  both qualitative and

quantitative  verification,  based  on  the  Monte  Carlo

sampling. A prototype tool named BPMC2 was imple-

mented to examine the feasibility of the proposed al-

gorithms,  taking  both  non-temporal  and  temporal

properties  into  account.  The  tool  verified  the  given

properties  successfully  with  considerable  memory

space and computation time.

LTLf [x]
Based  on  the  polyhedron  abstract  domain  and

,  our  verification  framework  theoretically  re-

solves the technical intractability of ReLU RNN vali-

dation. However, further optimization on the scalabil-

ity  is  still  needed for  its  deployment  and application

in practical scale networks, such as more efficient da-

ta  structures  and  organization,  more  reasonable  ap-

proximation strategy balancing precision and efficien-

cy,  and  systematic  integration  of  floating-point  com-

putation.  Extending  our  verification  framework  on

other activation functions and RNN variants and ver-

ifying  the  properties  with  unbounded  input  lengths

are also promising research directions in the future. 
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