

Qualitative and Quantitative Model Checking Against Recurrent
Neural Networks

Zhen Liang1 (梁　震), Wan-Wei Liu2, * (刘万伟), Senior Member, CCF
Fu Song3 (宋　富), Senior Member, CCF, Bai Xue4 (薛　白), Wen-Jing Yang1 (杨文婧)
Ji Wang1 (王　戟), Fellow, CCF, and Zheng-Bin Pang2 (庞征斌)

1 Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer Science
and Technology, National University of Defense Technology, Changsha 410073, China

2 College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
3 School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
4 Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

E-mail: liangzhen@nudt.edu.cn; wwliu@nudt.edu.cn; songfu@shanghaitech.edu.cn; xuebai@ios.ac.cn
wenjing.yang@nudt.edu.cn; wj@nudt.edu.cn; zhengbinpang@nudt.edu.cn

Received July 23, 2022; accepted July 10, 2023.

Abstract Recurrent neural networks (RNNs) have been heavily used in applications relying on sequence data such as

time series and natural languages. As a matter of fact, their behaviors lack rigorous quality assurance due to the black-box

nature of deep learning. It is an urgent and challenging task to formally reason about the behaviors of RNNs. To this end,

we first present an extension of linear-time temporal logic to reason about properties with respect to RNNs, such as local

robustness, reachability, and some temporal properties. Based on the proposed logic, we formalize the verification obliga-

tion as a Hoare-like triple, from both qualitative and quantitative perspectives. The former concerns whether all the out-

puts resulting from the inputs fulfilling the pre-condition satisfy the post-condition, whereas the latter is to compute the

probability that the post-condition is satisfied on the premise that the inputs fulfill the pre-condition. To tackle these

problems, we develop a systematic verification framework, mainly based on polyhedron propagation, dimension-preserving

abstraction, and the Monte Carlo sampling. We also implement our algorithm with a prototype tool and conduct experi-

ments to demonstrate its feasibility and efficiency.

Keywords recurrent neural network, model checking, temporal logic, qualitative/quantitative verification

1 Introduction

Neural networks (NNs) have achieved remarkable

performance in a variety of challenging tasks in the

past few years, such as image recognition[1], natural

language processing[2], speech processing[3], and multi-

view clustering[4]. Therefore, it is desired to deploy

neural networks in safety-critical applications as well,

for instance, autonomous driving[5] and medical diag-

nostics[6]. However, various concerns have arisen due

to the black-box nature of neural networks, which

hinders their applications in safety-critical domains[7].

For example, it is extremely difficult to explain the

decisions of a neural network[8]. Furthermore, neural

networks have been shown to be fundamentally vul-

nerable to minor input perturbations. It means that a

small perturbation to a correctly handled input may

induce unexpected results[9, 10]. Therefore, there is a

pressing need to formally reason about the behaviors

of neural networks before deploying them.

Recently, dozens of verification approaches for

neural networks have been proposed[11–14] by leverag-

Regular Paper

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61872371, 62032024, and
U19A2062, and the Open Fund from the State Key Laboratory of High Performance Computing of China (HPCL) under Grant No.
202001-07.

*Corresponding Author

Liang Z, Liu WW, Song F et al. Qualitative and quantitative model checking against recurrent neural networks. JOUR-

NAL OF COMPUTER SCIENCE AND TECHNOLOGY 39(6): 1292−1311 Nov. 2024. DOI: 10.1007/s11390-023-2703-2

©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-023-2703-2
https://doi.org/10.1007/s11390-023-2703-2
https://doi.org/10.1007/s11390-023-2703-2
https://doi.org/10.1007/s11390-023-2703-2
https://doi.org/10.1007/s11390-023-2703-2
https://doi.org/10.1007/s11390-023-2703-2
https://doi.org/10.1007/s11390-023-2703-2

ing techniques such as constraint solving and ab-

stract interpretation. However, all these approaches

are designated for verifying feed-forward neural net-

works such as fully connected feed-forward networks

(FNNs) and convolutional neural networks (CNNs),

and cannot be directly applied to verifying recurrent

neural networks (RNNs). Indeed, in contrast to feed-

forward neural networks which only consider the cur-

rent input, an RNN considers the current input and

intermediate results of the previous computation,

namely that it can memorize previous computing re-

sults based on its internal memory over sequential in-

puts. Until recently, some efforts have been made to

verify RNNs[15–21]. Unfortunately, almost all the exist-

ing methods are limited in qualitatively verifying

properties in linear constraints (e.g., robustness), and

largely ignoring the sequential nature of inputs/out-

puts of RNNs. To the best of our knowledge, only [15]

and [21] support qualitative reasoning about RNNs

using temporal logic over input/output sequences and

only [22] supports quantitative RNN verification

against RNNs. Though temporal properties could be

expressed in linear constraints when the lengths of in-

put/output sequences are bounded, it is more intu-

itive and succinct to express properties in temporal

logic and the verification approaches provide a gener-

ic framework for reasoning about the behaviors of

neural networks[14].

LTLf [x]
[x]

N (φ{N}ψ)k
φ ψ

In order to reason about the behaviors of RNNs,

we in this paper present a temporal logic, called

, which is an extension of LTLf (i.e., linear-

time temporal logic on finite traces), where ad-

dresses the special symbol x corresponding to the des-

ignated vector in a vector sequence. This logic is able

to specify properties such as robustness, reachability,

and other temporal properties over input/output se-

quences. We formalize the verification problem of an

RNN as a Hoare-like triple, , where the

pre-condition (resp. post-condition) describes the

property of the input (resp. output) sequences, and k
is the length bound of the input sequences. We con-

sider both the qualitative and quantitative perspec-

tives of the verification problem, where the former

concerns whether all the outputs resulting from the

inputs fulfilling the pre-condition satisfy the post-con-

dition, and the latter is to compute the probability

(or, ratio) of the satisfaction of the post-condition

conditioned by the pre-condition. Arguably, quantita-

tive verification is far more useful[23], since it could

provide a probabilistic guarantee of the behaviors of

RNNs.

Why do we concern about recurrent networks?

First and foremost, such neural networks have impor-

tant applications in many fields, such as computer vi-

sion[24], natural language processing[25], and speech

processing[3]. Second, an FNN is a special case of an

RNN; namely, an FNN can be regarded as an RNN

without “looping”. Last but not least, as an RNN

deals with data sequences, there exist important tem-

poral patterns in the input/output ends.

Model checking of NNs is never straightforward,

and the difficulty partially lies in the large quantity of

parameters and the complexity of the data processing

procedure during computation. Moreover, in addition

to an affine transformation, each layer also includes a

non-linear activation function, which enables an NN

to fit a (continuous) function with arbitrary preci-

sion[26].

LTLf [x] φ

φ

From the algebra perspective, using a rectified lin-

ear unit (ReLU) as the activation function for NNs

may make them easier to deal with. In this case, an

NN essentially establishes a piece-wise linear map-

ping. Thus, if the input space is a union of several

polyhedra (called a bundle), the output space is also a

bundle. Indeed, given an formula , the col-

lection of all vector sequences initially satisfying is

isomorphic to a bundle.

LTLf [x]
When performing model checking on RNN against

, there are several technical challenges.

1) First of all, a polyhedron can be uniquely deter-

mined via a set of vertices and extreme directions (a

polyhedron is said to be unbounded whenever the di-

rection set is not empty), and we need to compute a

series of intermediate polyhedra, which is called for-

ward propagation. It can be found that the number of

vertices increases dramatically during the forward

propagation. To alleviate this issue, we need to find a

“larger” (or, an abstract) polyhedron with fewer ver-

tices to tightly enclose it. The challenging part is that

the abstracted one must have the same dimension,

the reason of which will be explained in Section 4.

0/0

2) For a polyhedron, we need to perform abstrac-

tion to relax the number-explosion of vertices, which

might lead to “infeasible counterexamples”. Thus, re-

finement is required. Meanwhile, we need to perform

the quantitative computation. Here, we use the Monte

Carlo approach, namely, doing sampling when com-

puting the ratio, which induces the problem that if we

abstract the polyhedron by replacing it with one of a

higher dimension, it will result in a dilemma, be-

Zhen Liang et al.: Qualitative and Quantitative Model Checking Against RNNs 1293

cause the probability of obtaining a sample within the

feasible area is 0.

3) To determine the feasibility of a “point” (corre-

sponding to a sequence) within the output space, we

need to do the “backward propagation”, for which we

have to find a way to compute the preimage of the

transformation.

4) Given that a polyhedron may be unbounded,

performing abstraction must be more cautious. We

must ensure that the volume of the increased part

must be an infinitesimal value in comparison to the

concrete one.

5) Lastly, it should be pointed out that we in gen-

eral simultaneously have more than one polyhedron

during the verification process. These polyhedra may

have different dimensions. Though the polyhedra with

the largest dimension may dominate the final result,

we cannot discard those with lower dimensions in the

intermediate steps, as a polyhedron's dimension may

be lowered after propagation whenever the transfor-

mation is degenerated.

In this paper, we show how to address the above

challenges and present a systematic model checking

framework. In addition, to the best of our knowledge,

this is the first work unifying qualitative and quanti-

tative verification of RNNs and we implement a pro-

totype, called Bidirectional Propagation & Monte

Carlo Based Model Checker (BPMC2), and the pre-

sented framework is experimentally evaluated with re-

spect to BPMC2.

LTLf [x]

The remainder of this paper is organized as fol-

lows. Section 2 introduces some basic notions and no-

tations related to recurrent neural networks. In Sec-

tion 3, we formally define the syntax and semantics of

, and the goals of qualitative and quantita-

tive model checking. We elaborate the technical de-

tails for verification in Section 4, and experimental re-

sults are provided in Section 5. In Section 6, we dis-

cuss some related work on RNN verification. Finally,

we conclude the paper in Section 7.

2 Preliminaries

2.1 Vectors and Operations

a b c

c1 c2
b b1

In this paper, we use lowercase letters like , , ,

, and to range over scalars, use bold lowercase

letters such as , , and x to range over vectors, and

use bold uppercase letters to refer to matrices, such as

M M1 N b

M b[i] M [i] (i+ 1)

b (i+ 1) M

R>0

M KerM
{v | Mv = 0}

, , and . For each vector (resp. matrix

), we denote (resp.) as the -th

scalar of (resp. the -th row of). We de-

note the set of positive real numbers as . As usu-

al, we denote the kernel of as , which is the

set .

b1, . . . , bn b

b =
∑n

i=1
cibi

ci ⩾ 0
∑n

i=1
ci = 1 b

b1, . . . , bn
span{b1, . . . , bn} {

∑n

i=1
aibi}

b1, . . . , bn

Given a set of vectors , we call a non-

negative combination of them if , where

each . If in addition holds, we call

a convex-combination of . Meanwhile, we

denote for the set , name-

ly, the linear space spanned by .

τ = b1, b2, . . . , bk τ ∈ Rn1, n2, ..., nk bi ∈ Rni

len(τ) = k τ ∈ (Rn)k

ni = n

τ

bi τ

(bT
1 , b

T
2 , . . . , b

T
k)

T Jux(τ)

Vector sequences are the heavily used mathemati-

cal structures in this paper and we use Greek bold let-

ters to range over them. For a vector sequence

, we write if ,

and let . Particularly, we write if

each . For convenience, we sometimes directly

view as a common vector, which is the juxtaposi-

tion of all s. Namely, is isomorphic to

, denoted as .

M ∈ Rm×n RanM = {Mb |
b ∈ Rn} KerM = {b ∈ Rn | Mb = 0}

M

Given a matrix , let

 and let , which

are called the range and the kernel of , respective-

ly.

M

UDV U V

D

D =

(
D′ 0
0 0

)
D′ = diag(b1, . . . , bk)

bi > 0 UDV

M

V T

(
(D′)−1 0
0 0

)
UT M+

M

From the standard theory of linear algebra, each

real matrix (not necessarily square) can be decom-

posed as where and are unitary matri-

ces, and is a quasi-diagonal matrix, i.e.,

, where and

each . Here, is called the singular value

decomposition (SVD) of . In this case, we denote

the matrix by , called the

Moore-Penrose inverse of .

M ∈ Rm×n

U ∈ Rm×m V ∈ Rn×n

D′ ∈ Rk×k k ⩽ min{m,n}
KerM RanM

U = (u1, . . . , um) V T = (v1, . . . ,

vn) RanM = span{u1, . . . ,uk}
KerM = span{vk+1, . . . ,vn}

Supposing and its SVD is given as

above, we have and , and also

suppose that , where . Then,

both and can be succinctly represent-

ed as follows. Let and

, and then we have

and .

An important application of the Moore-Penrose

inverse is to represent the preimage space of linear

mappings.

Mx ∼ bTheorem 1. The solution space of is not
empty① if and only if

1294 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

> ⩾ < ⩽ ̸=

①Here, ~ can be any comparator like , , , , and so on.

V = Ker(I −MM+) ∩ {c | c ∼ b} ̸= ∅,

{M+c+ d | c ∈ V ,
d ∈ KerM}
and in this case, the solution space is

.
M+Proof. According to the construction of , one

can immediately examine that

MM+M = M and (MM+)T = MM+

M ∈ Rm×n U = {c ∈ Rm |
c ∼ b} d,d′ ∈ Rn

hold. Suppose that and let

, then for any we have:

((I −MM+)d)T(Md′) = dT(I −MM+)Md′

= dT(M −M)d′ = 0,

(I −MM+)d ∈ (RanM)⊥

d ∈ Rn Md′ RanM
and this indicates that for

any , because ranges over .

Mx = c ∈ U
c ∈ RanM

For each x having , we have that

. Nevertheless, we on the other hand have

c = MM+c+ (I −MM+)c,

c = MM+c (I −MM+)c = 0
(I −MM+)c ∈ (RanM)⊥

c ∈ Ker(I −MM+) ∩ U = V

hence we have and ,

because . In other words,

we have .

Mx = c = MM+c

In this case, the solution space w.r.t.

 is definitely

{M+c+ d | d ∈ KerM},

and this concludes the proof. □
Mx = bCorollary 1. The solution space of is not

empty if and only if

(I −MM+)b = 0,

{M+b+ c |
c ∈ KerM}
and in this case, the solution space is

.
f: Rm → R

f: (Rn)m → Rn

Each mapping can be lifted into its vec-

torized form . That is,

f(b1, . . . , bm) = (c1, . . . , cn)
T,

bj = (bj, 1, . . . , bj, n)
T ci = f(b1, i, . . . , bn, i)

f V
f(V) {f(v) | v ∈ V}

where and .

For convenience, for a mapping and a space , we

let be the space .

In this paper, we are particularly concerned with

the ReLU function, defined as

ReLU (x) =

{
x, x ⩾ 0,

0, x < 0.

n > 0 X ⊆ {1, 2, . . . , n}
ReLUX : Rn → Rn

ReLUX((b1, . . . , bn)
T) = (c1, . . . , cn)

T

Meanwhile, let , for each , and

then we have the function , de-

fined as , where

ci =

{
bi, i ̸∈ X,
bi + abs(bi)

2
, i ∈ X.

ReLU

ReLU {1, ..., n} Rn

ReLU {i} ReLU i

Hence, the vectorized lifting of coincides with

 w.r.t. the domain . In what follows,

we directly write as .

Proji
b = (b1, . . . , bn)

T Proji(d) = (b1, . . . ,

bi−1, 0, bi, . . . , bn)
T ReLU i(b)

Proji(b) bi ⩽ 0

Meanwhile, another operator utilized in the paper

is the projection operator . For a vector

, we define that

. Then, coincides with

 in the case of .

2.2 Polyhedra

Ax ⩽ b
A

b

In a view of algebra, a polyhedron is the solution

space of a (finite) set of linear inequalities

where is a coefficient matrix, x is a vector variable,

and is a constant vector. We call such a kind of

representation of polyhedra the H-representation.

X
Indeed, from the geometry perspective, a polyhe-

dron can also be characterized by

X =

{
k∑
i=1

aivi +
m∑
j=1

bjdj

∣∣∣ ai, bj ⩾ 0,
∑
i

ai = 1

}
,

vi dj vi
dj

where s and s are given vectors, and each is

called a vertex and is a recession direction (or just

direction). This is called the V-representation.

X
v

X

For a polyhedron in the V-representation, a

vertex is said to be extreme if it is not a convex

combination of any other two elements belonging to

. Likewise, a direction is extreme if it cannot be the

convex combination of any other directions.

According to the Weyl-Minkowski theorem (for

example, see [27]), one can convert interchangeably

one representation to the other. Nevertheless, no con-

verting approach that can be adopted in determinis-

tic polynomial time is known so far for either direc-

tion.

X
dimX = n

For a polyhedron , we say its dimension is n,

denoted by , if:

n+ 1 v0,v1, . . . ,vn
{vi − v0 | i = 1, . . . , n}

1) there exist points making

the set linearly independent;

{ui − u0 | 1 ⩽ i ⩽ m}
m > n u0,u1, . . . ,um ∈ X

2) every set is linearly de-

pendent provided that and ;

X =
∪n

i=1
Xi Xiin addition, for a space where each is

a polyhedron, we define

dimX = max
1⩽i⩽n

dimXi.

In what follows, we call such a union of finitely many

polyhedra a polyhedron bundle (or, simply bundle).

Zhen Liang et al.: Qualitative and Quantitative Model Checking Against RNNs 1295

For a bundle, the subspace consisting of all poly-

hedra with the highest dimension is called the majori-

ty part of it.

2.3 Recurrent Neural Networks

An RNN consists of one input layer, one output

layer, and a sequence of hidden layers. The number of

neurons in each layer is called its width. In contrast

to FNNs, neurons of a hidden layer of RNNs contain

memory units, which retain their previous states

when computing the current state, together with the

outputs from the previous layer. The operation be-

tween two adjacent layers in an RNN is the composi-

tion of an affine transformation and a nonlinear acti-

vation, such as ReLU, sigmoid, and so on. An exam-

ple RNN is shown in Fig.1, and besides the input (in

blue) and output layers (in green), it also has three

hidden layers (in red).

Fig.1. Example RNN.

W U b

W

U

b

L

N

To model an RNN, we associate each pair of two

adjacent layers with three parameters , , and ,

where (black arrows in Fig.1) is the connection

weight matrix among neurons of two adjacent layers,

 (blue arrows in Fig.1) is the memory weight ma-

trix among neurons in the same layer, and is the

bias vector of neurons in each layer. Therefore, an -

layer RNN can be represented by a sequence of tu-

ples

(W1,U1, b1), (W2,U2, b2), . . . , (WL−1,UL−1, bL−1),

1 ⩽ ℓ < L Wℓ

ℓ (ℓ+ 1)

Uℓ bℓ
(ℓ+ 1)

where for every , is the weight matrix

between the -th layer and the -th layer, and

 and are the memory weight matrix and the bias

vector of the -th layer, respectively. The input

layer generally does not include the memory mecha-

nism or bias vector.

NSuch an RNN corresponds to a function

fN = fL−1 ◦ · · · ◦ f2 ◦ f1,

fℓ
k ∈ N+ τ

τ0, τ1, . . . , τk

where each is determined in the following way. For

any and sequence , we may obtain a series

of vector sequences defined as

τ0 = τ1) ;

τi−1 = c′
1, . . . , c

′
i−1, ci, ci+1, . . . , ck

τi = c′
1, . . . , c

′
i−1, c

′
i, ci+1, . . . , ck

2) suppose ,

then , where

c′
i = ReLU (Wℓ · ci +Uℓ · c′

i−1 + bℓ),

c0 = ci
c′
i

ℓ

i

and we particularly let 0 — intuitively, and

 correspond to the input and output of the -th lay-

er at time step , respectively;

fℓ(τ) = τk3) then we let .

When all the memory weight matrices are zero

matrices, RNNs degenerate into FNNs.

Therefore, we can unroll the computation process

of RNNs in two directions. One direction is the com-

putation from the input layer to the output layer ac-

cording to the network structure, named spatial direc-

tion, and the other direction unrolls the network ac-

cording to time steps, called temporal direction. Fig.2

illustrates the unrolling of the RNN shown in Fig.1,

where the spatial unrolling is presented from left to

right, while the temporal unrolling is presented from

top to bottom. All the color marks in Fig.2 mean the

same as those in Fig.1.

...

Time Step=1

Time Step=2

Time Step=3

Time Step=

Fig.2. Unrolling illustrations of the RNN in Fig.1.

As a matter of fact, RNNs become FNN-similar

networks via unrolling, and however, there lie signifi-

1296 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

cant differences between the unrolled RNNs and

FNNs. For one thing, in view of the network struc-

ture, we extend the “loops” from the previous time

step to the next one. There still exist the weights con-

necting the neurons belonging to the same network

layer in the unrolled RNNs, as shown in Fig.2. There-

fore, the unrolled RNNs just look similar to FNNs

and the inherent “loops” have not been broken essen-

tially. For another thing, from the perspective of the

computing process, due to the existence of “loops”,
the computing process in the unrolled RNNs works

the same as that in RNNs, i.e., the inputs of the next

time step depend on the previous outputs. Thus, it

needs iterative computation in the information flow

between adjacent layers, which is different from the

direct one-step propagation in FNNs and is illustrat-

ed in Fig.3.

Therefore, these differences render the FNN-spe-

cific verification methods difficult and inapplicable for

RNN verification. However, the unrolling process pro-

vides us with a global idea of considering the input/

output information, or the hidden states. In Section 3,

we define the model checking problem on RNNs.

3 RNN Model Checking: Problem Definition

3.1 Specification Language

To perform model checking, we use an extension

LTLf [x]

τ = b0, b1, . . . , bk

bi Xx
bi+1

 of LTLf as the specification language, be-

cause both the inputs and outputs of an RNN are
vector sequences with finite lengths. Meanwhile, since
what we are really concerned about are the numeric
relations among the data generated during computa-
tion, we employ terms to refine the atomic proposi-
tions in the base logic. To this end, we use a fixed
symbol x to designate the present input/output vec-
tor. For example, let be the input
sequence, then at the i-th step (or moment), x just
corresponds to , and we further let stand for

 for convenience. Formally, we use the following
abstract grammar to define terms in such logic:

t ::= x | c | Mt | t+ t | Xt,

c M

t

τ = b0, b1, . . . , bn−1 i

[[t]]
τ , i

where and range over (constant) real vectors

and real matrices having proper shapes, respectively.

In addition, the interpretation of a term w.r.t. the

sequence and a position is given

by . Inductively:

[[x]]
τ , i

=

{
bi, if 0 ⩽ i < n,
0, otherwise;

1)

[[c]]
τ , i

c2) for a constant vector ;

[[Mt]]
τ , i

= M [[t]]
τ , i

3) ;

[[t1 + t2]]τ , i = [[t1]]τ , i + [[t2]]τ , i4) ;

[[Xt]]
τ , i

= [[t]]
τ , i+1

5) .

LTLf [x]Subsequently, formulas of such exten-

sion are defined as:

     

× × × × × ×











Fig.3. Overview of the polyhedron propagation.

Zhen Liang et al.: Qualitative and Quantitative Model Checking Against RNNs 1297

φ ::= ⊤ | t∼t | ¬φ | φ ∨ φ | Xφ | φUφ,

τ i

and semantics of such formulas are also given w.r.t. a

vector sequence and a position , namely that:

τ , i |= ⊤1) trivially holds;

τ , i |= t1∼t2 [[t1]]τ , i∼ [[t2]]τ , i2) if and only if ;

τ , i |= ¬φ τ , i ̸|= φ3) if and only if ;

τ , i |= φ1 ∨ φ2 τ , i |= φ1 τ , i |=
φ2

4) if and only if or

;

τ , i |= Xφ τ , i+ 1 |= φ5) if and only if ;

τ , i |= φ1Uφ2 k <

len(τ) τ , k |= φ2 τ , j |= φ1 j

i ⩽ j < k

6) if and only if there is some

 such that and for each

with .

τ |= φ

i = 0

In addition, we directly write in the case of

.

∧
→

We define derived Boolean connectives such as ,

 as usual, and also define the following derived

temporal connectives for convenience:

Fφ def
= ⊤Uφ;1)

Gφ def
= ¬F¬φ;2)

φ1Rφ2
def
= ¬(¬φ1U¬φ2).3)

[[φ]]
n, k

{τ ∈ (Rn)k | τ |= φ}
For any given n and k, let be the set

.

X
X

Remind that in this logic, the operator acts as

both a function and a connective. Indeed, is com-

municative and distributive with other operators,

namely:

[[XMt]]
τ , i

= [[MXt]]
τ, i

;1)

[[X(t1 + t2)]]τ , i = [[X(t1) + X(t2)]]τ , i ;2)

[[X(t1∼t2)]]n, k = [[Xt1∼Xt2]]n, k ;3)

[[X¬φ]]
n, k

= [[¬Xφ]]
n, k

;4)

[[X(φ1 ∨ φ2)]]n, k = [[Xφ1 ∨ Xφ2]]n, k ;5)

[[X(φ1Uφ2)]]n, k = [[(Xφ1)U(Xφ2)]]n, k .6)

[[φ]]
n, k

Rn×kTheorem 2. composes a bundle in .
T

φ

y ∈ Rn×k

i

Proof. We define a translator which elimi-

nates all temporal connectives in and equivalently

transform it in a Boolean combination of inequalities

w.r.t. some variable . Inductively, for a posi-

tion :

T (c, i) = c1) ;

T (x, i) =


[
0in, n

... In
... 0(k−1)n, n

]
y, if i < k,

0n×1, if i ⩾ k,

2)

In n n

0m, n m n

where is the identity matrix with size by ,

whereas is the zero matrix with size by ;

T (Mt, i) = MT (t, i)3) ;

T (t1 + t2, i) = T (t1, i) + T (t2, i)4) ;

T (Xt, i) = T (t, i+ 1);5)

T (t1∼t2, i) = T (t1, i)∼T (t2, i)6) ;

T (¬ψ, i) = ¬T (ψ, i)7) ;

T (φ1 ∨ φ2, i) = T (φ1, i) ∨ T (φ2, i)8) ;

T (Xψ, i) = T (ψ, i+ 1)9) ;

T (φ1Uφ2, i) =
∨k−1

j=i

(
T (φ2, j) ∧

∧j−1

t=i
T (φ1, t)

)
10) .

T (φ, 0)

Rn×k

τ , i |= φ

Jux(τ) T (φ, i)

Then, we just let be the resulting description,

which corresponds to a bundle within . Indeed,

one can show case by case that if and only if

 is within the solution space of . □

3.2 Qualitative and Quantitative Model

Checking

N n

m fN
N LTLf [x] φ

ψ k ∈ N

Given an RNN with the input width and the

output width , let be the corresponding func-

tion determined by ; given two formulas

and , a parameter of sequence length, then:

fN ([[φ]]n, k)) ⊆ [[ψ]]
m, k

1) the goal of qualitative model checking is to

check whether holds;

2) the task of quantitative model checking is to

compute the ratio

vol(fN ([[φ]]n, k) ∩ [[ψ]]
m, k

)

vol(fN ([[φ]]n, k))
,

vol(X) Xwhere is the volume of the bundle , which is

explained below.

(φ{N}ψ)kWe use to denote the model checking

result. For the qualitative case, it is a Boolean value,

whereas for the quantitative case, it is some probability.

Rn n+ 1

S
V = {v0,v1, . . . ,vn}

vi = (vi, 1, vi, 2, . . . , vi, n)
T vol(S) =

(1/n!)abs(detV) V

To define the volume of a bundle, we begin with

the bounded case. According to the definition, a

bounded bundle can be partitioned into finitely many

disjoint bounded polyhedra. Within the Hilbert space

, a polyhedron that has exactly extreme ver-

tices is called a simplex. Suppose the simplex is de-

termined via a set of vertices wh-

ere . Then, we have
[28], where det is

detV = det

v1 − v0

v2 − v0

· · ·
vn − v0

 =

∣∣∣∣∣∣∣
v1, 1 − v0, 1 . . . v1, n − v0, n
v2, 1 − v0, 1 . . . v2, n − v0, n

...
...

...
vn, 1 − v0, 1 . . . vn, n − v0, n

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1 v0, 1 . . . v0, n
1 v1, 1 . . . v1, n
...

...
. . .

...
1 vn, 1 . . . vn, n

∣∣∣∣∣∣∣ .
XSubsequently, for a polyhedron consisting of

1298 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

n+ 1

X
V̂ = {v0,v1, . . . ,vt} t > n+ 1

v0 n

n

n

V̂

V ′ = {vi1 , . . . ,vin} ⊂ V̂

V ′

more than extreme vertices, we need to parti-

tion it into a (finite) set of simplexes. Suppose a poly-

hedron is built up upon an extreme vertex set

 where . First of all, we

fix the vertex and choose other vertices to com-

pose a simplex. The issue is that we must guarantee

that “all the remaining vertices are located on the

same side of the hyperplane determined by the cho-

sen vertices”. In this case, we say that these cho-

sen vertices constitute a promising subset of . For-

mally, suppose that , then the

function of the hyperplane containing is

PV ′(x) =

∣∣∣∣∣∣∣
1 x1 x2 . . . xn
1 vi1, 1 vi1, 2 . . . vi1, n
...

...
...

. . .
...

1 vin, 1 vin, 2 . . . vin, n

∣∣∣∣∣∣∣ = 0.

V ′Consequently, is promising iff

PV ′(v0)× PV ′(v) ⩾ 0,

v ∈ V̂ \ V ′ prom(V)

V

for each . With denoting all

promising subsets of , we then have

vol(X) =
∑

V ′∈prom(V)

abs(PV ′(v0))

n!
. (1)

X

X

Lastly, for an unbounded polyhedron , we need

to temporarily compute the volume of the intersec-

tion of and the polyhedron

−M ⩽ xi ⩽M, i = 1, 2, . . . , n,

XM

M

M

(the intersection is denoted by) using the afore-

mentioned approach. Here, we need to treat as a

symbol, rather than a concrete value. As a result,

what we get is a polynomial about . From (1), we

obtain two polynomials:

hX (M) =
n∑
i=0

aiM
i, hY(M) =

m∑
j=0

bjM
j,

XM YMfor and , respectively. Then, by definition, we

have

vol(X)

vol(Y)
= lim

M→∞

n∑
i=0

aiM
i

m∑
j=0

bjM
j

=


0, n < m,
an
bm
, n = m,

∞, n > m.

M

Since the technique computing the volume of un-

bounded bundles requires viewing parameter as a

symbol, it is called the symbolic approach.

4 Verification Framework

We put the emphasis on the quantitative model

checking algorithm. The approach is mainly based on

the so-called “polyhedron forward propagation”. Giv-

en an RNN

N =(W1,U1, b1), (W2,U2, b2), . . . , (WL−1,UL−1, bL−1),

n m

φ ψ k

X0,X1, . . . ,

XL−1 X0 = [[φ]]
n, k

XL−1 = fN (X0)

(with the input/output width and), pre-condi-

tion , post-condition , and length bound , ideally,

the process computes a series of bundles

, where and . To ac-

complish this, we also need to produce a series of in-

termediate bundles

Xℓ, 0,Xℓ, 1, . . . ,Xℓ, k,

Xℓ+1 Xℓ Xℓ, 0 = Xℓto obtain from , where and

Xℓ, i+1 = ReLUXi
(Aℓ, i · Xℓ, i + dℓ, i), (2)

Xℓ+1 Xℓ, kand is just . In (2), components are given as

below.

Aℓ, i =

 Inℓ+1×(i−1)

Inℓ+1

Uℓ Wℓ

Inℓ×(k−i−1)

1)

i ⩾ 1for each ; and particularly,

Aℓ, 0 =

(
Wℓ

Inℓ×(k−1)

)
.

nℓ N ℓHere, is the width of 's -th layer.

dℓ, i = (0T

nℓ+1×i, b
T
ℓ ,0

T

nℓ×(k−i−1))
T

m

m

2) , here 0 is the

zero vector with length .

Xi = {i · nℓ+1 + j | 1 ⩽ j ⩽ nℓ+1}3) The index set .

W U I

n m s

Fig.3 illustrates the above polyhedron propaga-

tion figuratively, where the arrows in black, blue, and

blue represent the matrices , , and , respective-

ly. A block stands for the whole network layer in

Fig.1 in the same color and only the first hidden lay-

er is displayed here. Without loss of generality, we as-

sume the dimensions of the input, output, and the

first hidden layer to be , , and , respectively,

meeting the formalization need.

X v d v > 0

d ⩾ 0

The above process is rigorous, and unfortunately,

we will encounter the “vertex number explosion”
problem. Let us see how it happens. Just consider a

polyhedron with vertices and directions (

and), and since the number of vertices and di-

rections will not increase after an affine transforma-

Zhen Liang et al.: Qualitative and Quantitative Model Checking Against RNNs 1299

tion, we only need to focus on the ReLU operation.

Since we always have

ReLUX = ReLU i1 ◦ReLU i2 ◦ · · · ◦ReLU ir ,

X = {i1, i2, . . . , ir}

ReLU i

provided that , we thus just need

to study the ReLU operation w.r.t. a single coordi-

nate, i.e., . It can be observed that ReLU does

not preserve convexity, which means that one polyhe-

dron might be transformed into a bundle②.

i X d1
d2 O(d1 × d2)

ReLU i(X)

It is notable that for a polyhedron, the number of

extreme directions is bounded by its dimension, and

the number does not exceed the maximum network

width multiplying the length of input sequences. In

contrast, suppose the numbers of vertices having non-

negative and negative -th coordinates in are

and , respectively; then we will have

vertices in the bundle in total.

X
X ′

For this reason, we need to do some abstraction

(more accurately, approximation) of the intermediate

bundles to reduce the vertex number. In addition, for

every polyhedron member in the bundle, its ab-

straction must fulfill the following requirements.

X ′ ⊇ X1) ;

dimX ′ = dimX2) ;

X ′ \ X3) is bounded.

To achieve this, we need two auxiliary algorithms.

ReLU i(X)

X
1) The first is used to compute from a

polyhedron .

2) The second is related to the polyhedron ab-

straction, which preserves the dimension, but reduces

the number of vertices.

ReLU i(X) X

X
V R

Computing from Polyhedron . The

point of this algorithm is to avoid the inter-conver-

sion between H- and V-representations. An algorithm

that can be done in polynomial time is given below.

Suppose that is characterized by the extreme ver-

tex set and the extreme direction set . Let

ei = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0)T,

Hi {x | xTei = 0}
i

0 ReLU i(X)

Hi

X0 Hi

X1

and let be the coordinate plane

(i.e., the set consisting of points whose -th coordi-

nate is). One should be aware that may

contain at most two polyhedra — the one “above”
(denoted by) and the one “within” (denoted by

).

1) First of all, the vertex sets of the resultant

polyhedra can be determined as follows. Let

V ′ = {v ∈ Hi | ∃v1,v2 ∈ V, ∃1 ⩾ c ⩾ 0,

s.t. v = cv1 + (1− c)v2}
∪ {v ∈ Hi | ∃v′ ∈ V, ∃d ∈ R, ∃c ⩾ 0

s.t. v = v′ + cd},

X0 {v ∈ V | vTei ⩾ 0}
∪V ′ X1 {ReLU i(v) | v ∈ V,vTei ⩽ 0}
∪V ′

and then the vertex set of is

, and that of is

.

X0

X1 d1 d2 dT
1 · ei < 0

dT
2 · ei > 0

2) Second, we establish the direction sets for

and . For two directions and with

and , we let

comb(d1,d2) = (dT
2 · ei)dT

1 − (dT
1 · ei)dT

2 ,

R′ = {comb(d1,d2) | d1,d2 ∈ R,dT
1 · ei < 0,

and dT
2 · ei > 0} X0

R′ ∪ {d ∈ R | dT · ei ⩾ 0} X1

R′ ∪ {ReLU (d) | d ∈ R,dT · ei ⩽ 0}

and let

, and then the direction set of is

 and the direction set of

is .

X0 X1 ∅Remind that (and/or) might be if its ver-

tex set is empty. We illustrate the algorithm upon 2-

dimensional example polyhedra in Fig.4 and Fig.5,

which are with respect to the bounded and unbound-

ed cases, respectively. Fig.4 shows the detailed algo-

rithm process on each dimension, while Fig.5 only

shows the processing results on the dimensions.

{X0,X1}
ReLUi(X)

Theorem 3. is precisely the bundle of
.

X = X⩾0 ∪ X⩽0

X⩾0 X⩽0 X
xi ⩾ 0 xi ⩽ 0

ReLU i(X) = ReLU i(X⩾0) ∪ReLU i(X⩽0)

X⩾0 X⩽0 ReLU i

ReLU i(X⩾0) =X⩾0

ReLU i(X⩽0) = Proji(X⩽0)

Proof. First, we have that , where

 and are the intersections of with the poly-

hedra determined by and , respectively.

Thus, . For

both and , the operation is linear. In

addition, we definitely have and

.

X⩾0The vertice set of can be categorized into two

parts.

v X
eT
i · v ⩾ 0

1) The first part contains the vertices of such

that ;

X xi = 0

2) the other part is constituted with vertices of

the intersection of and the plane .

d X⩾0Meanwhile, an extreme direction of must be ei-

ther of the following two cases.

X
eT
i · d ⩾ 0

1) It is an (extreme) direction of , and

;

xi = 0

2) or it is located in the newly generated face

.

1300 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

②Actually, from the perspective of topology[29], such a bundle must be a “complex” — it consists of a set of simplexes, and the
common part of each adjacent two is a simplex with lower dimension.

X⩾0

X0

For both cases, one can check that coincides

with — though during the construction, we may

introduce some non-extreme vertices and directions.

X1

ReLU i(X⩽0) ReLU i(X) = {X0,X1}
Likewise, we can also see that is precisely

. We thus have .

□
Rn

X ⊆ Rn dimX = m

m < n R

Rm

Polyhedron Abstraction. Indeed, within , for a

given polyhedron with and

, we can use a rigid linear deformation to

transform it into the space in the following way.

m+ 1 p0,p1, . . . ,

pm ∈ X {pi − p0}1⩽i⩽m
vi = pi − p0 {ui}1⩽i⩽m

{vi}1⩽i⩽m

Suppose that we have points

 and the set is linearly inde-

pendent, and then let , let be

the orthogonal basis obtained from via ap-

plying Gram-Schmdit orthogonalization. Then just let

R : v 7→ (c1, . . . , cm)
T,

ci = (v − p0)
Tuiwhere . The following claims are

straightforward to check.

RTheorem 4. For the linear transformation we
have:

X R(X)1) it is a bijection from to ;
R vol(R(X)) = vol(X)2) is rigid, namely, we have .

R

R−1(t) = Ut+ p0 U = (u1, . . . ,um)

In addition, the inversion of is given by

, where .

m

X V

R Rm

The abstraction algorithm is an extension of Yu's

work presented in [30] (Algorithm 1 in [30], here-

inafter referring it as AoYu), which is an iterative

truncation procedure, starting from an initial over-ap-

proximated polyhedron. During each iteration, it se-

lects a cutting hyperplane (c.f. lines 2–4, 11–13 of

AoYu) and computes the new polyhedron after trun-

cation (c.f. lines 7–10 of AoYu). Given an -dimen-

sional polyhedron , with the extreme vertex set

and direction set , we first transform it into us-

ing the aforementioned rigid deformation, and then

the followings are performed.

m ei =1) To initialize the -simplex, still let

A

B

C

D

E

F

(a)

A

B

C

D

E

F
G

H

K

(b)

A

B

C

G

H

(c)

G

K

(d)

A

B

C

G

H

M

N

P

(e)

G

K

Q

(f)

A

BG

M N

(g)

M P

(h)

G

Q

(i)

-5

-5 -3 -1 1 3 5

-3

-1

1

3

5

-5

-5 -3 -1 1 3 5

-3

-1

1

3

5

-5

-5 -3 -1 1 3 5

-3

-1

1

3

5

-5

-5 -3 -1 1 3 5

-3

-1

1

3

5

-5

-5 -3 -1 1 3 5

-3

-1

1

3

5

-5

-5 -3 -1 1 3 5

-3

-1

1

3

5

-5

-5 -3 -1 1 3 5

-3

-1

1

3

5

-5

-5 -3 -1 1 3 5

-3

-1

1

3

5

-5

-5 -3 -1 1 3 5

-3

-1

1

3

5

Fig.4. Process of the ReLU algorithm on a 2D example (bounded). (a) Original polyhedron. (b) Proceeding w.r.t. the 1st coordinate.
(c)–(d) Intermediate results. (e)–(f) Proceeding w.r.t. the 2nd coordinate. (g)–(i) Polyhedron bundle of the final results.

Zhen Liang et al.: Qualitative and Quantitative Model Checking Against RNNs 1301

(0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
m−i−1

)
vµ = (minv∈V eT

1 · v, · · · ,
minv∈V eT

m · v)T X ′ =
∩m+1

i=1
Hi

, let

, and then let where

Hi =

{
{x | (x− vµ)

Tei ⩽ 0}, 0 ⩽ i ⩽ m,
{x | (x− vµ)

Ts ⩽ c}, i = m+ 1,

s, cand can be obtained by solving the optimization

problem:

s, c = argmax
t=(t1, ··· , tm), b

#{p ∈ V | (p− vµ)
Tt = b}

s.t.


(v − vµ)

Tt ⩽ b, v ∈ V,

ti ⩾ 0, i = 1, . . . ,m,
b ⩾ 0.

m2) We update the vertices of the initial -sim-

plex with

V ′ = cvx({vi + adj | vi ∈ V,dj ∈ R, a ∈ R} ∩ X ′),

cvx(S)
S

to deal with unbounded ones. The function re-

turns the vertex set of the convex hull of with the

QuickHull algorithm[31].

3) Each iteration will increase the number of ver-

tices. Finally, we replace the loop condition with a

bound of the (designated) vertex number or the ap-

proximation precision.

The above abstraction algorithm guarantees Re-

X ′

R = (v,d)

v′ = v + b · d ∈ X b ∈ R
d X

X ∩R ̸= ∅ R \ X

X ′ \ X
X ′ \ X

quirements 1–3 mentioned in Section 4. Requirement

1 is obvious and requirement 2 is guaranteed by the

rigid transformation. To see why requirement 3 holds,

we need to observe the following fact: let be the

abstracted polyhedron and then for each ray
③, according to the construction, there

must exist some for some .

Since is also a recession direction of , we can de-

clare that — more accurately, is a

bounded line (a.k.a., a segment). It implies that

 is bounded — otherwise, there must exist

some ray in , which is unbounded.

N

f ♯N

Notably, what we have yielded is a polynomial

time algorithm. Fig.6 demonstrates the different

stages of the algorithm upon a 2D unbounded polyhe-

dron. Therefore, the propagation upon with ab-

straction also determines a mapping between bundles.

We denote the mapping by in what follows.

vol(X)/vol(Y) = 0

dimX <dimY

A Speculative Optimization Approach. Recall that

a bundle might consist of polyhedra with different di-

mensions, and we have that from

Measure Theory if . Also, it can be seen

that the dimension of a bundle cannot increase dur-

ing the propagation — it can sometimes decrease if it

is applied to a degenerated (or, singular) linear trans-

A

(a)

B
A

(b)

B

(c)

2

4

6

8

10

-6 -4 -2

-2

2 4 6

2

4

6

8

10

-6 -4 -2

-2

2 4 6

2

4

6

8

10

-6 -4 -2

-2

2 4 6

2

4

6

8

10

-6 -4 -2

-2

2 4 6

2

4

6

8

10

-6 -4 -2

-2

2 4 6

B
A

(d)

B

C

(e)

 















Fig.5. Process of the ReLU algorithm on a 2D example (unbounded). (a) Original polyhedron. (b)–(c) Results of proceeding w.r.t.
the 1st coordinate. (d)–(e) Results of proceeding w.r.t. the 2nd coordinate (i.e., final results).

1302 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

(v,d) X ′ v ∈ X ′ d

{v + a · d | a ⩾ 0}

③Here, we use a tuple to denote a ray within , which means and is a recession direction. It corresponds to the
set .

d

formation, or is applied to a ReLU operation. For this

reason, we can tentatively “discard” some polyhedra

whose dimensions are lower than some threshold . If

we find that

dim(f ♯, dN ([[φ]]
n, k

) ∩ [[ψ]]
m, k

) ⩾ d

f ♯, dN

f ♯N
d

′

d
′

d

holds, we can be confident that such an optimization

strategy is promising, where is the adaptation of

 with such discarding. Otherwise, we need to set a

smaller threshold , and a compensatory computa-

tion for some discarded parts is required, which

means an economical computation only involving

the polyhedra whose dimensions fall in between

and .

f ♯, dN f ♯N

Note that such a strategy only works for quantita-

tive model checking. Also, we in what follows do not

explicitly distinguish and .

Because we have introduced abstraction during

the propagation, to pursue the accuracy, we need to

do the refinement. Note that this is required only in

the following situations.

f ♯N ([[φ]])n, k ̸⊆ [[ψ]]
m, k

1) For doing qualitative model checking, when

 holds.

f ♯N ([[φ]])n, k

dim(f ♯N ([[φ]])n, k) = dim(f ♯N ([[φ]])n, k ∩ [[ψ]]
m, k

)

2) For the quantitative case, once we find that

the majority part of is bounded and

 holds.

X = f ♯N ([[φ]])n, k Y = X ∩ [[ψ]]
m, k

Indeed, let and ,

other cases for quantitative model checking can be

handled as follows.

dimY < dimX dimY = dimX
Y

X (φ {N} ψ)k = 0

1) For the case , or

and the majority of part of is bounded but not the

case of , then we surely have .

dimX = dimY
X Y

(φ {N} ψ)k

2) If and both the majority of

parts of and are unbounded, then the value

 can be computed using the symbolic ap-

proach introduced in Section 3.

Key techniques for doing refinement are the

Monte Carlo sampling and the backward propagation.

Let us elaborate them in the followings.

X f−1
N (X)

Backward Propagation. Just recall the construc-

tion of the rigorous propagation, for any given space

, we may compute in a backward manner.

This is simply based on the following trivial facts.

g : v 7→ v + b b

g−1(v) = v − b

g−1(V) = {v − b | v ∈ V}

1) First, for a mapping , where is

a constant vector, we have , and hence

.

ReLU−1
i ({v})2) Then is defined as:

2 4 6 8

2

4

6

8

A

B

C
D

(a)

2 4 6 8

2

4

6

8

A

B
C D

G

H

I

(b)

2 4 6 8

2

4

6

8

A

B

C D
G

H

I

L

M

(c)

2 4 6 8

2

4

6

8

A

B

C D

L

M

(d)

2 4 6 8

2

4

6

8

A

B

C
D

L

M

(e)

Fig.6. Illustrations for the vertex reduction algorithm of an unbounded polyhedron. The algorithm starts from the input polyhedron
(a), the black arrow indicates the extreme direction), and constructs the initial simplex (b) in the first quadrant. Then preprocess-
ing is done to ensure the infinitesimal requirement because of the boundlessness (c), (d). Lastly, the polyhedron is refined with the
truncation iteration as AoYu (e). (a) Input polyhedron. (b) Initialization. (c) Preprocessing. (d) Cutting infinity. (e) Refinement.

Zhen Liang et al.: Qualitative and Quantitative Model Checking Against RNNs 1303

 {v}, vi > 0,
∅, vi < 0,
{(v1, . . . , vi−1, u, vi+1, . . . , vt)

T | u ⩽ 0}, vi = 0,

v = (v1, . . . , vi−1, vi, vi+1, . . . , vt)
T.where

ReLU−1
X =ReLU−1

ir
◦ · · · ◦ReLU−1

i2
◦ReLU−1

i1

X = {i1, i2, . . . , ir}
3) ,

if .

f−1
N (X)

∅

p f−1
N ({p}) ∩ [[φ]]

n, k
̸= ∅

Thus, together with Theorem 1, we can obtain the

preimage in a step-wise manner. Practically,

more than one preimage would be generated during

this process, which may be further involved in the fol-

lowing backward propagation. To mitigate this case,

we retain a point set (with a limitation of the total

number) sampling from the set regions during the

propagation procedure. If the point set becomes af-

ter one backward step, the process is terminated ear-

ly (called the early stop mechanism). In what follows,

we say that is feasible if .

Refinement for Qualitative Model Checking. For

qualitative model checking, we need to decide if

f−1
N

(
f ♯N ([[φ]]n, k) \ [[ψ]]m, k

)
∩ [[φ]]

n, k
= ∅

holds. Instead of proceeding in a monolithic fashion,

we can partition the postimage into several parts

(e.g., a simplex), and each time just compute the

preimage of one simplex. The verification can be ter-

minated immediately if a non-empty preimage of any

part is detected.

Refinement for Quantitative Model Checking. To

evaluate how often a given property holds, we adopt a

Monte Carlo sampling based method for quantitative

ϵ

p̂

±ϵ 1− δ

p

model checking, which is widely utilized in the field of

statistical model checking[32], ranging from safety veri-

fication[33], and risk analysis[34], to resilience assess-

ment[35]. More precisely, for an error specified by

users, the estimate does not lie outside the ground

truth with a confidence probability . Sup-

pose that a system has true probability of satisfy-

ing the given property, and then according to [32],

Prob(|p̂− p| ⩾ ϵ) ⩽ δ, if N ⩾ ⌈(ln 2− ln δ)/(2ϵ2)⌉,

δ = 2e−2Nϵ2 ϵ

where N is the sample number and the required

bound of N is termed the Chernoff bound[36]. Con-

versely, a given sample number N guarantees a confi-

dent probability with respect to error .

B
f ♯([[φ]]

n, k
)

B

nφ nψ
B {p}

Let be a hyper-cube subsuming the majority of

part of but with the same dimension (we

can find such with the approach introduced in the

abstraction algorithm). We initialize two integer vari-

ables and with 0, and we uniformly sample

within the region . For each sample , we do the

followings:

p1) decide the feasibility of using the backward

propagation;

p nφ 1

p |= ψ 1 nψ

2) if is feasible, we increase by ; and if in

addition holds, we also add to .

nψ/nφ
(φ{N}ψ)k
We finally take as the corresponding value

of , once a required quantity of samples has

been testified, such as the Chernoff bound with re-

spect to a tolerant error and a confidence probability.

In summary, Fig.7 depicts the whole verification

framework against RNNs, with the main techniques

Polyhedron Forward Propagation

Polyhedron
Abstraction

Backward Propagation
with Early Stop

Input
Bundle

Output
Bundle

Property
Bundle

Backtraced
Sample

Quantitative Model

Checking

Qualitative
Model Checking

Sample Data

Monte Carlo
Sampling

LTL [] Verification Formulas

Polyhedron

Refinement

Polyhedron

Refinement

Fig.7. Overview of the verification framework.

1304 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

utilized in the framework. Along with the blue ar-

rows, the forward propagation completes and the

qualitative model checking finishes, whereas, the

quantitative result is obtained via the Monte Carlo

sampling and the backward propagation along the red

arrows.

L dℓ
ℓ ∈ {1, 2, · · · , L}

Rd1×k

p0 v0

φ

k × (L− 1)

Complexity and Scalability Analysis. The analysis

is conducted from two aspects, i.e., the original verifi-

cation framework without the polyhedron abstraction

and the speculative optimization strategy, and the

verification framework with the polyhedron abstrac-

tion and the speculative optimization strategy. We

consider an -layer RNN with layer width ,

. Its input sequence length is k and

the input vector is in the shape . Assume that

there include extreme vertices and extreme di-

rections depicting the input region according to the

pre-condition . The whole verification process takes

 steps of forward polyhedron propagation

totally.

p
v

O(p(v + p)) O(v2)

Rn n

Rd1×k

v2
k(L−1)

0

d1 × k

d1

Firstly, the complexity and scalability are ana-

lyzed for the original verification framework without

the polyhedron abstraction and the speculative opti-

mization. In this case, supposing that there exist

extreme vertices and extreme directions represent-

ing the polyhedron, their numbers would increase

quadratically at most at the end of the following one-

step forward propagation, in and

time, respectively. The number of extreme directions

in space is bounded by and the input space is

, and then the numbers of extreme vertices and

extreme directions would increase to and

, respectively, after the whole verification pro-

cess in the worst case, which is computationally pro-

hibitive with respect to large input width and in-

put sequence length k, and greatly limits the scalabili-

ty of the proposed framework.

O(Mn5) n M

O(s) s

Secondly, we take the polyhedron abstraction and

the speculative optimization strategy into account.

The overall complexity of the polyhedron abstraction

is the same as that of Yu's algorithm[30], i.e., about

, where is the space dimension and is

the iteration number. The iteration number signifi-

cantly depends on the approximation precision. As for

the speculative optimization, it is with complexity

 and is the polyhedron number within a bun-

dle. It can be seen that such abstraction is not a

lightweight complexity algorithm; however, it re-

duces the vertex number significantly and the follow-

ing forward propagation duration further. Moreover,

the speculative optimization also makes great contri-

butions to the scalability of the verification frame-

work.

In summary, the original verification framework

can achieve exact polyhedron propagation, yet with

high computational complexity and limited scalabili-

ty. However, the polyhedron abstraction and specula-

tive optimization techniques alleviate the dilemma to

a great extent, with a bit of precision sacrifice.

5 Experiments

LTLf [x]

In this section, we exhibit the experimental re-

sults of the proposed approach and place more em-

phasis on demonstrating the expressive capabilities of

. The verified properties are categorized into

non-temporal properties and temporal ones herein,

where the former includes common properties in the

existing work, such as robustness, adversarial exam-

ples, and output reachability, and the latter includes

properties that have been hardly considered so far.

Moreover, we also record some illustrative experi-

ment details to highlight the quality and perfor-

mance of the key techniques proposed in the verifica-

tion framework.

A prototype toolkit BPMC2 has been developed

based on our verification framework. All the experi-

ments herein are run on the platform with Windows

11 system and the 11th Gen Intel® CoreTM i7-11800H

@ 2.30 GHz and RAM 16 GB.

N1 N2 N3 N4 N5

N3

Experiment Setting. In our experiments, five aca-

demic RNN instances , , , , and are

constructed, which are all decision networks for se-

quence classification problems, to illustrate the feasi-

bility of the proposed framework. Parameters of all

the networks are randomly generated. The networks'

structures and input sequence lengths k are shown in

Table 1. Taking the network as an example, its

input-width and output-width are 2 and 3, respective-

ly, and it has four hidden layers with dimensions 7,

10, 10 and 7, respectively.

Table 1. Network Structures and Input Sequence Lengths

Network Network Structure Input Length

N1 2-3-3-2 3

N2 2-7-10-10-7-3 3

N3 8-6-6-2 6

N4 1-2-2 3

N5 1-6-2 3

5.1 Verification of Non-Temporal Properties

According to the taxonomy presented in [7], the

Zhen Liang et al.: Qualitative and Quantitative Model Checking Against RNNs 1305

main non-temporal properties of neural networks and

their corresponding descriptions are displayed as fol-

lows.

ϵ

Robustness. It generally means the evaluation of

effects induced by perturbations affecting the inputs.

More clearly, it analyzes whether the classification re-

sults remain unchanged if an -perturbation is ap-

plied to the inputs.

Adversarial Examples. They refer to the input

samples that cause neural networks to make a false

prediction (or, classification).

Output Reachability. It indicates whether an out-

put range or a state can be reached, which is often

used to verify the safety of neural networks.

N1 N2 N3

In this subsection, we study these properties

against the recurrent neural networks , and .

ρ N1 N2

N3

Robustness. As for robustness, we randomly gen-

erate the input sequences for the networks ,

and , as shown in Table 2, which are classified in-

to the 1st, the 3rd, and the 1st class via the corre-

sponding network's prediction, respectively.

Table 2. Network Input Sequences

Network Original Input Sequence

N1 (–0.36, 0.5)T, (–0.71, 1.38)T, (1.79, –2.33)T

N2 (–1.24, 0.48)T, (0.61, 0.92)T, (–1.7, –0.23)T

N3 (–3.4, 8.0, –5.0, 9.5, 3.6, –1.4, –0.4, –0.7)T,
(–4.1, –0.2, 9.6, –3.3, –3.7, –5, –11.2, 2.8)T,
(6.7, 11.6, –2.8, 6.8, 0.2, 7.6, 7.1, 5.1)T,
(–7.5, 2.2, –4.8, –3.3, 1.8, –0.6, 5.9, 7.2)T,
(–3.6, 8.8, 1.8, –5.6, –0.4, 0.9, –0.1, 8.7)T,
(–5.2, –0.6, –3.9, 3.9, 5.4, 2.5, –1.9, –0.9)T.

N1 N2 N3

ρ N1

Qualitative (quali. res.) and quantitative (quan.

res.) model checking results on those networks are

given in Table 3. The verification duration on net-

work , and averagely takes 1 second, 6 sec-

onds, and 15 seconds, respectively. Taking the fifth

row as an example, it declares that “for input se-
quence on network , adding 0.05 to the 1st ele-

ment of the input on the 3rd timestep ((i, j)/i=(3, 1))

is robust (100%), while subtracting 0.1 from both ele-
ments of the input on the 3rd timestep ((i, j/)i=3) is
not robust, with 99.3% of the outputs satisfying the ro-
bustness.”

The pre-condition and post-condition correspond-

ing to the 2nd–5th (resp. rightmost four) columns can

be formulated as

eT
j (X

ix−Mi · Jux(ρ)) < ϵ

(resp. Xix−Mi · Jux(ρ) < (ϵ, ϵ)T),

X5x > X6x, Mi(
0 · · · 0︸ ︷︷ ︸

i−1

I2 0 · · · 0︸ ︷︷ ︸
K−i

)
e1 = (1, 0)T

e2 = (0, 1)T

respectively and where is the matrix

 and the vectors ,

.

ϵ

N1

Adversarial Examples. For an unrobust input re-

gion, we now intend to detect the existence of adver-

sarial example(s) for a given perturbation . The veri-

fication results are shown in Table 3. Herein, we fo-

cus on the network and the others are similar. In

this experiment, the pre-condition is

−ϵ <
K∧
i=1

∧
j=1,2

eT
j (X

ix−Mi · Jux(ρ)) < ϵ,

X5x > X6x

ϵ

ρ

and the post-condition is . Experimental re-

sults are shown in Table 4. For a concrete value

(the 3rd column), it yields the concrete adversarial

examples, and elements that have been changed (in

comparison with) are written in bold (in the 2nd

column), and the number of changed input elements

is in the 1st column.

Reachability. In this setting, we say that an input

is unsafe if it yields an output that is “close” enough

to both categories, namely, specified with the post-

condition

−ϵ < ((eT
1 − eT

2)(X
3x)) < ϵ,

Table 3. Verification Results on the Robustness Property

Network (i, j)/i ϵ Quali. Res. Quan. Res. (i, j)/i ϵ Quali. Res. Quan. Res.

N1 (3, 1) –0.05 Sat 1.000 1 +0.05 Sat 1.000

(3, 1) –0.10 Sat 1.000 2 +0.10 Sat 1.000

(3, 1) –0.20 Sat 1.000 2 –0.45 Unsat 0.996

(3, 1) +0.05 Sat 1.000 3 –0.10 Unsat 0.993

(3, 1) +0.10 Unsat 0.705 3 +0.10 Unsat 0.870

N2 (1, 1) +0.10 Unsat 0.884 1 –0.01 Sat 1.000

(1, 2) –0.20 Unsat 0.717 1 –0.05 Sat 1.000

(1, 2) –0.15 Unsat 0.725 2 –0.10 Sat 1.000

N3 3 –0.10 Sat 1.000 5 –0.10 Sat 1.000

4 –0.10 Sat 1.000 6 –0.10 Sat 1.000

1306 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

True
N1 ϵ = 0.02

ρ′ = (−0.36, 0.50)T, (−0.71, 1.38)T, (1.79,−2.43)T

N1

but with the pre-condition with respect to net-

work . Taking , we detect an unsafe input

 for

.

5.2 Verification of Temporal Properties

N4 N5

Compared with other networks, the exclusive

structural feature of RNNs lies in the memory units,

which is the reason for their utilization in sequence

processing. Therefore, the temporal properties upon

RNNs can be defined, whereas they have been paid

little attention so far. We conduct experiments by

verifying some temporal properties indicating conver-

gence to a great extent. In this subsection, the experi-

ments are carried out on networks and . The

first property is specified in the input sequence,

declaring that “whenever the input is monotonically
increasing, would the sample be divided into the sec-
ond class?” The second property is to justify “if the
input at the second time step is at most 0, would the
probability that the sample belongs to the second class
decrease monotonically?” and the last one is to verify

“whether the sample would be classified into the sec-
ond class if the input at the first time step is smaller
than the one at the second time step?”

N4 N5

N5

The first property and the second property are

verified on network and the last one is on . As

illustrated in Table 5, the first property is Unsat with

0.174 of the outputs satisfying the post-condition,

whereas the second is Unsat with the probability

0.694 3. As for the last property, it completely holds

on network . The verification duration for these

properties takes about 0.04, 0.15, and 0.4 seconds re-

spectively.

5.3 Performance Demonstrations

LTLf [x]
In this subsection, except the above-mentioned ex-

pressive capabilities of the specification logic

and the efficacy of our proposed verification frame-

work, we show some running details of the verifica-

tion processes to demonstrate the quality and effec-

tiveness of the key technique, i.e., the polyhedra ab-

straction with speculative optimization.

N3

Herein, we make some comparisons between the

original verification process and the one coupled with

the polyhedron abstraction and the speculative opti-

mization in terms of computation time and memory,

with respect to the verification examples on network

 in Table 3. The computation time and the total

memory space of the original and integrated cases are

listed in Table 6, corresponding to “-o” and “-a” la-

beled columns, respectively.

On the one hand, it can be observed that with the

polyhedron abstraction and the speculative optimiza-

tion techniques, the verification process can be accel-

erated greatly, which mainly stems from the fact that

the polyhedron abstraction reduces the following com-

putational burden and the speculative optimization

discards lower-dimensional polyhedra during the veri-

fication process.

On the other hand, the verification process, com-

bined with polyhedron abstraction and speculative

optimization, takes a little more memory space com-

pared with the original verification framework. It re-

sults from the fact that the polyhedron abstraction

process occupies more memory, while the speculative

optimization has discarded some polyhedra in the fol-

lowing process.

Considering the performance of the verification

duration and memory spaces, polyhedron abstraction

and speculative optimization are necessary to be

adopted for verification acceleration. Moreover, as the

final verification conclusions show, it is notable that

robustness still holds in all the cases even when some

over-approximation is introduced during the abstrac-

tion process. However, it is of great importance to

carefully balance the verification precision and com-

putation efficiency of the polyhedron abstraction pro-

Table 4. Model Checking Results on Adversarial Examples

Changed
Unit (s)

Adversarial
Example

ϵ

1 (–0.36, 0.50)T, (–0.71, 1.38)T, (1.79, –2.39)T 0.06

1 (–0.36, 0.35)T, (–0.71, 1.38)T, (1.79, –2.33)T 0.15

2 (–0.36, 0.47)T, (–0.71, 1.38)T, (1.79, –2.39)T 0.09

2 (–0.36, 0.50)T, (–0.71, 1.47)T, (1.87, –2.33)T 0.17

3 (–0.36, 0.50)T, (–0.71, 1.43)T, (1.85, –2.27)T 0.15

3 (–0.36, 0.44)T, (–0.71, 1.38)T, (1.73, –2.38)T 0.17

Table 5. Experimental Results of Model Checking upon Temporal Properties

Property Pre-Condition Post-Condition Proportion

Property 1 ∀i.1 ⩽ i ⩽ 2 → Xi+1x ⩾ Xix eT1 (X3x) ⩽ eT2 (X3x) 0.174 0

Property 2 X2x ⩽ 0 ∀i.1 ⩽ i ⩽ 2 → (eT1 (Xi+1x) < eT1 (Xix)) 0.694 3

Property 3 X1x ⩽ X2x eT1 (X3x) ⩽ eT2 (X3x) 1.000 0

Zhen Liang et al.: Qualitative and Quantitative Model Checking Against RNNs 1307

cess according to practical cases.

6 Related Work

So far, the work on verification of RNNs is rather

scarce. The most common approach is to convert

RNNs to FNN-similar networks and verify them with

the mature methods for the latter. Akintunde et al.[15]

first proposed the idea of unrolling, which concate-

nates the structure of an RNN for different timesteps,

thus degenerating an RNN to an FNN-like network.

To overcome the difficulty caused by scale explosion,

Jacoby et al.[16] used invariant inference to deal with

the loop structure and considered the loop as an in-

put element added to the input layer. In this paper,

we utilize the “unrolling” idea and leverage a tempo-

ral logic specification to reason about the properties

of RNN.

Different from converting to FNN-like networks,

Ko et al.[17] proposed the POPQORN algorithm based

on linear approximation, and as far as we know, it is

the first framework to provide a quantified robust-

ness evaluation of RNNs. Later, Du et al.[18] present-

ed Cert-RNN based on the zonotope abstraction, and

Ryou et al.[19], very recently, proposed Prover relying

on linear programming and polyhedron abstraction,

both of which obtain more precise and scalable re-

sults than the prior work. The listed work mainly fo-

cuses on robustness, and ignores the temporal proper-

ties of the input/output sequences of RNNs. In our

work, we take the entire input/output sequences into

consideration and verify some non-trivial temporal

properties as well. Moreover, the quantified robust-

ness evaluations specify the robust input regions but

to what extent the robustness property holds in unro-

bust input ones is not taken into account, both of

which are tackled in our framework. In this paper, the

motivation that we select polyhedra as abstract do-

mains for the RNN verification, instead of zonotopes,

polytopes or star sets, is mainly three-fold. Firstly,

polyhedra are compatible with our specification lan-

guage, which means that the conversion between

them is easy to implement and understand. Secondly,

polyhedron sets (i.e., polyhedron bundles defined in

the paper) are closed under the ReLU operator. While

zonotopes do not hold this property, meaning that

their computation introduces more wrapping effect in

the verification. Last but not least, polyhedra can de-

pict unbounded constrained regions, but polytopes

and star sets cannot. Besides, a bounded polyhedron

is a polytope essentially and any bounded polyhedra

can be represented as star sets[37].

The RNN verification scheme proposed by Zhang

et al. in 2020[20], based on reachability analysis, is

more related to our paper. RNNs are abstractly inter-

preted by polytope propagation and fixed point analy-

sis, and then RNNs are verified against cognitive

tasks. In this paper, we circumvent the exponential

increase in the vertex number through the whole

polyhedron propagation with V-representation and

verify the properties quantitatively.

Statistic model checking on automata in [22], an-

other related work to ours, provides probabilistic re-

sults of the robustness verification of RNNs. However,

the results of [22] based on sampling are approxima-

tions of the ground truth (cannot specify whether an

input region is robust or not). Our proposed frame-

work can derive qualitative results to show the prop-

erty satisfiability, not only limited to robustness, and

provide probabilistic (quantitative) results when prop-

erties do not hold.

In addition, researchers also attempt to utilize au-

tomata and other computational models to conduct

formal modeling of RNNs. RNN behaviors can also be

modeled and verified by labeled transition systems,

deterministic finite automata and rule extraction, and

context-free grammars and probabilistic automata.

The early automata extraction technology mainly

used hierarchical clustering analysis to analyze the

continuous state space of recurrent neural

networks[38], and some scholars proposed a sampling-

based method to extract automata[39].

7 Conclusions

LTLf [x]
In this paper, we proposed a specification lan-

guage and an alternative verification frame-

work unifying qualitative and quantitative model

checking for RNNs. The key data structure utilized to

do the model checking is the polyhedron abstract do-

main and the polyhedron forward propagation is in-

troduced for ReLU RNNs. To alleviate the vertex ex-

plosion during the propagation process, we put for-

ward the (dimension-preserving) polyhedron abstrac-

Table 6. Comparisons on Computation Time and Memory

i Timeo (s) Timea (s) Memo (MB) Mema (MB)

3 15.405 1.181 93.2 95.2

4 13.974 1.155 93.6 95.2

5 14.500 1.112 93.3 95.0

6 13.701 1.115 93.9 95.4

1308 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

tion and leveraged polyhedron refinement to achieve

most precise results possible for both qualitative and

quantitative verification, based on the Monte Carlo

sampling. A prototype tool named BPMC2 was imple-

mented to examine the feasibility of the proposed al-

gorithms, taking both non-temporal and temporal

properties into account. The tool verified the given

properties successfully with considerable memory

space and computation time.

LTLf [x]
Based on the polyhedron abstract domain and

, our verification framework theoretically re-

solves the technical intractability of ReLU RNN vali-

dation. However, further optimization on the scalabil-

ity is still needed for its deployment and application

in practical scale networks, such as more efficient da-

ta structures and organization, more reasonable ap-

proximation strategy balancing precision and efficien-

cy, and systematic integration of floating-point com-

putation. Extending our verification framework on

other activation functions and RNN variants and ver-

ifying the properties with unbounded input lengths

are also promising research directions in the future.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma

S, Huang Z H, Karpathy A, Khosla A, Bernstein M, Berg

A C, Fei-Fei L. ImageNet large scale visual recognition

challenge. International Journal of Computer Vision,

2015, 115(3): 211–252. DOI: 10.1007/s11263-015-0816-y.

[1]

 Pennington J, Socher R, Manning C D. GloVe: Global

vectors for word representation. In Proc. the 2014 Confer-

ence on Empirical Methods in Natural Language Process-

ing, Oct. 2014, pp.1532–1543. DOI: 10.3115/v1/d14-1162.

[2]

 Hinton G, Deng L, Yu D, Dahl G E, Mohamed A R, Jait-

ly N, Senior A, Vanhoucke V, Nguyen P, Sainath T N,

Kingsbury B. Deep neural networks for acoustic model-

ing in speech recognition: The shared views of four re-

search groups. IEEE Signal Processing Magazine, 2012,

29(6): 82–97. DOI: 10.1109/MSP.2012.2205597.

[3]

 Liu X W, Zhu X Z, Li M M, Wang L, Tang C, Yin J P,

Shen D G, Wang H M, Gao W. Late fusion incomplete

multi-view clustering. IEEE Trans. Pattern Analysis and

Machine Intelligence, 2019, 41(10): 2410–2423. DOI: 10.

1109/TPAMI.2018.2879108.

[4]

 Urmson C, Whittaker W. Self-driving cars and the urban

challenge. IEEE Intelligent Systems, 2008, 23(2): 66–68.

DOI: 10.1109/mis.2008.34.

[5]

 Litjens G, Kooi T, Bejnordi B E, Setio A A A, Ciompi F,

Ghafoorian M, van der Laak J A W M, van Ginneken B,

Sánchez C I. A survey on deep learning in medical image

[6]

analysis. Medical Image Analysis, 2017, 42: 60–88. DOI:

10.1016/j.media.2017.07.005.

 Huang X W, Kroening D, Ruan W J, Sharp J, Sun Y C,

Thamo E, Wu M, Yi X P. A survey of safety and trust-

worthiness of deep neural networks: Verification, testing,

adversarial attack and defence, and interpretability. Com-

puter Science Review, 2020, 37: 100270. DOI: 10.1016/j.

cosrev.2020.100270.

[7]

 Molnar C, Casalicchio G, Bischl B. Interpretable ma-

chine learning—A brief history, state-of-the-art and chal-

lenges. In Proc. the 2020 Workshops of the European

Conference on Machine Learning and Knowledge Discov-

ery in Databases, Sept. 2020, pp.417–431. DOI: 10.1007/

978-3-030-65965-3_28.

[8]

 Goodfellow I J, Shlens J, Szegedy C. Explaining and har-

nessing adversarial examples. In Proc. the 3rd Interna-

tional Conference on Learning Representations, May 2015.

[9]

 Papernot N, McDaniel P, Jha S, Fredrikson M, Celik Z B,

Swami A. The limitations of deep learning in adversarial

settings. In Proc. the 2016 IEEE European Symposium on

Security and Privacy, Mar. 2016, pp.372–387. DOI: 10.

1109/EuroSP.2016.36.

[10]

 Katz G, Barrett C W, Dill D L, Julian K, Kochenderfer

M J. Reluplex: An efficient SMT solver for verifying deep

neural networks. In Proc. the 29th International Confer-

ence on Computer Aided Verification, Jul. 2017, pp.97–
117. DOI: 10.1007/978-3-319-63387-9_5.

[11]

 Gehr T, Mirman M, Drachsler-Cohen D, Tsankov P,

Chaudhuri S, Vechev M. AI2: Safety and robustness certi-

fication of neural networks with abstract interpretation.

In Proc. the 2018 IEEE Symposium on Security and Pri-

vacy, May 2018, pp.3–18. DOI: 10.1109/sp.2018.00058.

[12]

 Singh G, Gehr T, Püschel M, Vechev M. An abstract do-

main for certifying neural networks. Proceedings of the

ACM on Programming Languages, 2019, 3(POPL): 41.

DOI: 10.1145/3290354.

[13]

 Liu W W, Song F, Zhang T H R, Wang J. Verifying Re-

LU neural networks from a model checking perspective.

Journal of Computer Science and Technology, 2020,

35(6): 1365–1381. DOI: 10.1007/s11390-020-0546-7.

[14]

 Akintunde M E, Kevorchian A, Lomuscio A, Pirovano E.

Verification of RNN-based neural agent-environment sys-

tems. In Proc. the 33rd AAAI Conference on Artificial In-

telligence, Jan. 27– Feb. 1, 2019, pp.6006–6013. DOI: 10.

1609/aaai.v33i01.33016006.

[15]

 Jacoby Y, Barrett C, Katz G. Verifying recurrent neural

networks using invariant inference. In Proc. the 18th In-

ternational Symposium on Automated Technology for

Verification and Analysis, Oct. 2020, pp.57–74. DOI: 10.

1007/978-3-030-59152-6_3.

[16]

 Ko C Y, Lyu Z Y, Weng L, Daniel L, Wong N, Lin D H.

POPQORN: Quantifying robustness of recurrent neural

networks. In Proc. the 36th International Conference on

Machine Learning, Jun. 2019, pp.3468–3477.

[17]

 Du T Y, Ji S L, Shen L J, Zhang Y, Li J F, Shi J, Fang

C F, Yin J W, Beyah R, Wang T. Cert-RNN: Towards

certifying the robustness of recurrent neural networks. In

Proc. the 2021 ACM SIGSAC Conference on Computer

[18]

Zhen Liang et al.: Qualitative and Quantitative Model Checking Against RNNs 1309

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/TPAMI.2018.2879108
https://doi.org/10.1109/TPAMI.2018.2879108
https://doi.org/10.1109/mis.2008.34
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1016/j.cosrev.2020.100270
https://doi.org/10.1016/j.cosrev.2020.100270
https://doi.org/10.1007/978-3-030-65965-3_28
https://doi.org/10.1007/978-3-030-65965-3_28
https://doi.org/10.1007/978-3-030-65965-3_28
https://doi.org/10.1007/978-3-030-65965-3_28
https://doi.org/10.1007/978-3-030-65965-3_28
https://doi.org/10.1007/978-3-030-65965-3_28
https://doi.org/10.1007/978-3-030-65965-3_28
https://doi.org/10.1007/978-3-030-65965-3_28
https://doi.org/10.1007/978-3-030-65965-3_28
https://doi.org/10.1007/978-3-030-65965-3_28
https://doi.org/10.1007/978-3-030-65965-3_28
https://doi.org/10.1007/978-3-030-65965-3_28
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1109/sp.2018.00058
https://doi.org/10.1145/3290354
https://doi.org/10.1007/s11390-020-0546-7
https://doi.org/10.1007/s11390-020-0546-7
https://doi.org/10.1007/s11390-020-0546-7
https://doi.org/10.1007/s11390-020-0546-7
https://doi.org/10.1007/s11390-020-0546-7
https://doi.org/10.1007/s11390-020-0546-7
https://doi.org/10.1007/s11390-020-0546-7
https://doi.org/10.1609/aaai.v33i01.33016006
https://doi.org/10.1609/aaai.v33i01.33016006
https://doi.org/10.1007/978-3-030-59152-6_3
https://doi.org/10.1007/978-3-030-59152-6_3
https://doi.org/10.1007/978-3-030-59152-6_3
https://doi.org/10.1007/978-3-030-59152-6_3
https://doi.org/10.1007/978-3-030-59152-6_3
https://doi.org/10.1007/978-3-030-59152-6_3
https://doi.org/10.1007/978-3-030-59152-6_3
https://doi.org/10.1007/978-3-030-59152-6_3
https://doi.org/10.1007/978-3-030-59152-6_3
https://doi.org/10.1007/978-3-030-59152-6_3
https://doi.org/10.1007/978-3-030-59152-6_3
https://doi.org/10.1007/978-3-030-59152-6_3

and Communications Security, Nov. 2021, pp.516–534.
DOI: 10.1145/3460120.3484538.

 Ryou W, Chen J Y, Balunovic M, Singh G, Dan A,

Vechev M. Scalable polyhedral verification of recurrent

neural networks. In Proc. the 33rd International Confer-

ence on Computer Aided Verification, Jul. 2021,

pp.225–248. DOI: 10.1007/978-3-030-81685-8_10.

[19]

 Zhang H C, Shinn M, Gupta A, Gurfinkel A, Le N, Naro-

dytska N. Verification of recurrent neural networks for

cognitive tasks via reachability analysis. In Proc. the 24th

European Conference on Artificial Intelligence, Aug.

29–Sept. 8, 2020, pp.1690–1697. DOI: 10.3233/

FAIA200281.

[20]

 Vengertsev D, Sherman E. Recurrent neural network

properties and their verification with Monte Carlo tech-

niques. In Proc. the 34th AAAI Conference on Artificial

Intelligence, Feb. 2020, pp.178–185.

[21]

 Khmelnitsky I, Neider D, Roy R, Xie X, Barbot B, Bollig

B, Finkel A, Haddad S, Leucker M, Ye L N. Property-di-

rected verification and robustness certification of recur-

rent neural networks. In Proc. the 19th International

Symposium on Automated Technology for Verification

and Analysis, Oct. 2021, pp.364–380. DOI: 10.1007/978-3-

030-88885-5_24.

[22]

 Kalra N, Paddock S M. Driving to safety: How many

miles of driving would it take to demonstrate au-

tonomous vehicle reliability? Transportation Research

Part A: Policy and Practice, 2016, 94: 182-193. DOI: 10.

1016/j.tra.2016.09.010.

[23]

 Dahnert M, Hou J, Nießner M, Dai A. Panoptic 3D scene

reconstruction from a single RGB image. In Proc. the

35th International Conference on Neural Information Pro-

cessing Systems, Dec. 2021, Article No. 633.

[24]

 Wang J X, Wang K C, Rudzicz F, Brudno M.

Grad2Task: Improved few-shot text classification using

gradients for task representation. In Proc. the 35th Inter-

national Conference on Neural Information Processing

Systems, Dec. 2021, Article No. 501.

[25]

 Hornik K, Stinchcombe M, White H. Multilayer feedfor-

ward networks are universal approximators. Neural Net-

works, 1989, 2(5): 359–366. DOI: 10.1016/0893-6080(89)

90020-8.

[26]

 Ziegler G M. Lectures on Polytopes. Springer, 1995. DOI:

10.1007/978-1-4613-8431-1.

[27]

 Preparata F P, Shamos M I. Computational Geometry:

An Introduction. Springer, 1985. DOI: 10.1007/978-1-

4612-1098-6.

[28]

 Bredon G E. Topology and Geometry. Springer, 1993.

DOI: 10.1007/978-1-4757-6848-0.

[29]

 Zheng Y. Computing bounding polytopes of a compact set

and related problems in n-dimensional space. Computer-

Aided Design, 2019, 109: 22–32. DOI: 10.1016/j.cad.2018.

12.002.

[30]

 Barber C B, Dobkin D P, Huhdanpaa H. The quickhull

algorithm for convex hulls. ACM Trans. Mathematical

Software, 1996, 22(4): 469–483. DOI: 10.1145/235815.

235821.

[31]

 Legay A, Lukina A, Traonouez L M, Yang J X, Smolka S[32]

A, Grosu R. Statistical model checking. In Computing

and Software Science: State of the Art and Perspectives,

Steffen B, Woeginger G (eds.), Springer, 2019, pp.478–

504. DOI: 10.1007/978-3-319-91908-9_23.
 Mancini T, Mari F, Melatti I, Salvo I, Tronci E, Gruber J

K, Hayes B, Prodanovic M, Elmegaard L. Parallel statis-

tical model checking for safety verification in smart grids.

In Proc. the 2018 IEEE International Conference on Com-

munications, Control, and Computing Technologies for

Smart Grids (SmartGridComm), Oct. 2018. DOI: 10.

1109/smartgridcomm.2018.8587416.

[33]

 Wali K I, Othman S A. Schedule risk analysis using

Monte Carlo simulation for residential projects. Zanco

Journal of Pure and Applied Sciences, 2019, 31(5): 90–

103. DOI: 10.21271/zjpas.31.5.11.

[34]

 Younesi A, Shayeghi H, Safari A, Siano P. Assessing the

resilience of multi microgrid based widespread power sys-

tems against natural disasters using Monte Carlo Simula-

tion. Energy, 2020, 207: 118220. DOI: 10.1016/j.energy.

2020.118220.

[35]

 Okamoto M. Some inequalities relating to the partial sum

of binomial probabilities. Annals of the Institute of Statis-

tical Mathematics, 1959, 10(1): 29–35. DOI: 10.1007/

bf02883985.

[36]

 Tran H D, Manzanas Lopez D, Musau P, Yang X D,

Nguyen L V, Xiang W M, Johnson T T. Star-based

reachability analysis of deep neural networks. In Proc. the

3rd World Congress on Formal Methods, Oct. 2019,

pp.670–686. DOI: 10.1007/978-3-030-30942-8_39.

[37]

 Servan-Schreiber D, Cleeremans A, McClelland J L.

Graded state machines: The representation of temporal

contingencies in simple recurrent networks. Machine

Learning, 1991, 7(2/3): 161–193. DOI: 10.1007/BF00114843.

[38]

 Schellhammer I, Diederich J, Towsey M, Brugman C.

Knowledge extraction and recurrent neural networks: An

analysis of an Elman network trained on a natural lan-

guage learning task. In Proc. the 1998 New Methods in

Language Processing and Computational Natural Lan-

guage Learning, Jan. 1998, pp.73–78. DOI: 10.5555/

1603899.1603912.

[39]

Zhen Liang received his B.S. de-

gree in computer science and technolo-

gy from National University of De-

fense Technology, Changsha, in 2019.

He is currently a Ph.D. candidate at

National University of Defense Tech-

nology, Changsha. His research inter-

ests include model checking, interpretation and formal

verification of artificial intelligence.

1310 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

https://doi.org/10.1145/3460120.3484538
https://doi.org/10.1007/978-3-030-81685-8_10
https://doi.org/10.1007/978-3-030-81685-8_10
https://doi.org/10.1007/978-3-030-81685-8_10
https://doi.org/10.1007/978-3-030-81685-8_10
https://doi.org/10.1007/978-3-030-81685-8_10
https://doi.org/10.1007/978-3-030-81685-8_10
https://doi.org/10.1007/978-3-030-81685-8_10
https://doi.org/10.1007/978-3-030-81685-8_10
https://doi.org/10.1007/978-3-030-81685-8_10
https://doi.org/10.1007/978-3-030-81685-8_10
https://doi.org/10.1007/978-3-030-81685-8_10
https://doi.org/10.3233/FAIA200281
https://doi.org/10.3233/FAIA200281
https://doi.org/10.1007/978-3-030-88885-5_24
https://doi.org/10.1007/978-3-030-88885-5_24
https://doi.org/10.1007/978-3-030-88885-5_24
https://doi.org/10.1007/978-3-030-88885-5_24
https://doi.org/10.1007/978-3-030-88885-5_24
https://doi.org/10.1007/978-3-030-88885-5_24
https://doi.org/10.1007/978-3-030-88885-5_24
https://doi.org/10.1007/978-3-030-88885-5_24
https://doi.org/10.1007/978-3-030-88885-5_24
https://doi.org/10.1007/978-3-030-88885-5_24
https://doi.org/10.1007/978-3-030-88885-5_24
https://doi.org/10.1016/j.tra.2016.09.010
https://doi.org/10.1016/j.tra.2016.09.010
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1007/978-1-4613-8431-1
https://doi.org/10.1007/978-1-4613-8431-1
https://doi.org/10.1007/978-1-4613-8431-1
https://doi.org/10.1007/978-1-4613-8431-1
https://doi.org/10.1007/978-1-4613-8431-1
https://doi.org/10.1007/978-1-4613-8431-1
https://doi.org/10.1007/978-1-4613-8431-1
https://doi.org/10.1007/978-1-4613-8431-1
https://doi.org/10.1007/978-1-4613-8431-1
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1007/978-1-4757-6848-0
https://doi.org/10.1007/978-1-4757-6848-0
https://doi.org/10.1007/978-1-4757-6848-0
https://doi.org/10.1007/978-1-4757-6848-0
https://doi.org/10.1007/978-1-4757-6848-0
https://doi.org/10.1007/978-1-4757-6848-0
https://doi.org/10.1007/978-1-4757-6848-0
https://doi.org/10.1007/978-1-4757-6848-0
https://doi.org/10.1007/978-1-4757-6848-0
https://doi.org/10.1016/j.cad.2018.12.002
https://doi.org/10.1016/j.cad.2018.12.002
https://doi.org/10.1145/235815.235821
https://doi.org/10.1145/235815.235821
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1109/smartgridcomm.2018.8587416
https://doi.org/10.1109/smartgridcomm.2018.8587416
https://doi.org/10.21271/zjpas.31.5.11
https://doi.org/10.1016/j.energy.2020.118220
https://doi.org/10.1016/j.energy.2020.118220
https://doi.org/10.1007/bf02883985
https://doi.org/10.1007/bf02883985
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/BF00114843
https://dl.acm.org/doi/10.5555/1603899.1603912
https://dl.acm.org/doi/10.5555/1603899.1603912

Wan-Wei Liu received his Ph.D de-

gree in computer science from Nation-

al University of Defense Technology,

Changsha, in 2009. He is a professor

at National University of Defense

Technology, Changsha. His research

interests include theoretical computer

science (particularly in automata theory and temporal

logic), formal methods (particularly in verification), and

software engineering.

Fu Song received his Ph.D. degree

in computer science from University

Paris-Diderot, Paris, in 2013. He is an

associate professor with Shang-

haiTech University, Shanghai. His re-

search interests include formal meth-

ods and computer/AI security.

Bai Xue received his Ph.D. degree

in applied mathematics from Beihang

University, Beijing, in 2014. He is cur-

rently a research professor with the In-

stitute of Software, Chinese Academy

of Sciences, Beijing. His research inter-

ests involve formal verification of hy-

brid systems and AI.

Wen-Jing Yang received her Ph.D.

degree in multi-scale modeling from

Manchester University, Manchester, in

2014. She is currently an associate re-

search fellow at the State Key Labora-

tory of High Performance Computing,

National University of Defense Tech-

nology, Changsha. Her research interests include ma-

chine learning, robotics software, and high-performance

computing.

Ji Wang received his PhD degree in

computer science from National Uni-

versity of Defense Technology, Chang-

sha, in 1995. He is currently a full pro-

fessor at National University of De-

fense Technology, Changsha, and he is

a fellow of CCF. His research inter-

ests include software engineering and formal methods.

Zheng-Bin Pang received his B.S.,

M.S., and Ph.D. degrees in computer

science from National University of

Defense Technology, Changsha. Cur-

rently, he is a professor at National

University of Defense Technology,

Changsha. His research interests range

across high-speed interconnect, heterogeneous comput-

ing, and high performance computer systems.

Zhen Liang et al.: Qualitative and Quantitative Model Checking Against RNNs 1311

	1 Introduction
	2 Preliminaries
	2.1 Vectors and Operations
	2.2 Polyhedra
	2.3 Recurrent Neural Networks

	3 RNN Model Checking: Problem Definition
	3.1 Specification Language
	3.2 Qualitative and Quantitative Model Checking

	4 Verification Framework
	5 Experiments
	5.1 Verification of Non-Temporal Properties
	5.2 Verification of Temporal Properties
	5.3 Performance Demonstrations

	6 Related Work
	7 Conclusions
	Conflict of Interest
	References

