
 

A Pattern Matching Based Framework for Quantum Circuit
Rewriting

Hui Jiang (蒋　慧), Dian-Kang Li (李典康), Yu-Xin Deng* (邓玉欣), Distinguished Member, CCF
and Ming Xu (徐　鸣)

Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China

E-mail: yhq_jh@126.com; 51205902048@stu.ecnu.edu.cn; yxdeng@sei.ecnu.edu.cn; mxu@cs.ecnu.edu.cn

Received August 5, 2022; accepted March 19, 2024.

Abstract    The realization of quantum algorithms relies on specific quantum compilations according to the underlying

quantum processors. However, there are various ways to physically implement qubits and manipulate those qubits in dif-

ferent physical devices. These differences lead to different communication methods and connection topologies, with each

vendor implementing its own set of primitive gates. Therefore, quantum circuits have to be rewritten or transformed in or-

der to be transplanted from one platform to another. We propose a pattern matching based framework for rewriting quan-

tum circuits, called QRewriting. It takes advantage of a new representation of quantum circuits using symbolic sequences.

Unlike the traditional approach using directed acyclic graphs, the new representation allows us to easily identify the pat-

terns that appear non-consecutively but are reducible. Then, we convert the problem of pattern matching into that of find-

ing distinct subsequences and propose a polynomial-time dynamic programming based pattern matching and replacement

algorithm. We develop a rule library for basic optimizations and rewrite the arithmetic and Toffoli circuits from a com-

monly used gate  set  to  the gate  set  supported by the Surface-17 quantum processor.  Compared with a  state-of-the-art

quantum circuit optimization framework PaF optimized on the BIGD benchmarks, QRewriting further reduces the depth

and the gate count by an average of 26.5% and 17.4%, respectively.
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1    Introduction

Quantum  computing  has  attracted  increasing  in-

terest  in  the last  decades  since  it  provides  the possi-

bility to efficiently solve important problems such as

integer factorization[1], unstructured search[2], and lin-

ear equations[3].

In  recent  years,  with  the  popularity  of  quantum

computing,  many  companies,  universities,  and  insti-

tutes  have  been  actively  working  to  develop  proto-

types  of  quantum  computers.  For  example,  in  2019,

Google  announced  the  realization  of  quantum

supremacy,  the  development  of  the  53-qubit  quan-

tum processor “Sycamore”[4]. In November 2021, IBM
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unveiled  its  new  127-qubit “Eagle” processor  whose

scale  makes  it  impossible  for  a  classical  computer  to

reliably  simulate,  and  the  increased  qubit  count  al-

lows users to explore problems at a new level of com-

plexity①.  In  June  2022,  Xanadu  demonstrated  a

quantum  computational  advantage  with  a  pro-

grammable photonic processor that realized Gaussian

boson sampling on 216 squeezed modes[5].  These  sys-

tems are referred to as noisy intermediate-scale quan-

tum systems[6] and have  small  qubit  counts,  restrict-

ed connectivity, and high gate error rates. The dura-

tion of a physical quantum gate is roughly  ns–
ns,  if  the  fidelity  of  physical  gates  achieves  at  least

99%[7].  At present,  the coherence time of each physi-
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cal  qubit  is  s–  s  and  only  a  limited  set  of

gates can be realized with relatively high fidelity on a

quantum  device.  Each  quantum  processor  may  sup-

port  a  specific  universal  set  of  1-qubit  and  2-qubit

gates, which are called primitive gates[7]. Table 1 lists

three gate sets: , and , where  is a

commonly  used  gate  set[8],  is  implemented  by

the IBM Q series[9], and  is used by the Surface-17

quantum processor[10].
  

Table  1.    Three Gate Sets for Different Scenarios

Gate Set Symbol

GCom
[8] H,X,Y,Z,S,S†,T,T†

,Rz(θ),CX
GIBM

[9] U1(θ), U2(α, λ), U3(θ, α, λ), CX

GSur
[10] X,Y,Rx(θ),Ry(θ),CZ

 

The  realization  of  quantum  algorithms  relies  on

specific quantum compilations, which mainly focus on

the number of inserted quantum gates[11, 12] or the fi-

delity of the compiled quantum circuits[13, 14]. Howev-

er,  there  are  various  ways  to  physically  implement

qubits  in  different  physical  devices  and  manipulate

these qubits.  These differences  lead to different com-

munication  methods  and  connection  topologies,  with

each  vendor  implementing  its  own  set  of  primitive

gates.  Therefore,  quantum circuits  have  to  be  trans-

planted  from  one  platform  to  another.  In  addition,

since the gate types supported by a quantum proces-

sor are limited, quantum circuits may also be rewrit-

ten  when  some  high-level  gates  are  decomposed  into

low-level gates before quantum circuits execute on the

quantum processor.

Cp = Cs Cp
Cs

Cp Cs

Converting  a  quantum  circuit  supported  by  one

gate  set  to  a  quantum  circuit  supported  by  another

gate set with respect to some rules is called quantum

circuit  rewriting.  Usually,  a  rule  is  in  the  form

, where  is a fragment of a circuit whose be-

havior is the same as that of the fragment . We call

 a  pattern  circuit  and  a  substitution  circuit.  In

this  paper,  we  refer  to  the  circuit  to  be  rewritten  as

the  target  circuit.  Motivated  by  the  aforementioned

requirements, our approach consists of two key steps:

the  first  is  to  identify  the  patterns  in  the  target  cir-

cuit,  the second is to replace them with semantically

equivalent substitution circuits. For that purpose, we

first  introduce  a  new  representation  of  quantum  cir-

cuits using symbolic sequences. Unlike the traditional

way of using directed acyclic graphs (DAGs) based on

the  execution  dependencies  of  the  circuit[15],  the  new

representation  allows  us  to  easily  identify  the  pat-

terns that appear non-consecutively but are reducible.

In  the  case  that  a  fragment  of  a  circuit  can  be

matched by several different rules, we encounter a re-

placement conflict and need to resolve it with an ap-

propriate policy. We propose three policies for gener-

ating  schedulers  to  cope  with  replacement  conflicts.

One policy is precise in the sense that it will consider

all the replacement candidates of a conflict set. In the

worst  case,  its  time complexity  is  exponential.  For  a

large-scale  circuit,  we  need  to  make  a  trade-off  be-

tween  the  quality  of  the  generated  circuit  and  the

time  it  takes.  Therefore,  for  large-scale  circuits,  we

propose  a  greedy  policy  to  handle  replacement  con-

flicts and a stochastic policy to show that better poli-

cies exist.

The main contributions of this paper are summa-

rized below.

● We introduce a new representation of quantum

circuits,  which  can  easily  identify  the  patterns  that

appear non-consecutively but are reducible in the tar-

get circuits.

● We  present  a  polynomial -time  dynamic  pro-

gramming  based  pattern  matching  and  replacement

algorithm.

● We propose three policies for generating sched-

ulers to deal with replacement conflicts.

● We  develop  a  rule  library  for  basic  optimiza-

tions.

The rest of the paper is structured as follows. Sec-

tion 2 introduces  the  related  work. Section 3 recalls

the  basic  notations  about  quantum  computing. Sec-

tion 4 proposes a new representation of quantum cir-

cuits. Section 5 discusses  the  design  of  the  pattern

matching based quantum circuit rewriting framework.

Section 6 shows two case studies. Section 7 evaluates

QRewriting by using the BIGD[16] benchmarks and a

set  of  benchmark  circuits[17] consisting  of  arithmetic

circuits  and implementations of  multi-controlled Tof-

foli gates. Finally, Section 8 gives the conclusion. 

2    Related Work

Several  quantum  circuit  optimization  compilers

have  recently  been  proposed  to  compile  a  quantum

circuit  to  various  processors.  For  example,  Qiskit②
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| ⟩and t ket [18] support generic gate sets, and Quilc③ is

tailored  for  the  Rigetti  Agave  quantum  processor.

There  are  several  optimizers  that  automatically  dis-

cover patterns[19–22]. QRewriting aims to rewrite quan-

tum circuits between different processors according to

a given rule set, mainly focusing on pattern matching

and replacement.

Pattern  matching  is  widely  used  in  circuit  opti-

mization.  For  example,  many  algorithms  have  em-

ployed  peephole  optimization  and  pattern  matching

to  optimize  circuits.  Peephole  optimization  identifies

small sets of gates and replaces them with equivalent

sets that have better performance[13, 23]. Exact match-

ing  is  only  feasible  for  small-scale  and  medium-scale

circuits[24]. Heuristics are often used in large-scale cir-

cuits,  but  they  cannot  ensure  optimal  results[25, 26].

Prasad et  al.  and  Soekens et  al.  showed how to  find

optimal quantum circuits for all 3-qubit functions[27, 28].

Nam et al.  proposed five optimization subroutines[17].

Murali et  al.  developed  the  first  multi-vendor  quan-

tum computer compiler which compiles from high-lev-

el  languages  to  multiple  real-system  quantum  com-

puter prototypes, with device-specific optimizations[9].

The work of Chen et al. is the closest to ours, where a

quantum  circuit  optimization  framework  based  on

pattern matching (PaF) was proposed[29]. It uses sub-

graph  isomorphism  to  find  a  pattern  circuit  in  the

target  quantum circuit  according  to  a  given  rule  de-

scription, and then replaces it with an equivalent one.

C

O(|C|2) |C| C

Previous work often treats a target circuit  as a

DAG,  which  is  usually  not  unique  because  various

gates  may  commute.  The  patterns  that  appear  non-

consecutively  but  are  reducible  cannot  be  directly

identified  by  subgraph  isomorphism  in  the  DAG.  It

can integrate with commutation analysis to adjust the

order  of  commuting  gates  with  time  complexity

, where  is the length of the circuit .

In  this  paper,  we  introduce  a  new  representation

of quantum circuits, which can deal with non-consecu-

tive patterns more conveniently. For quantum circuit

rewriting,  we  propose  a  polynomial-time  algorithm,

which  is  based  on  dynamic  programming  to  match

and replace pattern circuits in the target circuit. 

3    Preliminaries

Z C
In this section, we introduce some notions and no-

tations  of  quantum computing.  Let  and  denote

the sets of all integers and complex numbers, respec-

tively.

|0⟩ |1⟩
|ϕ⟩ = a |0⟩+ b |1⟩ a, b ∈ C
|a|2 + |b|2 = 1 |ϕ⟩
|0⟩ |a|2

|1⟩ |b|2

Classical information is stored in bits, while quan-

tum information is  stored  in  qubits.  Besides  two ba-

sic states  and , a qubit can be in any linear su-

perposition  state ,  where 

satisfy  the  condition .  State  is  ob-

served to be in state  with probability  and in

state  with probability .

H
CX

A  quantum  gate  acts  on  a  collection  of  qubits,

which are called the operation qubits of the gate. For

example,  the  Hadamard  ( )  gate  is  applied  on  one

qubit, and the  gate is applied on two qubits. Its

behavior is described as:
 

CX(α |0⟩ |ψ⟩+ β |1⟩ |ϕ⟩) = α |0⟩ |ψ⟩+ β |1⟩ (X |ϕ⟩).

X

|1⟩
|ψ⟩ |ϕ⟩

CCX
CCZ CCX CCZ

X Z
|1⟩

That is,  we apply an  gate to the second qubit

(called  the  target)  if  the  first  (the  control)  is  in  the

state ,  and  the  identity  transformation  otherwise,

where  and  are the states of the second qubit.

Two  other  gates  which  are  relevant  include  the  3-

qubit  Toffoli  gate  and  the  double-controlled

phase gate .  Likewise,  the  and  gates

apply  and  gate,  respectively,  when  the  control

qubits are in state .

In a quantum circuit, each line represents a wire.

The wire  does  not necessarily  correspond to a physi-

cal  wire,  but  may correspond to  the  passage  of  time

or a physical particle that moves from one location to

another through space. The interested reader can find

more details of these gates in the standard textbook[8].

The  execution  order  of  a  quantum  logical  circuit  is

from  left  to  right.  The  width  of  a  quantum  circuit

refers to the number of qubits in the quantum circuit.

The depth of a quantum circuit refers to the number

of layers of  gates that are executable in parallel.  We

refer  to  a  quantum circuit  with  a  depth of  less  than

100 as a small-scale circuit, a quantum circuit with a

depth of more than 1 000 as a large-scale circuit, and

the rest as medium-scale circuits. 

4    Circuit Representation

In this section, we define a new representation of

quantum circuits and the pattern matching condition,

which  easily  identifies  the  patterns  that  appear  non-

consecutively  but  are  reducible.  Based  on  that,  we

will state the quantum circuit rewriting problem con-
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sidered in the paper.

(γ, σ, α)

Definition  1. A  gate  is  represented  by  a  triple
, where

γ●  is the symbol of a gate type,
σ●  is  a finite  sequence of  operation qubits  for  a

gate,
α●  is  a  finite  sequence  of  rotation  angles  for  a

gate.
C

(γ0, σ0, α0)(γ1, σ1, α1) . . . (γn−1, σn−1, αn−1)

|C|
ΓC C

C ΓC = �γ0γ1 . . .

γn−1�
r = (Cp, Cs) Cp

Cs
ϵ

A  quantum  circuit  is  a  sequence  of  triples

,  and  the

length  of  the  circuit  is  denoted  by .  The  gate  se-

quence  of  quantum  circuit  is  a  symbolic  se-

quence of gate types obtained by projecting each ele-

ment  of  to  its  first  component,  i.e., 

.  The  new  representation  of  a  rule  is  a  pair

,  consisting  of  a  pattern  circuit  and  a

substitution circuit . For simplicity, if the sequence

is  empty ,  we  ignore  it. Table 2 lists  some  of  the

commonly used quantum gates,  their  distinct aliases,

and the corresponding circuit symbols.

Ct

Example 1.  We  illustrate  the  symbolic  sequences

of the circuit obtained by using the patterns in Fig.1

to rewrite target circuit  in Fig.2(a) as an example.

The new representation of the quantum circuit is
 

Ct = (�x�, q2)(�x�, q2)(�c�, q0q1)(�c�, q0q2)

(�c�, q0q1)(�x�, q2)(�x�, q0),

Γt = �xxcccxx�
R = {r0, r1, r2, r3}

and its gate sequence is represented by .

We can make use of the rule set 

in Fig.1 to rewrite the circuit, where
 

r0 = ((�x�, q0)(�x�, q0), (�I�, q0)),
 

r1 = ((�c�, q0q1)(�c�, q0q1), (�I�, q0)(�I�, q1)),
 

r2 = ((�c�, q0q1)(�c�, q1q2)(�c�, q0q1), (�c�, q0q2)

(�c�, q1q2)),
 

r3 = ((�x�, q1)(�c�, q0q1)(�x�, q1), (�c�, q0q1)).

To facilitate  the  description of  pattern  matching,

we introduce the following definitions.

Γ Γ′

Γ′ Γ

0 ⩽ i0 < . . . < i|Γ′|−1 < |Γ| Γ[ik] = Γ′[k]

k ∈ [0, |Γ′| − 1]

Definition 2[30]. Let  and  be two sequences. We
say  is  a  subsequence  of ,  if  there  exist  indices

 such  that  for
all .

The  subsequence  set  is  a  set  of  distinct  subse-

quences  of  the  pattern  circuit  in  the  target  circuit.

We  do  not  distinguish  the  indices  from  the  gates  to

 

Table  2.    Symbols of Gates and Distinct Aliases

Gate Aliase Circuit

I “I” I

H “h” H

X “x” X

Y “y” Y

Z “z” Z

T “t” T

T† “T” T†

S “s'' S

S† “S” S†

Rx “X' Rx

Ry “Y” Ry

Rz “Z” Rz

CX “c”
•

CZ “C”
•

•

CCX “E”
•
•

CCZ “F”

•
•

Z

 

X X = I

• • I

=

I

• • •

• = •

• •

=

X X

(b)(a) (c) (d)

R r0 r1 r2 r3Fig.1.  Rule set  used to optimize the X and CX gates. (a) . (b) . (c) . (d) .

 

2

3

4
• • • • X • X

X X

















X
0

X
1

X
5

X
6

(b)(a) (c)

s′ s′′
Fig.2.  (a) A quantum circuit. The markers 0–6 on the gate symbols represent the order in the gate sequence. (b) and (c) are the re-
sults of the quantum circuit in (a) rewritten by schedulers  and , respectively.
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Γ Γ[i : j]

Γ i j j

Γ i

Γ′ Γ Γ \ Γ′

Γ

Γ′

which the indices correspond in the quantum circuit.

Suppose  is a gate sequence. Then  means to

take the fragment of  from index  to . If  is not

specified,  it  takes  the  suffix  of  from index .  Sup-

posing that  is a subsequence of , we write 

to indicate the subsequence of  obtained by remov-

ing all occurrences of .

R

Example 2. Continuing to consider Example 1, the

gate  sequences  and  subsequence  sets  of  the  pattern

circuits in rule set  are given as follows:

�xx� {[0, 1]},● : 

�cc� {[2, 4]},● : 

�ccc� ∅,● : 

�xcx� {[1, 3, 5]}.● : 

Q Q′ f

Q Q′

Definition  3 (Qubit  Mapping). Given  two  qubit
sets  and , a qubit mapping function  is a bijec-
tive function between the qubit sets  and .

Ct
Cp Γt Γp

Γ′
t = {i0, . . . , il} Γt

Γp Γ′
t

Γt[i0 : il] \ Γ′
t

Γ′
t

Γt[i0 : il] \ Γ′
t

Definition  4 (Qubit  State  Independence). Let ,
 be two circuits with gate sequences , , respec-

tively.  Suppose  a  subsequence  of 
that can match . We say the qubit state in  is in-
dependent  w.r.t. ,  if  the  control  qubit  set
in  does not intersect with the target qubit set of the
gates in , and vice-versa.

Ct Cp

Γt Γp Cp Ct

Definition 5 (Pattern Matching). Let  and  be
a  target  circuit  and  a  pattern  circuit  with  gate  se-
quences , , respectively. We say  matches  if
the following two conditions hold:

Γt Γp●  has a subsequence that can match  up to a
qubit mapping function;

● the  qubit  sets  of  the  subsequence  and  the  pat-
tern circuit satisfy the qubit mapping function and the
qubit state independence condition.

Ct
r1 g0 g6 g′

0 g′
1

g2 g4
r1

g2
g3

Ct r1
g2 g4
f q0) = q0 f(q1) = q1

Ct
(�x�, q2)(�x�, q2)(�c�, q0q2)(�x�,

q2)(�x�, q0)

Example 3.  We  continue  Example  2  to  show  the

difference  between  the  new  representation  of  quan-

tum  circuits  and  the  DAG  representation.  Suppose

the gates of target circuit  (resp. pattern circuit of

)  from left  to  right  are  named –  (resp. – ).

Fig.3(a) is the DAG representation of the circuit frag-

ment –  and Fig.3(c) is the DAG representation of

the pattern circuit of . We can see that Fig.3(a) has

no subgraph isomorphic to Fig.3(c). The gates  and

 in Fig.3(a)  are  exchanged  by  commutation  analy-

sis to obtain Fig.3(b), which contains a subgraph iso-

morphic to Fig.3(c). The symbolic sequence of the cir-

cuit  can  directly  match  the  pattern  circuit  of ,

i.e.,  the  gates  and .  It  satisfies  the  qubit  map-

ping  function { ( , } and  the  qubit

state  independence  condition.  Therefore,  circuit 

can be rewritten as: 

.

Ct
r = (Cp, Cs)

(D, r, e)

Definition  6. For  a  given  target  circuit  and  a
rule ,  a  replacement  candidate  is  a  triple

, where
D Ct

Cp
●  is a subsequence of the target circuit  that

can match the pattern circuit ,
r●  is a rule,
e ∈ Z
−1

●  is  a conflict  index, with the default  value
being .

Definition  7. A  target  circuit  has  a  replacement
conflict if an index of the target circuit appears more
than once in the subsequence set.

The  replacement  candidates  for  a  replacement

conflict form a conflict set. A replacement scheduler is

a set of replacement candidates for different indices.

�cc�
{[2, 4]} [2, 4]

Γt (�x�, q2)
�xx� �xcx�

Example 4. Continuing to consider Example 3, we

see  that  the  subsequence  set  of  sequence  is

. The subsequence  appears non-consecu-

tively  in  the  sequence .  The gate  appears

in  both  the  subsequence  sets  of  and ,

which means that in the target circuit, different rules

may  be  matched  at  the  same  index.  Two  schedulers

are given as follows:
 

s′ = {([0, 1], r0, 1), ([2, 4], r1)},
s′′ = {([1, 3, 5], r3, 1), ([2, 4], r1)}.

s′ s′′

[0, 1] [1, 3, 5]

r0 r3

s′ s′′

1

The  scheduler  (resp. )  replaces  the  gates  in  the

sequence  (resp. ) using the substitution

circuit of  (resp. ). After one of the schedulers is

applied, we get the circuit in Fig.2(b) or Fig.2(c). Dif-

ferent  schedulers  result  in  different  gate  counts  or

depths  of  the  rewritten  circuits.  The  circuits  rewrit-

ten by scheduler  or  have the same gate counts

but with depths 2 and 3, respectively. In both sched-

ulers, the first element has the component , which is

an index to indicate where the conflict takes place.

We are now ready to state the following problem.

G1 G2

R
Problem 1. Given two gate sets ,  and a rule

set  that  expresses  the  equivalence  of  each gate  in

 



 


















 

' '

(b)(a) (c)

g2 g4
Ct g3, g2, g4

g2 g3
r1

Fig.3.  (a) DAG representation of the circuit fragment –  of
.  (b) DAG representation of  the circuit  fragment 

by exchanging the gates  and  of (a). (c) Pattern circuit of
the rule .
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G1 G2

G1

G2

 in terms of elements of , how can one rewrite a

quantum  circuit  supported  by  a  gate  set  to  a

quantum circuit supported by ?

By  using  the  new representation  of  quantum cir-

cuits,  we  reduce  the  above  problem  to  find  distinct

subsequences of the pattern sequence in the target se-

quence up to a qubit mapping function, and we use a

qubit  state  independence  condition  to  filter  the  ob-

tained subsequences. 

5    Quantum Circuit Rewriting

We  propose  a  pattern  matching  based  quantum
circuit rewriting framework QRewriting. It consists of
two steps: one matches the pattern circuit in the tar-
get circuit, and the other replaces it. 

5.1    Pattern Matching Algorithm

Ct Cp
Γt Γp

Γp

Γt

We propose  an  algorithm based  on  dynamic  pro-

gramming to match the patterns in a rule set against

a target circuit. Let  and  be the target and pat-

tern  circuits  with  gate  sequences  and ,  respec-

tively.  We  consider  the  problem  of  finding  the  dis-

tinct  subsequences  of  the  pattern sequence  in  the

target  sequence .  The  obtained  subsequences  only

match  the  gate  types,  and  thus  we  need  to  check

whether the operation qubits in the subsequences sat-

isfy  the  qubit  mapping  function  and  the  qubit  state

independence condition.

Ct
R
M (Γt, Γp, δ)

Γt

Γp D

(D, Ct, r)
D

The input of Algorithm 1 is a target circuit  and
a rule set ,  and the output is  a set of  replacement
candidates . The function subseq  in Algo-

rithm 2[31] uses a dynamic programming algorithm to
compute  the  distinct  subsequences  of  that  can
match  and returns  the  subsequence  set  to  set .

The  function check_qubit_condition  checks

whether the subsequences in  satisfy the qubit map-
ping function and the qubit state independence condi-
tion.

(Ct RAlgorithm 1. pattern_matching , )

Ct RInput: a quantum circuit  and a rule set ;
MOutput: a set of substitution candidate ;

M← ∅1 ;

Γt Ct2 Let  be the gate sequence of circuit ;

r ∈ R3 for each  do

Γp r4 　Let  be the gate sequence of pattern circuit of ;

D ← (Γt, Γp, δ)5 　  subseq ;

check_qubit_condition(D, Ct, r)6 　if  then

M←M∪ {(u, r, −1) : u ∈ D};7 　　
M8 return ;

(Γt, Γp, δ)Algorithm 2. subseq

Γt Γp δInput: two sequences  and , and a parameter ;

ΓpOutput: a set of subsequences of ;

D |Γp|+ 11  Let  be  a  sequence  of  length  and  each  element  is
  an empty set;

ϵ D[0]← {ϵ}2 Let  be an empty sequence and ;

i← 0 to |Γt|3 for    do

j ← min(i, |Γp|) to 04 　for    do

Γt[i] = Γp[j]5 　　if  then

D[j + 1]← D[j + 1]∪{u.append(i) :
u ∈ D[j] and i− u[0] < δ}

6 　　　

  ;

D[|Γp|+ 1]7 return ;

(Γt, Γp, δ)

Γt Γp

δ Γp Γt

D[|Γp|+ 1]

Γt Γp

D[j + 1] Γt

Γp[0 : j] Γt[i] = Γp[j]

Γt[0 : i]

Γp[0 : j] D[j + 1]

Γp[0 : j]

Γp[0 : j − 1] D[j + 1]←
D[j + 1] ∪ {u.append(i) : u ∈ D[j] and i− u[0] < δ}

O(|R| × |Γp| × |Γt|)
O(|Γp|)

The input of function subseq  consists of

a target sequence , a pattern sequence , and a pa-

rameter  to  limit  the  range  of  indices  of  in .

The output is a set  recording the distinct

subsequences  of  that  can  match .  We  use  set

 to  record  the  subsequences  of  that  can

match .  If  the  condition  is  satis-

fied, there are subsequences of  that can match

. Line 6 updates set . To find the sub-

sequence  of ,  we  need  to  first  calculate  the

subsequences  of .  The  update:

 is

the Bellman equation[31], which is a necessary enabler

of  the  dynamic  programming  algorithm.  The  time

complexity of Algorithm 1 is  and

the space complexity is .

R = {r0, r1, r2, r3}

�xxxxcccxxxxxcccxxxxcccxxxcccxxxx
xxccc� �xx� �cc� �ccc� �xcx�

�cc� {[4, 5], [4, 6], [5, 6],
. . .}. {4, 5, 6}

Ct (�c�, q13q2)(�c�, q9q14)(�c�,
q4q12) [4, 5], [4, 6], [5, 6]

(D, Ct, r)

�cc�
{[5, 12], [19, 25]}

Example 5. Let us consider the quantum circuit in

Fig.4(a)  and  the  rule  set  in Fig.1.

The gate sequences of the target circuit and the pat-

tern circuits are 

, , , ,  and ,  respectively.

The  subsequence  set  of  is 

 The corresponding gates of the indices 

in  target  circuit  are 

.  The  subsequences    do  not

satisfy  the  qubit  mapping  function  condition.  The

function check_qubit_condition  filters  the

subsequences  and  finally  gets  the  subsequence  set  of

 in the gate sequence of the target circuit, which

is  highlighted  with  dotted  lines  in

Fig.4(a). 

5.2    Replacement Algorithm

By Algorithm 1, we obtain all the subsequences of

the  pattern  circuits  in  the  target  circuit.  To  resolve

replacement  conflicts,  we  propose  three  conflict  reso-

lution  policies.  They  give  rise  to  three  variants  of
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QRewriting  called  QPRewriting,  QGRewriting,  and

QSRewriting,  respectively.  Note  that  QRewriting  us-

es  the  greedy policy  by  default.  Due  to  the  decoher-

ence of qubits,  the lifetime of qubits is  very short[32].

The  execution  time  of  a  quantum  circuit  is  deter-

mined  by  several  factors  such  as  the  depth  and  the

gate  count  of  the  quantum  circuit.  Here,  we  mainly

use depth to select the optimal replacement scheduler.

● The precise  policy calculates  all  the  candidates

when a replacement conflict occurs.

● The greedy policy chooses the candidate appear-

ing first in the target circuit among the conflict set.

● The  stochastic  policy  selects  a  candidate

stochastically in the conflict set for the scheduler.

Γt M S
Sq

∅ Sq
Sq
(Γt,M, s)

e Γt

Γt

s

Γt s S

e M
s

We  propose  an  algorithm  based  on  the  breadth-

first  search to  compute  the  replacement  scheduler  as

shown  in Algorithm 3.  The  input  is  a  gate  sequence

 and  a  set  of  replacement  candidates .  is  a

scheduler set,  and queue  stores the sub-scheduler.

Firstly, we push an empty scheduler  into queue .

Then, we loop queue  (lines 4–12), until it is empty.

Function next_conflict  computes  the  next

conflict index  in  from the current conflict index

to the end of . If there is no conflict at this index,

we directly add the replacement candidate to . Oth-

erwise, we return the index. When arriving at the end

of ,  we add scheduler  into .  Line 10, according

to the conflict policy, calculates the candidate set that

has a conflict at index  in .  Lines 11 and 12 ap-

pend the replacement candidates to  and push it in-

Sqto queue . Finally, we calculate the depth of the re-

placed  circuit  and  return  the  scheduler  with  the

smallest depth.

(Γt,M)Algorithm 3. solve_conflicts

Γt
M
Input: a gate sequence  and a set of replacement candidates

;
Output: a replacement scheduler;

S ← ∅1 ;

Sq2 Let  be a scheduler queue;

Sq. (∅)3 push ;

Sq4 while  is not empty do

s← Sq.5 　 pop();

e← (Γt,M, s)6 　  next_conflict ;

e = −17 　if  then

S ← S ∪ {s}8 　　 ;

9 　　continue;

V ← e10 　  compute the conflict set on index ;

v ∈ V11 　for each  do

Sq. (s ∪ {v})12 　　 push ;

(S13 return compute_depth );

O(|V |m) m

|V |

O(m|V |)

The time complexity depends on the conflict poli-

cy.  In  the  worst  case,  the  precise  policy  is  used  and

the worst time complexity is , where  is the

number of  conflicts and  is  the size of  the largest

conflict  set.  When  dealing  with  large-scale  circuits,

the precise policy is not scalable. Therefore we do not

plan to demonstrate the precise policy in our experi-

ments.  The  time  complexity  of  both  the  greedy  and

stochastic policies are .

Example 6. Continuing to consider Example 5, we

 

X3 X9
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X • X •
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• • •

• X16 X24 • •

X15 X23
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


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(b)(a)

Fig.4.  (a) Quantum circuit 16QBT_05YCTFL_3. The markers 0–31 on the gate symbols represent the order in the gate sequence.
(b) Quantum circuit 16QBT_05YCTFL_3 optimized by QSRewriting.
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e = 0 e

M e = 18 {([10, 18],
r0, 18), ([18, 26, 31], r3, 18)}

s

Sq
S = {s′, s′′}

show  how  to  generate  schedulers.  Starting  from  the

index , we search for the next conflicting index 

in .  When ,  the  conflict  set  is 

.  If  the precise policy is

used, we append scheduler  with the two candidates

and put it into queue . Then, the generated sched-

uler set  are given as follows:
 

s′={([0, 22], r0), ([2, 13, 17], r3), ([3, 9], r0),
([5, 12], r1), ([10, 18], r0, 18), ([15, 23], r0),

([16, 24], r0), ([19, 25], r1)},
s′′={([0, 22], r0), ([2, 13, 17], r3), ([3, 9], r0),

([5, 12], r1), ([18, 26, 31], r3, 18), ([15, 23], r0),

([16, 24], r0), ([19, 25], r1)}.

([10, 18], r0, 18)

s′

s′ s′′

If we use the greedy policy, the replacement can-

didate  is  selected,  and  the  generat-

ed scheduler is . If we use the stochastic policy, one

of  them  is  selected  and  the  finally  generated  sched-

uler is either  or .

Ct
s

Qm

(si)

O(m|s|) m

|s|
s

For  the  scheduler  provided  by Algorithm 3,  we

propose  a  replacement  algorithm  as  shown  in Algo-

rithm 4, which reversely traverses each element of the

scheduler and substitutes it according to the patterns.

The input includes a target circuit  and a scheduler

. The output is a substitution circuit. Line 2 obtains

the  mapping  relationship  of  qubits  between  the

subsequence of the target circuit and the pattern cir-

cuit,  according  to  the  qubit  mapping  function

qubits_mapping .  Line  3  updates  the  gates  on  the

target circuit with the substitution circuit one by one.

If  the  substitution  gate  sequence  is  longer  than  the

pattern gate sequence, the redundant gates are insert-

ed after the index where the pattern circuit appears in

the target circuit. Otherwise, the redundant locations

are  removed  from  the  target  circuit.  The  time  com-

plexity  is ,  where  is  the  maximum length

of  the  pattern  circuit,  and  is  the  length  of  the

scheduler .

Ct, sAlgorithm 4. substitute( )

Ct sInput: a quantum circuit , and a substitution scheduler ;

CtOutput: the substituted circuit ;

i← |s| − 11 for  to 0 do

Qm ← (si)2 　  qubits_mapping ;

Ct ← (si, Qm, Ct)3 　 update ;

Ct;4 return 

([2, 13, 17], r3)

Qm = {f(q0) = q3, f(q1) = q8}

Example 7. Continuing to consider Example 6, we

take the replacement candidate  as an

example.  We  get  the  qubit  mapping  set

.  The  third  gate  of  the

Ct (�c�, q3q8)

Ct

target  circuit  is  updated  by  the  gate .

The length of the pattern circuit is greater than that

of  the  substitution  circuit.  Thus,  the  13th  and  17th

gates are removed from the target circuit . 

5.3    Quantum Circuit Optimization

We develop a rule library for basic optimizations.

The  library  is  mainly  used  for  basic  reduction  and

quantum gate exchange[17, 33]. Note that almost all the

gates implemented by quantum hardware devices are

1-qubit or 2-qubit gates, thus our rule library mainly

concerns  1-qubit  gates  and  2-qubit  gates.  The  maxi-

mum input  scale  involved in  the  rule  set  is  up to  3-

qubit gates. The gate specification involves some can-

cellation rules for 1-qubit gates and 2-qubit gates, as

shown  in Fig.5.  The  commutation  rules  shown  in

Fig.6 include transformation rules[33].

Sometimes,  after  a  step  of  circuit  rewriting  the

target circuit still matches some rules. We repeat sev-

eral  rounds  of  optimization  and  circuit  rewriting  un-

til  no  pattern  circuits  can  be  matched  or  the  speci-

fied  repetition  bound  is  reached  (five  by  default  in

practice).  It  has  been  found  experimentally  that  be-

yond  five  optimizations,  the  optimization  opportuni-

ty  decreases  quickly.  Hence,  as  a  trade-off  between

optimization  and  running  time,  we  choose  to  repeat

the procedure five times. 

6    Case Studies

CCZ
GSur

In this section, we consider two examples: the first

rewrites  a  circuit  with  three  gates  to  a  circuit

using the gate set ; the second optimizes a circuit

with a stochastic policy. 

6.1    Rewriting a Circuit for Surface-17

GSur

CCZ
r = (Cp, Cs)

We  demonstrate  QRewriting  by  rewriting  the

quantum  circuit  Toff-NC3
[16] shown  in Fig.7 to  the

gate set [10] using the gate decomposition rules in

Fig.8.  The  gate  decomposition  rule[34]

 is a pair, where
 

Cp = (�E�, q0q1q2), and

Cs = (�t�, q0)(�t�, q1)(�c�, q2q0)(�c�, q1q2)

(�T�, q0)(�T�, q2)(�c�, q1q0)(�c�, q1q2)(�t�, q0)

(�c�, q2q0)(�T�, q0)(�t�, q2)(�c�, q1q0).

�hEhhEhhEh�
The  gate  sequences  of  the  target  circuit  and  the

decomposition pattern circuit  are  and
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Fig.5.  Gate cancellation rules. (a)–(n) 1-qubit gate rules. (o)–(t) 2-qubit gate rules.
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Fig.6.  Commutation gate rules. (a)–(d) 1-qubit gate rules. (e)–(j) 2-qubit gate rules.

1320 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6



�E� Ct
�E� {[1], [4], [7]}

, respectively. The subsequence set of  that can

match  is . Finally, the resulting cir-

cuit is shown in Fig.9.
 

6.2    Optimization with a Stochastic Policy

R = {r0, r1, r2, r3}

�xxxxcccxxxxxcccxxxxcccxxxcccxxxxxxccc� �xx�
�cc� �ccc� �xcx�

Next, we show an example of circuit optimization

using QSRewriting with a stochastic policy. The tar-

get circuit  and a set of  rules  are

shown  in Fig.4(a)  and Fig.1,  respectively.  The  gate

sequences of the target circuit and pattern circuits are

, ,

, ,  and ,  respectively.  The  subse-

quence  sets  of  the  gate  sequence  of  the  pattern  cir-

cuits are as follows:

�xx� {[3, 9], [10, 18], [0, 22], [15, 23], [16, 24]},● : 

�cc� {[5, 12], [19, 25]},● : 

�ccc� ∅,● : 

�xcx� {[2, 13, 17], [18, 26, 31]}.● : 

([10, 18], r0, 18)

([18, 26, 31], r3, 18) 18

In Fig.4(a), we have marked the order of the ele-

ments in subsequence sets on the circuit symbols. The

replacement  candidates  and

 have  a  conflict  at  the  index 

of  the  target  circuit.  With  the  stochastic  policy,  ei-

ther of the candidates can be chosen. Suppose the for-

mer  is  taken,  then  the  generated  replacement  sched-

uler is given as follows:
 

s = {([0, 22], r0), ([2, 13, 17], r3), ([3, 9], r0),
([5, 12], r1), ([10, 18], r0, 18), ([15, 23], r0),

([16, 24], r0), ([19, 25], r1)}.

Finally,  we  obtain  the  resulting  circuit  shown  in

Fig.4(b), which reduces the gate count and the depth

by 49% and 20%, respectively. 

7    Experiments

We  compare  QRewriting  with  a  state-of-the-art

algorithm for the quantum circuit optimization frame-

work  based  on  pattern  matching,  namely  PaF[29].

Note that PaF is not freely available, and thus we im-

plement  it  in  Python.  The  implementation  of

QRewriting in Python is available online④. All the ex-

periments are conducted on a Ubuntu machine with a

2.2  GHz CPU and 64 G memory.  For  the stochastic

policy,  we  execute  QSRewriting  five  times  and  take

the  average  result;  because  other  policies  are  deter-

ministic, we execute them only once.

We  compare  QSRewriting,  QGRewriting,  and

PaF,  using  the  BIGD[16] benchmarks  and  the  rules

shown in Fig.1, with the results shown in Fig.10. The

depth  and  the  gate  count  of  the  generated  quantum
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Fig.7.  Quantum circuit Toff-NC3. The markers 0–8 on the gate
symbols represent the order in the gate sequence.
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Fig.8.  Gate decomposition into primitives supported in the su-
perconducting  Surface-17  processor.  (a)–(f)  1-qubit  gate  rules.
(g)–(h) 2-qubit gate rules. (i) 3-qubit gate rule.
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(v1, v2)

n N1q N2q

l v1 = N1q/(n× l)

v2 = 2×N2q/(n× l)

circuits  are  used  as  evaluation  metrics.  The  BIGD

benchmarks  are  characterized  by  parameter ,

which  is  called  the  gate  density  vector[16].  The  two

components  stand for  the  densities  of  1-qubit  and 2-

qubit  gates  of  a  circuit,  respectively.  Supposing  a

quantum circuit  has  qubits,  (resp. )  is  the

number  of  1-qubit  (resp.  2-qubit)  gates,  and  the

longest  dependency  chain  is ,  then 

and .

The BIGD benchmarks include 360 circuits with a

total  of 129 600 gates.  After a PaF optimization,  the

gate count and the depth decrease by 66 236 and 3 999

within 7 125 seconds,  respectively.  QGRewriting  (re-

sp. QSRewriting) takes 1 387 (resp. 1 509) seconds to

rewrite  these  benchmark  circuits,  and  the  generated

circuits further reduce the 1-qubit gate count, 2-qubit

gate  count,  total  gate  count,  and  depth  by  an  aver-

age of 5.2% (resp. 4.5%), 57.0% (resp. 55.9%), 17.4%

(resp.  16.7%),  and  26.5% (resp.  24.8%),  respectively,

compared with PaF. The main evaluation results are

shown in Fig.10,  which compares  the  performance of

QSRewriting,  QGRewriting,  and  PaF  in  terms  of  1-

qubit gate count, 2-qubit gate count, total gate count,

and depth of the generated circuits, respectively. The

light blue bars represent the gate count (depth) of the

benchmarks.  The  blue,  red,  and  yellow  lines  repre-

sent PaF, QGRewriting, and QSRewriting, respective-

ly. We can see that the red and yellow lines are most-

ly lower than the blue lines, and the yellow lines are

mostly obscured by the red lines, but we can still see

that  the  yellow  lines  are  lower  than  the  red  ones  in

some  places.  In Fig.10(d),  we  can  see  that  in  a  few

cases,  the  depth of  those  quantum circuits  might  in-

crease  after  optimizing.  The  reason  is  that  the  gates

of a rear layer may be moved to the front layer, caus-

ing  the  original  gates  of  the  front  layer  to  conflict

with them.

In Fig.10,  QSRewriting  is  lower  than  QGRewrit-

ing on some BIGD benchmarks on which we compare

the  gate  count  and  depth  increments  of  the  circuits

generated  by  QSRewriting  and  QGRewriting,  as

shown  in Fig.11(a)  and Fig.11(b),  respectively.  In

Fig.11,  the  light  blue  bars  represent  the  total  gate

count (depth) of the circuits generated by QSRewrit-

ing  and  the  blue  parts  are  the  increments  in  gate

count (depth) that QGRewriting has over QSRewrit-

ing.  The  greedy  policy  is  deterministic  and  the

stochastic policy shows that better strategies exist. In

Fig.12, we show a comparison of the time cost of the

three  methods  optimized  on  the  BIGD  benchmarks,

with  PaF  in  blue,  QGRewriting  in  red,  and  QS-

Rewriting in yellow. It is clear that QGRewriting and
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Fig.9.  Quantum circuit Toff-NC3 rewritten to the Surface-17 quantum processor.
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QSRewriting  use  less  time,  as  both  the  red  and  yel-

low lines  are lower than the blue lines  in Fig.12.  On

average,  both  QGRewriting  and  QSRewriting  opti-

mized  on  the  BIGD  benchmarks  are  about  5  times

faster than PaF.

GCom

GSur

Rx

Ry CZ
±π/4 ±π/2 ±π

GCom

GSur

2163

t1
t2

Now we consider rewriting a set of benchmark cir-

cuits[17] consisting  of  arithmetic  circuits  and  imple-

mentations  of  multi-controlled  Toffoli  gates  to  the

Surface-17 processor, as shown in Tables 3 and 4. The

set  of  benchmark  circuits  uses  the  commonly  used

gate set  (see Table 1) with a total of 33 circuits

and 201 554 gates.  The  gate  set  supported  by

Surface-17  processor  limits  1-qubit  gates  to  and

 rotations and 2-qubit  gate,  and more specifi-

cally , , and  degrees will be used in the

decomposition,  as  shown  in Fig.8.  Thus,  the  rewrit-

ing of the benchmark circuits is from gate set  to

gate  set ,  and  the  gate  count  (resp.  depth)  and

time cost for each phase are shown in Table 3 (resp.

Table 4)  in  detail.  Note  that  the  rewriting  of  the

benchmarks simply chooses the greedy policy since no

replacement  conflicts  arise.  We  calculate  the  reduc-

tion  rate  of  gate  count  (resp.  depth)  by  optimizing

each  rewritten  benchmark,  as  shown  in  the  last  col-

umn  of Table 3 (resp. Table 4).  The  optimization  of

the  rewritten  circuits  leads  to  a  reduction  of  up  to

52% in gate count and 49% in depth. However, there

is a price to pay. For example, for the benchmark cir-

cuit “GF( )-Mult” in the last row of Table 3 with

millions  of  gates,  the  rewriting  without  optimization

takes  about  15  minutes  (see  the  last  row  of  column

),  while  the  rewriting  with  optimization  may  take

about two hours (see the last row of column ),  de-

pending on the size of the rule library and the struc-

ture of the quantum circuit. 

8    Conclusions

We introduced a new representation of quantum cir-

cuits, which reduces the pattern matching of quantum

circuits to the problem of finding distinct subsequen-

ces.  We  presented  an  algorithm  based  on  dynamic

programming to match the pattern circuits in the tar-

get  circuit.  To  resolve  replacement  conflicts,  we  pro-

posed three policies for generating a replacement sche-

duler  and  a  polynomial-time  replacement  algorithm.

We  developed  a  rule  library  for  basic  optimizations

and applied it to rewrite the benchmarks consisting of

arithmetic circuits and implementations of multi-con-

trolled Toffoli gates to the Surface-17 processor. Com-

pared with the existing method PaF optimized on the

BIGD benchmarks, QRewriting reduces the depth (re-

sp. gate count) by 26.5% (resp. 17.4%), which demon-

strates the effectiveness of the proposed method. 
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Table  4.    Comparison of Depth of Circuits Generated by QRewriting from the Benchmark Circuits[17]

Benchmark n d d0 t0 d1 t1 d2 t2 ∆(%)

Toff-NC3 5 7 23 0.00 64 0.03 42 0.50 34.38

Toff-Barenco3 5 9 31 0.00 86 0.07 52 0.52 39.53

Mod 54 5 15 36 0.00 97 0.09 49 0.57 49.48

Toff-NC4 7 11 38 0.00 104 0.10 67 0.89 35.58

Toff-Barenco4 7 17 61 0.00 166 0.19 102 1.12 38.55

Toff-NC5 9 15 53 0.00 144 0.18 92 1.34 36.11

Toff-Barenco5 9 25 91 0.01 246 0.32 152 1.70 38.21

VBE-Adder3 10 20 70 0.00 194 0.34 113 1.51 41.75

24GF( )-Mult 12 17 85 0.01 236 0.58 145 2.68 38.56

Mod-Mult55 9 14 43 0.00 118 0.20 80 1.04 32.20

25GF( )-Mult 15 20 111 0.01 310 0.80 187 3.74 39.68

CSLA-MUX3 15 17 59 0.01 166 0.44 107 2.23 35.54

Toff-NC10 19 35 128 0.01 344 0.49 217 3.31 36.92

26GF( )-Mult 18 25 139 0.02 384 1.19 235 5.36 38.80

Toff-Barenco10 19 65 241 0.01 646 0.95 402 4.76 37.77

RC-Adder6 14 28 93 0.01 261 0.93 166 2.66 36.40

Mod-Red21 11 43 141 0.01 383 0.93 238 3.39 37.86

27GF( )-Mult 21 29 166 0.02 458 1.61 280 7.37 38.86

CSUM-MUX9 30 15 53 0.01 147 1.57 96 3.98 34.69

QCLA-Com7 24 15 70 0.01 192 1.02 115 5.98 40.10

QCLA-Adder10 36 15 64 0.01 182 1.31 111 7.29 39.01

28GF( )-Mult 24 39 199 0.02 544 2.35 335 12.95 38.42

29GF( )-Mult 27 36 219 0.03 606 2.72 367 12.09 39.44

210GF( )-Mult 30 40 246 0.03 680 3.36 412 14.90 39.41

QCLA-Mod7 26 39 172 0.02 487 2.06 284 12.24 41.68

Adder8 24 55 191 0.02 527 6.79 315 13.00 40.23

216GF( )-Mult 48 71 415 0.13 1 136 9.44 699 38.96 38.47

Mod-Adder1024 28 521 2 218 0.09 6 397 18.19 3 775 57.77 40.99

232GF( )-Mult 96 137 849 0.30 2 324 38.71 1 447 157.25 37.74

264GF( )-Mult 192 263 1 711 1.17 4 688 146.63 2 856 635.20 39.08

2128GF( )-Mult 384 517 3 437 5.59 9 420 584.97 5 750 3 656.48 38.96

2131GF( )-Mult 393 537 3 526 5.90 9 658 616.90 5 902 3 927.99 38.89

2163GF( )-Mult 489 665 4 390 9.67 12 026 945.51 7 310 7 452.82 39.22

n d d0
GCom d1 GSur d2

GSur ti (i = 0, 1, 2) ∆ (d1 − d2)/d1 × 100%

Note: : the number of qubits. : the depth of the circuit. : the depth of the circuit after decomposition without optimization on
gate set . : the depth of the circuit after rewriting without optimization on gate set . : the depth of the circuit after
rewriting with optimization on gate set . : running time in seconds. : .
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