

A Pattern Matching Based Framework for Quantum Circuit
Rewriting

Hui Jiang (蒋　慧), Dian-Kang Li (李典康), Yu-Xin Deng* (邓玉欣), Distinguished Member, CCF
and Ming Xu (徐　鸣)

Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China

E-mail: yhq_jh@126.com; 51205902048@stu.ecnu.edu.cn; yxdeng@sei.ecnu.edu.cn; mxu@cs.ecnu.edu.cn

Received August 5, 2022; accepted March 19, 2024.

Abstract The realization of quantum algorithms relies on specific quantum compilations according to the underlying

quantum processors. However, there are various ways to physically implement qubits and manipulate those qubits in dif-

ferent physical devices. These differences lead to different communication methods and connection topologies, with each

vendor implementing its own set of primitive gates. Therefore, quantum circuits have to be rewritten or transformed in or-

der to be transplanted from one platform to another. We propose a pattern matching based framework for rewriting quan-

tum circuits, called QRewriting. It takes advantage of a new representation of quantum circuits using symbolic sequences.

Unlike the traditional approach using directed acyclic graphs, the new representation allows us to easily identify the pat-

terns that appear non-consecutively but are reducible. Then, we convert the problem of pattern matching into that of find-

ing distinct subsequences and propose a polynomial-time dynamic programming based pattern matching and replacement

algorithm. We develop a rule library for basic optimizations and rewrite the arithmetic and Toffoli circuits from a com-

monly used gate set to the gate set supported by the Surface-17 quantum processor. Compared with a state-of-the-art

quantum circuit optimization framework PaF optimized on the BIGD benchmarks, QRewriting further reduces the depth

and the gate count by an average of 26.5% and 17.4%, respectively.

Keywords pattern matching, quantum circuit rewriting, subsequence

1 Introduction

Quantum computing has attracted increasing in-

terest in the last decades since it provides the possi-

bility to efficiently solve important problems such as

integer factorization[1], unstructured search[2], and lin-

ear equations[3].

In recent years, with the popularity of quantum

computing, many companies, universities, and insti-

tutes have been actively working to develop proto-

types of quantum computers. For example, in 2019,

Google announced the realization of quantum

supremacy, the development of the 53-qubit quan-

tum processor “Sycamore”[4]. In November 2021, IBM

10 800

unveiled its new 127-qubit “Eagle” processor whose

scale makes it impossible for a classical computer to

reliably simulate, and the increased qubit count al-

lows users to explore problems at a new level of com-

plexity①. In June 2022, Xanadu demonstrated a

quantum computational advantage with a pro-

grammable photonic processor that realized Gaussian

boson sampling on 216 squeezed modes[5]. These sys-

tems are referred to as noisy intermediate-scale quan-

tum systems[6] and have small qubit counts, restrict-

ed connectivity, and high gate error rates. The dura-

tion of a physical quantum gate is roughly ns–
ns, if the fidelity of physical gates achieves at least

99%[7]. At present, the coherence time of each physi-

Regular Paper

This work was supported by the National Natural Science Foundation of China under Grant Nos. 62472175, 62072176,
12271172, and 11871221, the Shanghai Trusted Industry Internet Software Collaborative Innovation Center, and the “Digital Silk
Road” Shanghai International Joint Lab of Trustworthy Intelligent Software under Grant No. 22510750100.

*Corresponding Author

Jiang H, Li DK, Deng YX et al. A pattern matching based framework for quantum circuit rewriting. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 39(6): 1312−1327 Nov. 2024. DOI: 10.1007/s11390-024-2726-3

①https://www.nature.com/articles/d41586-021-03476-5, Nov. 2024.
©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-024-2726-3
https://doi.org/10.1007/s11390-024-2726-3
https://doi.org/10.1007/s11390-024-2726-3
https://doi.org/10.1007/s11390-024-2726-3
https://doi.org/10.1007/s11390-024-2726-3
https://doi.org/10.1007/s11390-024-2726-3
https://doi.org/10.1007/s11390-024-2726-3
https://www.nature.com/articles/d41586-021-03476-5
https://www.nature.com/articles/d41586-021-03476-5
https://www.nature.com/articles/d41586-021-03476-5
https://www.nature.com/articles/d41586-021-03476-5
https://www.nature.com/articles/d41586-021-03476-5
https://www.nature.com/articles/d41586-021-03476-5
https://www.nature.com/articles/d41586-021-03476-5

1 µ 150 µ

GCom, GIBM GSur GCom

GIBM

GSur

cal qubit is s– s and only a limited set of

gates can be realized with relatively high fidelity on a

quantum device. Each quantum processor may sup-

port a specific universal set of 1-qubit and 2-qubit

gates, which are called primitive gates[7]. Table 1 lists

three gate sets: , and , where is a

commonly used gate set[8], is implemented by

the IBM Q series[9], and is used by the Surface-17

quantum processor[10].

Table 1. Three Gate Sets for Different Scenarios

Gate Set Symbol

GCom
[8] H,X,Y,Z,S,S†,T,T†

,Rz(θ),CX
GIBM

[9] U1(θ), U2(α, λ), U3(θ, α, λ), CX

GSur
[10] X,Y,Rx(θ),Ry(θ),CZ

The realization of quantum algorithms relies on

specific quantum compilations, which mainly focus on

the number of inserted quantum gates[11, 12] or the fi-

delity of the compiled quantum circuits[13, 14]. Howev-

er, there are various ways to physically implement

qubits in different physical devices and manipulate

these qubits. These differences lead to different com-

munication methods and connection topologies, with

each vendor implementing its own set of primitive

gates. Therefore, quantum circuits have to be trans-

planted from one platform to another. In addition,

since the gate types supported by a quantum proces-

sor are limited, quantum circuits may also be rewrit-

ten when some high-level gates are decomposed into

low-level gates before quantum circuits execute on the

quantum processor.

Cp = Cs Cp
Cs

Cp Cs

Converting a quantum circuit supported by one

gate set to a quantum circuit supported by another

gate set with respect to some rules is called quantum

circuit rewriting. Usually, a rule is in the form

, where is a fragment of a circuit whose be-

havior is the same as that of the fragment . We call

 a pattern circuit and a substitution circuit. In

this paper, we refer to the circuit to be rewritten as

the target circuit. Motivated by the aforementioned

requirements, our approach consists of two key steps:

the first is to identify the patterns in the target cir-

cuit, the second is to replace them with semantically

equivalent substitution circuits. For that purpose, we

first introduce a new representation of quantum cir-

cuits using symbolic sequences. Unlike the traditional

way of using directed acyclic graphs (DAGs) based on

the execution dependencies of the circuit[15], the new

representation allows us to easily identify the pat-

terns that appear non-consecutively but are reducible.

In the case that a fragment of a circuit can be

matched by several different rules, we encounter a re-

placement conflict and need to resolve it with an ap-

propriate policy. We propose three policies for gener-

ating schedulers to cope with replacement conflicts.

One policy is precise in the sense that it will consider

all the replacement candidates of a conflict set. In the

worst case, its time complexity is exponential. For a

large-scale circuit, we need to make a trade-off be-

tween the quality of the generated circuit and the

time it takes. Therefore, for large-scale circuits, we

propose a greedy policy to handle replacement con-

flicts and a stochastic policy to show that better poli-

cies exist.

The main contributions of this paper are summa-

rized below.

● We introduce a new representation of quantum

circuits, which can easily identify the patterns that

appear non-consecutively but are reducible in the tar-

get circuits.

● We present a polynomial -time dynamic pro-

gramming based pattern matching and replacement

algorithm.

● We propose three policies for generating sched-

ulers to deal with replacement conflicts.

● We develop a rule library for basic optimiza-

tions.

The rest of the paper is structured as follows. Sec-

tion 2 introduces the related work. Section 3 recalls

the basic notations about quantum computing. Sec-

tion 4 proposes a new representation of quantum cir-

cuits. Section 5 discusses the design of the pattern

matching based quantum circuit rewriting framework.

Section 6 shows two case studies. Section 7 evaluates

QRewriting by using the BIGD[16] benchmarks and a

set of benchmark circuits[17] consisting of arithmetic

circuits and implementations of multi-controlled Tof-

foli gates. Finally, Section 8 gives the conclusion.

2 Related Work

Several quantum circuit optimization compilers

have recently been proposed to compile a quantum

circuit to various processors. For example, Qiskit②

Hui Jiang et al.: A Pattern Matching Based Framework for Quantum Circuit Rewriting 1313

②https://github.com/Qiskit, Nov. 2024.

https://github.com/Qiskit

| ⟩and t ket [18] support generic gate sets, and Quilc③ is

tailored for the Rigetti Agave quantum processor.

There are several optimizers that automatically dis-

cover patterns[19–22]. QRewriting aims to rewrite quan-

tum circuits between different processors according to

a given rule set, mainly focusing on pattern matching

and replacement.

Pattern matching is widely used in circuit opti-

mization. For example, many algorithms have em-

ployed peephole optimization and pattern matching

to optimize circuits. Peephole optimization identifies

small sets of gates and replaces them with equivalent

sets that have better performance[13, 23]. Exact match-

ing is only feasible for small-scale and medium-scale

circuits[24]. Heuristics are often used in large-scale cir-

cuits, but they cannot ensure optimal results[25, 26].

Prasad et al. and Soekens et al. showed how to find

optimal quantum circuits for all 3-qubit functions[27, 28].

Nam et al. proposed five optimization subroutines[17].

Murali et al. developed the first multi-vendor quan-

tum computer compiler which compiles from high-lev-

el languages to multiple real-system quantum com-

puter prototypes, with device-specific optimizations[9].

The work of Chen et al. is the closest to ours, where a

quantum circuit optimization framework based on

pattern matching (PaF) was proposed[29]. It uses sub-

graph isomorphism to find a pattern circuit in the

target quantum circuit according to a given rule de-

scription, and then replaces it with an equivalent one.

C

O(|C|2) |C| C

Previous work often treats a target circuit as a

DAG, which is usually not unique because various

gates may commute. The patterns that appear non-

consecutively but are reducible cannot be directly

identified by subgraph isomorphism in the DAG. It

can integrate with commutation analysis to adjust the

order of commuting gates with time complexity

, where is the length of the circuit .

In this paper, we introduce a new representation

of quantum circuits, which can deal with non-consecu-

tive patterns more conveniently. For quantum circuit

rewriting, we propose a polynomial-time algorithm,

which is based on dynamic programming to match

and replace pattern circuits in the target circuit.

3 Preliminaries

Z C
In this section, we introduce some notions and no-

tations of quantum computing. Let and denote

the sets of all integers and complex numbers, respec-

tively.

|0⟩ |1⟩
|ϕ⟩ = a |0⟩+ b |1⟩ a, b ∈ C
|a|2 + |b|2 = 1 |ϕ⟩
|0⟩ |a|2

|1⟩ |b|2

Classical information is stored in bits, while quan-

tum information is stored in qubits. Besides two ba-

sic states and , a qubit can be in any linear su-

perposition state , where

satisfy the condition . State is ob-

served to be in state with probability and in

state with probability .

H
CX

A quantum gate acts on a collection of qubits,

which are called the operation qubits of the gate. For

example, the Hadamard () gate is applied on one

qubit, and the gate is applied on two qubits. Its

behavior is described as:

CX(α |0⟩ |ψ⟩+ β |1⟩ |ϕ⟩) = α |0⟩ |ψ⟩+ β |1⟩ (X |ϕ⟩).

X

|1⟩
|ψ⟩ |ϕ⟩

CCX
CCZ CCX CCZ

X Z
|1⟩

That is, we apply an gate to the second qubit

(called the target) if the first (the control) is in the

state , and the identity transformation otherwise,

where and are the states of the second qubit.

Two other gates which are relevant include the 3-

qubit Toffoli gate and the double-controlled

phase gate . Likewise, the and gates

apply and gate, respectively, when the control

qubits are in state .

In a quantum circuit, each line represents a wire.

The wire does not necessarily correspond to a physi-

cal wire, but may correspond to the passage of time

or a physical particle that moves from one location to

another through space. The interested reader can find

more details of these gates in the standard textbook[8].

The execution order of a quantum logical circuit is

from left to right. The width of a quantum circuit

refers to the number of qubits in the quantum circuit.

The depth of a quantum circuit refers to the number

of layers of gates that are executable in parallel. We

refer to a quantum circuit with a depth of less than

100 as a small-scale circuit, a quantum circuit with a

depth of more than 1 000 as a large-scale circuit, and

the rest as medium-scale circuits.

4 Circuit Representation

In this section, we define a new representation of

quantum circuits and the pattern matching condition,

which easily identifies the patterns that appear non-

consecutively but are reducible. Based on that, we

will state the quantum circuit rewriting problem con-

1314 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

③https://github.com/quil-lang/quilc, Nov. 2024.

https://github.com/quil-lang/quilc
https://github.com/quil-lang/quilc
https://github.com/quil-lang/quilc

sidered in the paper.

(γ, σ, α)

Definition 1. A gate is represented by a triple
, where

γ● is the symbol of a gate type,
σ● is a finite sequence of operation qubits for a

gate,
α● is a finite sequence of rotation angles for a

gate.
C

(γ0, σ0, α0)(γ1, σ1, α1) . . . (γn−1, σn−1, αn−1)

|C|
ΓC C

C ΓC = �γ0γ1 . . .

γn−1�
r = (Cp, Cs) Cp

Cs
ϵ

A quantum circuit is a sequence of triples

, and the

length of the circuit is denoted by . The gate se-

quence of quantum circuit is a symbolic se-

quence of gate types obtained by projecting each ele-

ment of to its first component, i.e.,

. The new representation of a rule is a pair

, consisting of a pattern circuit and a

substitution circuit . For simplicity, if the sequence

is empty , we ignore it. Table 2 lists some of the

commonly used quantum gates, their distinct aliases,

and the corresponding circuit symbols.

Ct

Example 1. We illustrate the symbolic sequences

of the circuit obtained by using the patterns in Fig.1

to rewrite target circuit in Fig.2(a) as an example.

The new representation of the quantum circuit is

Ct = (�x�, q2)(�x�, q2)(�c�, q0q1)(�c�, q0q2)

(�c�, q0q1)(�x�, q2)(�x�, q0),

Γt = �xxcccxx�
R = {r0, r1, r2, r3}

and its gate sequence is represented by .

We can make use of the rule set

in Fig.1 to rewrite the circuit, where

r0 = ((�x�, q0)(�x�, q0), (�I�, q0)),

r1 = ((�c�, q0q1)(�c�, q0q1), (�I�, q0)(�I�, q1)),

r2 = ((�c�, q0q1)(�c�, q1q2)(�c�, q0q1), (�c�, q0q2)

(�c�, q1q2)),

r3 = ((�x�, q1)(�c�, q0q1)(�x�, q1), (�c�, q0q1)).

To facilitate the description of pattern matching,

we introduce the following definitions.

Γ Γ′

Γ′ Γ

0 ⩽ i0 < . . . < i|Γ′|−1 < |Γ| Γ[ik] = Γ′[k]

k ∈ [0, |Γ′| − 1]

Definition 2[30]. Let and be two sequences. We
say is a subsequence of , if there exist indices

 such that for
all .

The subsequence set is a set of distinct subse-

quences of the pattern circuit in the target circuit.

We do not distinguish the indices from the gates to

Table 2. Symbols of Gates and Distinct Aliases

Gate Aliase Circuit

I “I” I

H “h” H

X “x” X

Y “y” Y

Z “z” Z

T “t” T

T† “T” T†

S “s'' S

S† “S” S†

Rx “X' Rx

Ry “Y” Ry

Rz “Z” Rz

CX “c”
•

CZ “C”
•

•

CCX “E”
•
•

CCZ “F”

•
•

Z

X X = I

• • I

=

I

• • •

• = •

• •

=

X X

(b)(a) (c) (d)

R r0 r1 r2 r3Fig.1. Rule set used to optimize the X and CX gates. (a) . (b) . (c) . (d) .

2

3

4
• • • • X • X

X X

















X
0

X
1

X
5

X
6

(b)(a) (c)

s′ s′′
Fig.2. (a) A quantum circuit. The markers 0–6 on the gate symbols represent the order in the gate sequence. (b) and (c) are the re-
sults of the quantum circuit in (a) rewritten by schedulers and , respectively.

Hui Jiang et al.: A Pattern Matching Based Framework for Quantum Circuit Rewriting 1315

Γ Γ[i : j]

Γ i j j

Γ i

Γ′ Γ Γ \ Γ′

Γ

Γ′

which the indices correspond in the quantum circuit.

Suppose is a gate sequence. Then means to

take the fragment of from index to . If is not

specified, it takes the suffix of from index . Sup-

posing that is a subsequence of , we write

to indicate the subsequence of obtained by remov-

ing all occurrences of .

R

Example 2. Continuing to consider Example 1, the

gate sequences and subsequence sets of the pattern

circuits in rule set are given as follows:

�xx� {[0, 1]},● :

�cc� {[2, 4]},● :

�ccc� ∅,● :

�xcx� {[1, 3, 5]}.● :

Q Q′ f

Q Q′

Definition 3 (Qubit Mapping). Given two qubit
sets and , a qubit mapping function is a bijec-
tive function between the qubit sets and .

Ct
Cp Γt Γp

Γ′
t = {i0, . . . , il} Γt

Γp Γ′
t

Γt[i0 : il] \ Γ′
t

Γ′
t

Γt[i0 : il] \ Γ′
t

Definition 4 (Qubit State Independence). Let ,
 be two circuits with gate sequences , , respec-

tively. Suppose a subsequence of
that can match . We say the qubit state in is in-
dependent w.r.t. , if the control qubit set
in does not intersect with the target qubit set of the
gates in , and vice-versa.

Ct Cp

Γt Γp Cp Ct

Definition 5 (Pattern Matching). Let and be
a target circuit and a pattern circuit with gate se-
quences , , respectively. We say matches if
the following two conditions hold:

Γt Γp● has a subsequence that can match up to a
qubit mapping function;

● the qubit sets of the subsequence and the pat-
tern circuit satisfy the qubit mapping function and the
qubit state independence condition.

Ct
r1 g0 g6 g′

0 g′
1

g2 g4
r1

g2
g3

Ct r1
g2 g4
f q0) = q0 f(q1) = q1

Ct
(�x�, q2)(�x�, q2)(�c�, q0q2)(�x�,

q2)(�x�, q0)

Example 3. We continue Example 2 to show the

difference between the new representation of quan-

tum circuits and the DAG representation. Suppose

the gates of target circuit (resp. pattern circuit of

) from left to right are named – (resp. –).

Fig.3(a) is the DAG representation of the circuit frag-

ment – and Fig.3(c) is the DAG representation of

the pattern circuit of . We can see that Fig.3(a) has

no subgraph isomorphic to Fig.3(c). The gates and

 in Fig.3(a) are exchanged by commutation analy-

sis to obtain Fig.3(b), which contains a subgraph iso-

morphic to Fig.3(c). The symbolic sequence of the cir-

cuit can directly match the pattern circuit of ,

i.e., the gates and . It satisfies the qubit map-

ping function { (, } and the qubit

state independence condition. Therefore, circuit

can be rewritten as:

.

Ct
r = (Cp, Cs)

(D, r, e)

Definition 6. For a given target circuit and a
rule , a replacement candidate is a triple

, where
D Ct

Cp
● is a subsequence of the target circuit that

can match the pattern circuit ,
r● is a rule,
e ∈ Z
−1

● is a conflict index, with the default value
being .

Definition 7. A target circuit has a replacement
conflict if an index of the target circuit appears more
than once in the subsequence set.

The replacement candidates for a replacement

conflict form a conflict set. A replacement scheduler is

a set of replacement candidates for different indices.

�cc�
{[2, 4]} [2, 4]

Γt (�x�, q2)
�xx� �xcx�

Example 4. Continuing to consider Example 3, we

see that the subsequence set of sequence is

. The subsequence appears non-consecu-

tively in the sequence . The gate appears

in both the subsequence sets of and ,

which means that in the target circuit, different rules

may be matched at the same index. Two schedulers

are given as follows:

s′ = {([0, 1], r0, 1), ([2, 4], r1)},
s′′ = {([1, 3, 5], r3, 1), ([2, 4], r1)}.

s′ s′′

[0, 1] [1, 3, 5]

r0 r3

s′ s′′

1

The scheduler (resp.) replaces the gates in the

sequence (resp.) using the substitution

circuit of (resp.). After one of the schedulers is

applied, we get the circuit in Fig.2(b) or Fig.2(c). Dif-

ferent schedulers result in different gate counts or

depths of the rewritten circuits. The circuits rewrit-

ten by scheduler or have the same gate counts

but with depths 2 and 3, respectively. In both sched-

ulers, the first element has the component , which is

an index to indicate where the conflict takes place.

We are now ready to state the following problem.

G1 G2

R
Problem 1. Given two gate sets , and a rule

set that expresses the equivalence of each gate in



 


















 

' '

(b)(a) (c)

g2 g4
Ct g3, g2, g4

g2 g3
r1

Fig.3. (a) DAG representation of the circuit fragment – of
. (b) DAG representation of the circuit fragment

by exchanging the gates and of (a). (c) Pattern circuit of
the rule .

1316 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

G1 G2

G1

G2

 in terms of elements of , how can one rewrite a

quantum circuit supported by a gate set to a

quantum circuit supported by ?

By using the new representation of quantum cir-

cuits, we reduce the above problem to find distinct

subsequences of the pattern sequence in the target se-

quence up to a qubit mapping function, and we use a

qubit state independence condition to filter the ob-

tained subsequences.

5 Quantum Circuit Rewriting

We propose a pattern matching based quantum
circuit rewriting framework QRewriting. It consists of
two steps: one matches the pattern circuit in the tar-
get circuit, and the other replaces it.

5.1 Pattern Matching Algorithm

Ct Cp
Γt Γp

Γp

Γt

We propose an algorithm based on dynamic pro-

gramming to match the patterns in a rule set against

a target circuit. Let and be the target and pat-

tern circuits with gate sequences and , respec-

tively. We consider the problem of finding the dis-

tinct subsequences of the pattern sequence in the

target sequence . The obtained subsequences only

match the gate types, and thus we need to check

whether the operation qubits in the subsequences sat-

isfy the qubit mapping function and the qubit state

independence condition.

Ct
R
M (Γt, Γp, δ)

Γt

Γp D

(D, Ct, r)
D

The input of Algorithm 1 is a target circuit and
a rule set , and the output is a set of replacement
candidates . The function subseq in Algo-

rithm 2[31] uses a dynamic programming algorithm to
compute the distinct subsequences of that can
match and returns the subsequence set to set .

The function check_qubit_condition checks

whether the subsequences in satisfy the qubit map-
ping function and the qubit state independence condi-
tion.

(Ct RAlgorithm 1. pattern_matching ,)

Ct RInput: a quantum circuit and a rule set ;
MOutput: a set of substitution candidate ;

M← ∅1 ;

Γt Ct2 Let be the gate sequence of circuit ;

r ∈ R3 for each do

Γp r4 　Let be the gate sequence of pattern circuit of ;

D ← (Γt, Γp, δ)5 　 subseq ;

check_qubit_condition(D, Ct, r)6 　if then

M←M∪ {(u, r, −1) : u ∈ D};7 　　
M8 return ;

(Γt, Γp, δ)Algorithm 2. subseq

Γt Γp δInput: two sequences and , and a parameter ;

ΓpOutput: a set of subsequences of ;

D |Γp|+ 11 Let be a sequence of length and each element is
 an empty set;

ϵ D[0]← {ϵ}2 Let be an empty sequence and ;

i← 0 to |Γt|3 for do

j ← min(i, |Γp|) to 04 　for do

Γt[i] = Γp[j]5 　　if then

D[j + 1]← D[j + 1]∪{u.append(i) :
u ∈ D[j] and i− u[0] < δ}

6 　　　

 ;

D[|Γp|+ 1]7 return ;

(Γt, Γp, δ)

Γt Γp

δ Γp Γt

D[|Γp|+ 1]

Γt Γp

D[j + 1] Γt

Γp[0 : j] Γt[i] = Γp[j]

Γt[0 : i]

Γp[0 : j] D[j + 1]

Γp[0 : j]

Γp[0 : j − 1] D[j + 1]←
D[j + 1] ∪ {u.append(i) : u ∈ D[j] and i− u[0] < δ}

O(|R| × |Γp| × |Γt|)
O(|Γp|)

The input of function subseq consists of

a target sequence , a pattern sequence , and a pa-

rameter to limit the range of indices of in .

The output is a set recording the distinct

subsequences of that can match . We use set

 to record the subsequences of that can

match . If the condition is satis-

fied, there are subsequences of that can match

. Line 6 updates set . To find the sub-

sequence of , we need to first calculate the

subsequences of . The update:

 is

the Bellman equation[31], which is a necessary enabler

of the dynamic programming algorithm. The time

complexity of Algorithm 1 is and

the space complexity is .

R = {r0, r1, r2, r3}

�xxxxcccxxxxxcccxxxxcccxxxcccxxxx
xxccc� �xx� �cc� �ccc� �xcx�

�cc� {[4, 5], [4, 6], [5, 6],
. . .}. {4, 5, 6}

Ct (�c�, q13q2)(�c�, q9q14)(�c�,
q4q12) [4, 5], [4, 6], [5, 6]

(D, Ct, r)

�cc�
{[5, 12], [19, 25]}

Example 5. Let us consider the quantum circuit in

Fig.4(a) and the rule set in Fig.1.

The gate sequences of the target circuit and the pat-

tern circuits are

, , , , and , respectively.

The subsequence set of is

 The corresponding gates of the indices

in target circuit are

. The subsequences do not

satisfy the qubit mapping function condition. The

function check_qubit_condition filters the

subsequences and finally gets the subsequence set of

 in the gate sequence of the target circuit, which

is highlighted with dotted lines in

Fig.4(a).

5.2 Replacement Algorithm

By Algorithm 1, we obtain all the subsequences of

the pattern circuits in the target circuit. To resolve

replacement conflicts, we propose three conflict reso-

lution policies. They give rise to three variants of

Hui Jiang et al.: A Pattern Matching Based Framework for Quantum Circuit Rewriting 1317

QRewriting called QPRewriting, QGRewriting, and

QSRewriting, respectively. Note that QRewriting us-

es the greedy policy by default. Due to the decoher-

ence of qubits, the lifetime of qubits is very short[32].

The execution time of a quantum circuit is deter-

mined by several factors such as the depth and the

gate count of the quantum circuit. Here, we mainly

use depth to select the optimal replacement scheduler.

● The precise policy calculates all the candidates

when a replacement conflict occurs.

● The greedy policy chooses the candidate appear-

ing first in the target circuit among the conflict set.

● The stochastic policy selects a candidate

stochastically in the conflict set for the scheduler.

Γt M S
Sq

∅ Sq
Sq
(Γt,M, s)

e Γt

Γt

s

Γt s S

e M
s

We propose an algorithm based on the breadth-

first search to compute the replacement scheduler as

shown in Algorithm 3. The input is a gate sequence

 and a set of replacement candidates . is a

scheduler set, and queue stores the sub-scheduler.

Firstly, we push an empty scheduler into queue .

Then, we loop queue (lines 4–12), until it is empty.

Function next_conflict computes the next

conflict index in from the current conflict index

to the end of . If there is no conflict at this index,

we directly add the replacement candidate to . Oth-

erwise, we return the index. When arriving at the end

of , we add scheduler into . Line 10, according

to the conflict policy, calculates the candidate set that

has a conflict at index in . Lines 11 and 12 ap-

pend the replacement candidates to and push it in-

Sqto queue . Finally, we calculate the depth of the re-

placed circuit and return the scheduler with the

smallest depth.

(Γt,M)Algorithm 3. solve_conflicts

Γt
M
Input: a gate sequence and a set of replacement candidates

;
Output: a replacement scheduler;

S ← ∅1 ;

Sq2 Let be a scheduler queue;

Sq. (∅)3 push ;

Sq4 while is not empty do

s← Sq.5 　 pop();

e← (Γt,M, s)6 　 next_conflict ;

e = −17 　if then

S ← S ∪ {s}8 　　 ;

9 　　continue;

V ← e10 　 compute the conflict set on index ;

v ∈ V11 　for each do

Sq. (s ∪ {v})12 　　 push ;

(S13 return compute_depth);

O(|V |m) m

|V |

O(m|V |)

The time complexity depends on the conflict poli-

cy. In the worst case, the precise policy is used and

the worst time complexity is , where is the

number of conflicts and is the size of the largest

conflict set. When dealing with large-scale circuits,

the precise policy is not scalable. Therefore we do not

plan to demonstrate the precise policy in our experi-

ments. The time complexity of both the greedy and

stochastic policies are .

Example 6. Continuing to consider Example 5, we

X3 X9

X • X X • X

X • X •

X • • X X • • X

• • •

• X16 X24 • •

X15 X23

• •

X2 X17 • X • X

• • X X

X10 X18 X31 X

• X • • • X

X X

X0 X22

5 12

19 25

26

13

4

6

































































(b)(a)

Fig.4. (a) Quantum circuit 16QBT_05YCTFL_3. The markers 0–31 on the gate symbols represent the order in the gate sequence.
(b) Quantum circuit 16QBT_05YCTFL_3 optimized by QSRewriting.

1318 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

e = 0 e

M e = 18 {([10, 18],
r0, 18), ([18, 26, 31], r3, 18)}

s

Sq
S = {s′, s′′}

show how to generate schedulers. Starting from the

index , we search for the next conflicting index

in . When , the conflict set is

. If the precise policy is

used, we append scheduler with the two candidates

and put it into queue . Then, the generated sched-

uler set are given as follows:

s′={([0, 22], r0), ([2, 13, 17], r3), ([3, 9], r0),
([5, 12], r1), ([10, 18], r0, 18), ([15, 23], r0),

([16, 24], r0), ([19, 25], r1)},
s′′={([0, 22], r0), ([2, 13, 17], r3), ([3, 9], r0),

([5, 12], r1), ([18, 26, 31], r3, 18), ([15, 23], r0),

([16, 24], r0), ([19, 25], r1)}.

([10, 18], r0, 18)

s′

s′ s′′

If we use the greedy policy, the replacement can-

didate is selected, and the generat-

ed scheduler is . If we use the stochastic policy, one

of them is selected and the finally generated sched-

uler is either or .

Ct
s

Qm

(si)

O(m|s|) m

|s|
s

For the scheduler provided by Algorithm 3, we

propose a replacement algorithm as shown in Algo-

rithm 4, which reversely traverses each element of the

scheduler and substitutes it according to the patterns.

The input includes a target circuit and a scheduler

. The output is a substitution circuit. Line 2 obtains

the mapping relationship of qubits between the

subsequence of the target circuit and the pattern cir-

cuit, according to the qubit mapping function

qubits_mapping . Line 3 updates the gates on the

target circuit with the substitution circuit one by one.

If the substitution gate sequence is longer than the

pattern gate sequence, the redundant gates are insert-

ed after the index where the pattern circuit appears in

the target circuit. Otherwise, the redundant locations

are removed from the target circuit. The time com-

plexity is , where is the maximum length

of the pattern circuit, and is the length of the

scheduler .

Ct, sAlgorithm 4. substitute()

Ct sInput: a quantum circuit , and a substitution scheduler ;

CtOutput: the substituted circuit ;

i← |s| − 11 for to 0 do

Qm ← (si)2 　 qubits_mapping ;

Ct ← (si, Qm, Ct)3 　 update ;

Ct;4 return

([2, 13, 17], r3)

Qm = {f(q0) = q3, f(q1) = q8}

Example 7. Continuing to consider Example 6, we

take the replacement candidate as an

example. We get the qubit mapping set

. The third gate of the

Ct (�c�, q3q8)

Ct

target circuit is updated by the gate .

The length of the pattern circuit is greater than that

of the substitution circuit. Thus, the 13th and 17th

gates are removed from the target circuit .

5.3 Quantum Circuit Optimization

We develop a rule library for basic optimizations.

The library is mainly used for basic reduction and

quantum gate exchange[17, 33]. Note that almost all the

gates implemented by quantum hardware devices are

1-qubit or 2-qubit gates, thus our rule library mainly

concerns 1-qubit gates and 2-qubit gates. The maxi-

mum input scale involved in the rule set is up to 3-

qubit gates. The gate specification involves some can-

cellation rules for 1-qubit gates and 2-qubit gates, as

shown in Fig.5. The commutation rules shown in

Fig.6 include transformation rules[33].

Sometimes, after a step of circuit rewriting the

target circuit still matches some rules. We repeat sev-

eral rounds of optimization and circuit rewriting un-

til no pattern circuits can be matched or the speci-

fied repetition bound is reached (five by default in

practice). It has been found experimentally that be-

yond five optimizations, the optimization opportuni-

ty decreases quickly. Hence, as a trade-off between

optimization and running time, we choose to repeat

the procedure five times.

6 Case Studies

CCZ
GSur

In this section, we consider two examples: the first

rewrites a circuit with three gates to a circuit

using the gate set ; the second optimizes a circuit

with a stochastic policy.

6.1 Rewriting a Circuit for Surface-17

GSur

CCZ
r = (Cp, Cs)

We demonstrate QRewriting by rewriting the

quantum circuit Toff-NC3
[16] shown in Fig.7 to the

gate set [10] using the gate decomposition rules in

Fig.8. The gate decomposition rule[34]

 is a pair, where

Cp = (�E�, q0q1q2), and

Cs = (�t�, q0)(�t�, q1)(�c�, q2q0)(�c�, q1q2)

(�T�, q0)(�T�, q2)(�c�, q1q0)(�c�, q1q2)(�t�, q0)

(�c�, q2q0)(�T�, q0)(�t�, q2)(�c�, q1q0).

�hEhhEhhEh�
The gate sequences of the target circuit and the

decomposition pattern circuit are and

Hui Jiang et al.: A Pattern Matching Based Framework for Quantum Circuit Rewriting 1319

= I =

= I =

= I =

S S = Z T T = S

H X H = Z H Y H = Y

H Z H = X H T H =

H S H = S† H S† H S† H = S H S

• • • • •
= • • =

H S S† H S† S

• • • • ×

==

H S† S H S S† • ×

H • H • •

==

H H •

Rx


Rx


Ry


Ry


Rz


Rz


Rx


Rx


Rx


Ry
 Ry



Rz
 Rz



Rx


Ry


Rz


(a)

(c)

(e)

(g)

(i)

(k)

(m)

(o)

(q)

(s)

(b)

(d)

(f)

(h)

(j)

(l)

(n)

(p)

(r)

(t)

Fig.5. Gate cancellation rules. (a)–(n) 1-qubit gate rules. (o)–(t) 2-qubit gate rules.

S T = T S S† T = T S†

T† S = S T† T† S† = S† T†

• • • •
==

H H H H

• • • •

H • H = H • H =

• • • • • •
= • = •

Rz

Rz Rz

Rz Rx Rx

(a)

(c)

(e)

(g)

(i)

(b)

(d)

(f)

(h)

(j)

Fig.6. Commutation gate rules. (a)–(d) 1-qubit gate rules. (e)–(j) 2-qubit gate rules.

1320 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

�E� Ct
�E� {[1], [4], [7]}

, respectively. The subsequence set of that can

match is . Finally, the resulting cir-

cuit is shown in Fig.9.

6.2 Optimization with a Stochastic Policy

R = {r0, r1, r2, r3}

�xxxxcccxxxxxcccxxxxcccxxxcccxxxxxxccc� �xx�
�cc� �ccc� �xcx�

Next, we show an example of circuit optimization

using QSRewriting with a stochastic policy. The tar-

get circuit and a set of rules are

shown in Fig.4(a) and Fig.1, respectively. The gate

sequences of the target circuit and pattern circuits are

, ,

, , and , respectively. The subse-

quence sets of the gate sequence of the pattern cir-

cuits are as follows:

�xx� {[3, 9], [10, 18], [0, 22], [15, 23], [16, 24]},● :

�cc� {[5, 12], [19, 25]},● :

�ccc� ∅,● :

�xcx� {[2, 13, 17], [18, 26, 31]}.● :

([10, 18], r0, 18)

([18, 26, 31], r3, 18) 18

In Fig.4(a), we have marked the order of the ele-

ments in subsequence sets on the circuit symbols. The

replacement candidates and

 have a conflict at the index

of the target circuit. With the stochastic policy, ei-

ther of the candidates can be chosen. Suppose the for-

mer is taken, then the generated replacement sched-

uler is given as follows:

s = {([0, 22], r0), ([2, 13, 17], r3), ([3, 9], r0),
([5, 12], r1), ([10, 18], r0, 18), ([15, 23], r0),

([16, 24], r0), ([19, 25], r1)}.

Finally, we obtain the resulting circuit shown in

Fig.4(b), which reduces the gate count and the depth

by 49% and 20%, respectively.

7 Experiments

We compare QRewriting with a state-of-the-art

algorithm for the quantum circuit optimization frame-

work based on pattern matching, namely PaF[29].

Note that PaF is not freely available, and thus we im-

plement it in Python. The implementation of

QRewriting in Python is available online④. All the ex-

periments are conducted on a Ubuntu machine with a

2.2 GHz CPU and 64 G memory. For the stochastic

policy, we execute QSRewriting five times and take

the average result; because other policies are deter-

ministic, we execute them only once.

We compare QSRewriting, QGRewriting, and

PaF, using the BIGD[16] benchmarks and the rules

shown in Fig.1, with the results shown in Fig.10. The

depth and the gate count of the generated quantum

• •

• •

•

H
3

Z
4

H
5

H
0

Z
1

H
2 • H

6
Z
7

H
8











Fig.7. Quantum circuit Toff-NC3. The markers 0–8 on the gate
symbols represent the order in the gate sequence.

Z = X Y

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

• T T† T T†

• = T • • • •

Z • T† • T

(i)

H = X Ry
p

T = Ry
p

Rx
p

Ry
p

T† = Ry
p

Rx
p

Ry
p

S = Ry
p Ry

p
Rx

p

• •
=

•Ry
p

Ry
p

× • • •

=

× • • •

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

S† = Ry
p

Rx
p

Ry
p

Fig.8. Gate decomposition into primitives supported in the su-
perconducting Surface-17 processor. (a)–(f) 1-qubit gate rules.
(g)–(h) 2-qubit gate rules. (i) 3-qubit gate rule.

Hui Jiang et al.: A Pattern Matching Based Framework for Quantum Circuit Rewriting 1321

④https://github.com/Holly-Jiang/QRewriting.git, Nov. 2024.

https://github.com/Holly-Jiang/QRewriting.git
https://github.com/Holly-Jiang/QRewriting.git
https://github.com/Holly-Jiang/QRewriting.git

(v1, v2)

n N1q N2q

l v1 = N1q/(n× l)

v2 = 2×N2q/(n× l)

circuits are used as evaluation metrics. The BIGD

benchmarks are characterized by parameter ,

which is called the gate density vector[16]. The two

components stand for the densities of 1-qubit and 2-

qubit gates of a circuit, respectively. Supposing a

quantum circuit has qubits, (resp.) is the

number of 1-qubit (resp. 2-qubit) gates, and the

longest dependency chain is , then

and .

The BIGD benchmarks include 360 circuits with a

total of 129 600 gates. After a PaF optimization, the

gate count and the depth decrease by 66 236 and 3 999

within 7 125 seconds, respectively. QGRewriting (re-

sp. QSRewriting) takes 1 387 (resp. 1 509) seconds to

rewrite these benchmark circuits, and the generated

circuits further reduce the 1-qubit gate count, 2-qubit

gate count, total gate count, and depth by an aver-

age of 5.2% (resp. 4.5%), 57.0% (resp. 55.9%), 17.4%

(resp. 16.7%), and 26.5% (resp. 24.8%), respectively,

compared with PaF. The main evaluation results are

shown in Fig.10, which compares the performance of

QSRewriting, QGRewriting, and PaF in terms of 1-

qubit gate count, 2-qubit gate count, total gate count,

and depth of the generated circuits, respectively. The

light blue bars represent the gate count (depth) of the

benchmarks. The blue, red, and yellow lines repre-

sent PaF, QGRewriting, and QSRewriting, respective-

ly. We can see that the red and yellow lines are most-

ly lower than the blue lines, and the yellow lines are

mostly obscured by the red lines, but we can still see

that the yellow lines are lower than the red ones in

some places. In Fig.10(d), we can see that in a few

cases, the depth of those quantum circuits might in-

crease after optimizing. The reason is that the gates

of a rear layer may be moved to the front layer, caus-

ing the original gates of the front layer to conflict

with them.

In Fig.10, QSRewriting is lower than QGRewrit-

ing on some BIGD benchmarks on which we compare

the gate count and depth increments of the circuits

generated by QSRewriting and QGRewriting, as

shown in Fig.11(a) and Fig.11(b), respectively. In

Fig.11, the light blue bars represent the total gate

count (depth) of the circuits generated by QSRewrit-

ing and the blue parts are the increments in gate

count (depth) that QGRewriting has over QSRewrit-

ing. The greedy policy is deterministic and the

stochastic policy shows that better strategies exist. In

Fig.12, we show a comparison of the time cost of the

three methods optimized on the BIGD benchmarks,

with PaF in blue, QGRewriting in red, and QS-

Rewriting in yellow. It is clear that QGRewriting and

• •

• •

•

X Y •

X Y • • • •

•

•

• • •

X Y • • X Y •

•

• •

X Y

• • • X Y































Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Rx
p

Rx
p

Rx
p

Rx
p

Rx
p

Rx
p

Rx
p

Rx
p

Rx
p

R
p

Rx
p

Rx
p

Rx
p

Rx
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Ry
p

Fig.9. Quantum circuit Toff-NC3 rewritten to the Surface-17 quantum processor.

1322 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

(0.0, 0.1) (0.1, 0.3) (0.2, 0.6) (0.5, 0.1) (0.7, 0.1)

0

200

400

600

800

Gate Density Vector (, )

1
-Q

u
b
it
 G

a
te

 C
o
u
n
t

Initial Count QSRewriting

QGRewriting PaF

(a)

Gate Density Vector (, )

(b)

Gate Density Vector (, )

(c)

Gate Density Vector (, )

(d)

(0.0, 0.1) (0.1, 0.3) (0.2, 0.6) (0.5, 0.1) (0.7, 0.1)

0

200

400

2
-Q

u
b
it
 G

a
te

 C
o
u
n
t

Initial Count QSRewriting

QGRewriting PaF

(0.0, 0.1) (0.1, 0.3) (0.2, 0.6) (0.5, 0.1) (0.7, 0.1)

0

200

400

600

800

T
o
ta

l
G

a
te

 C
o
u
n
t

Initial Count QSRewriting

QGRewriting PaF

(0.0, 0.1) (0.1, 0.3) (0.2, 0.6) (0.5, 0.1) (0.7, 0.1)

0

20

40

60

D
e
p
th

Initial Count QSRewriting

QGRewriting PaF

Fig.10. Comparison of the quantum circuits generated by QSRewriting, QGRewriting, and PaF optimized on the BIGD[16] bench-
marks. (a) 1-qubit gate count. (b) 2-qubit gate count. (c) Total gate count. (d) Depth.

0

100

200

300

400

T
o
ta

l
G

a
te

 C
o
u
n
t

QSRewriting QGRewriting

0

20

40

D
e
p
th

QSRewriting QGRewriting

(0.0, 0.1) (0.1, 0.3) (0.2, 0.6) (0.5, 0.1) (0.7, 0.1)

Gate Density Vector (, )

(a)

Gate Density Vector (, )

(b)

(0.0, 0.1) (0.1, 0.3) (0.2, 0.6) (0.5, 0.1) (0.7, 0.1)

Fig.11. Comparison of the increments of the generated circuits on which QSRewriting outperforms QGRewriting both optimized on
the BIGD[16] benchmarks. (a) Total gate count. (b) Depth.

Hui Jiang et al.: A Pattern Matching Based Framework for Quantum Circuit Rewriting 1323

QSRewriting use less time, as both the red and yel-

low lines are lower than the blue lines in Fig.12. On

average, both QGRewriting and QSRewriting opti-

mized on the BIGD benchmarks are about 5 times

faster than PaF.

GCom

GSur

Rx

Ry CZ
±π/4 ±π/2 ±π

GCom

GSur

2163

t1
t2

Now we consider rewriting a set of benchmark cir-

cuits[17] consisting of arithmetic circuits and imple-

mentations of multi-controlled Toffoli gates to the

Surface-17 processor, as shown in Tables 3 and 4. The

set of benchmark circuits uses the commonly used

gate set (see Table 1) with a total of 33 circuits

and 201 554 gates. The gate set supported by

Surface-17 processor limits 1-qubit gates to and

 rotations and 2-qubit gate, and more specifi-

cally , , and degrees will be used in the

decomposition, as shown in Fig.8. Thus, the rewrit-

ing of the benchmark circuits is from gate set to

gate set , and the gate count (resp. depth) and

time cost for each phase are shown in Table 3 (resp.

Table 4) in detail. Note that the rewriting of the

benchmarks simply chooses the greedy policy since no

replacement conflicts arise. We calculate the reduc-

tion rate of gate count (resp. depth) by optimizing

each rewritten benchmark, as shown in the last col-

umn of Table 3 (resp. Table 4). The optimization of

the rewritten circuits leads to a reduction of up to

52% in gate count and 49% in depth. However, there

is a price to pay. For example, for the benchmark cir-

cuit “GF()-Mult” in the last row of Table 3 with

millions of gates, the rewriting without optimization

takes about 15 minutes (see the last row of column

), while the rewriting with optimization may take

about two hours (see the last row of column), de-

pending on the size of the rule library and the struc-

ture of the quantum circuit.

8 Conclusions

We introduced a new representation of quantum cir-

cuits, which reduces the pattern matching of quantum

circuits to the problem of finding distinct subsequen-

ces. We presented an algorithm based on dynamic

programming to match the pattern circuits in the tar-

get circuit. To resolve replacement conflicts, we pro-

posed three policies for generating a replacement sche-

duler and a polynomial-time replacement algorithm.

We developed a rule library for basic optimizations

and applied it to rewrite the benchmarks consisting of

arithmetic circuits and implementations of multi-con-

trolled Toffoli gates to the Surface-17 processor. Com-

pared with the existing method PaF optimized on the

BIGD benchmarks, QRewriting reduces the depth (re-

sp. gate count) by 26.5% (resp. 17.4%), which demon-

strates the effectiveness of the proposed method.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Shor P W. Algorithms for quantum computation: Dis-

crete logarithms and factoring. In Proc. the 35th Annual

Symposium on Foundations of Computer Science, Nov.

1994, pp.124–134. DOI: 10.1109/SFCS.1994.365700.

[1]

 Grover L K. A fast quantum mechanical algorithm for

database search. In Proc. the 28th Annual ACM Sympo-

sium on Theory of Computing, May 1996, pp.212–219.
DOI: 10.1145/237814.237866.

[2]

 Harrow A W, Hassidim A, Lloyd S. Quantum algorithm

for linear systems of equations. Physical Review Letters,

2009, 103(15): 150502. DOI: 10.1103/PhysRevLett.103.

150502.

[3]

 Arute F, Arya K, Babbush R et al. Quantum supremacy

using a programmable superconducting processor. Nature,

2019, 574(7779): 505–510. DOI: 10.1038/s41586-019-1666-5.

[4]

 Madsen L S, Laudenbach F, Askarani M F et al. Quan-

tum computational advantage with a programmable pho-

tonic processor. Nature, 2022, 606(7912): 75–81. DOI: 10.

1038/s41586-022-04725-x.

[5]

 Preskill J. Quantum computing in the NISQ era and be-

yond. Quantum, 2018, 2: Article No. 79. DOI: 10.22331/q-

2018-08-06-79.

[6]

 Kjaergaard M, Schwartz M E, Braumüller J, Krantz P,

Wang J I J, Gustavsson S, Oliver W D. Superconducting

qubits: Current state of play. Annual Review of Con-

densed Matter Physics, 2020, 11(1): 369–395. DOI: 10.

1146/annurev-conmatphys-031119-050605.

[7]

 Nielsen M A, Chuang I L. Quantum Computation and

Quantum Information (10th Anniversary Eedition). Cam-

bridge: Cambridge University Press, 2010.

[8]

 Murali P, Linke N M, Martonosi M, Abhari A J, Nguyen

N H, Alderete C H. Full-stack, real-system quantum com-

[9]

0

20

40

T
im

e
 C

o
st

 (
s)

PaF

QSRewriting

QGRewriting

(0.0, 0.1) (0.1, 0.3) (0.2, 0.6) (0.5, 0.1) (0.7, 0.1)

Gate Density Vector (, )

Fig.12. Comparison of the time cost for QSRewriting,
QGRewriting, and PaF optimized on the BIGD[16] benchmarks.

1324 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1145/237814.237866
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-022-04725-x
https://doi.org/10.1038/s41586-022-04725-x
https://doi.org/10.1038/s41586-022-04725-x
https://doi.org/10.1038/s41586-022-04725-x
https://doi.org/10.1038/s41586-022-04725-x
https://doi.org/10.1038/s41586-022-04725-x
https://doi.org/10.1038/s41586-022-04725-x
https://doi.org/10.1038/s41586-022-04725-x
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1146/annurev-conmatphys-031119-050605

puter studies: Architectural comparisons and design in-

sights. In Proc. the 46th ACM/IEEE International Sym-

posium on Computer Architecture, Jun. 2019, pp.527–540.

DOI: 10.1145/3307650.3322273.

 Lao L, van Someren H, Ashraf I, Almudéver C G. Tim-

ing and resource-aware mapping of quantum circuits to

superconducting processors. IEEE Trans. Computer-Aid-

ed Design of Integrated Circuits and Systems, 2022, 41(2):

359–371. DOI: 10.1109/TCAD.2021.3057583.

[10]

 Siraichi M Y, dos Santos V F, Collange S, Pereira F M Q.

Qubit allocation. In Proc. the 2018 International Sympo-

sium on Code Generation and Optimization, Feb. 2018,

pp.113–125. DOI: 10.1145/3168822.

[11]

 Li G, Ding Y, Xie Y. Tackling the qubit mapping prob-

lem for NISQ-era quantum devices. In Proc. the 24th In-

ternational Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, Apr. 2019,

pp.1001–1014. DOI: 10.1145/3297858.3304023.

[12]

 Liu L, Dou X. QuCloud: A new qubit mapping mecha-

nism for multi-programming quantum computing in cloud

environment. In Proc. the IEEE International Sympo-

sium on High-Performance Computer Architecture (HP-

CA), Feb. 27–Mar. 3, 2021, pp.167–178. DOI: 10.1109/

HPCA51647.2021.00024.

[13]

 Liu L, Dou X. QuCloud+: A holistic qubit mapping

scheme for single/multi-programming on 2D/3D NISQ

[14]

Table 3. Comparison of Gate Count of Circuits Generated by QRewriting from the Benchmark Circuits[17]

Benchmark n N N0 t0 N1 t1 N2 t2 ∆(%)

Toff-NC3 5 9 45 0.00 135 0.03 80 0.50 40.74

Toff-Barenco3 5 10 58 0.00 174 0.07 101 0.52 41.95

Mod 54 5 15 63 0.00 187 0.09 89 0.57 52.41

Toff-NC4 7 15 75 0.00 225 0.10 134 0.89 40.44

Toff-Barenco4 7 18 114 0.00 342 0.19 198 1.12 42.11

Toff-NC5 9 21 105 0.00 315 0.18 188 1.34 40.32

Toff-Barenco5 9 26 170 0.01 510 0.32 296 1.70 41.96

VBE-Adder3 10 30 150 0.00 450 0.34 266 1.51 40.89

24GF()-Mult 12 33 225 0.01 675 0.58 388 2.68 42.52

Mod-Mult55 9 35 119 0.00 341 0.20 211 1.04 38.12

25GF()-Mult 15 47 347 0.01 1 041 0.80 601 3.74 42.27

CSLA-MUX3 15 50 170 0.01 510 0.44 315 2.23 38.24

Toff-NC10 19 51 255 0.01 765 0.49 458 3.31 40.13

26GF()-Mult 18 63 495 0.02 1 485 1.19 854 5.36 42.49

Toff-Barenco10 19 66 450 0.01 1 350 0.95 786 4.76 41.78

RC-Adder6 14 68 200 0.01 584 0.93 361 2.66 38.18

Mod-Red21 11 74 278 0.01 786 0.93 463 3.39 41.09

27GF()-Mult 21 81 669 0.02 2007 1.61 1 153 7.37 42.55

CSUM-MUX9 30 84 420 0.01 1 204 1.57 721 3.98 40.12

QCLA-Com7 24 95 443 0.01 1 299 1.02 778 5.98 40.11

QCLA-Adder10 36 113 521 0.01 1 563 1.31 957 7.29 38.77

28GF()-Mult 24 115 883 0.02 2 649 2.35 1 516 12.95 42.77

29GF()-Mult 27 123 1 095 0.03 3 285 2.72 1885 12.09 42.62

210GF()-Mult 30 147 1 347 0.03 4 041 3.36 2 316 14.90 42.69

QCLA-Mod7 26 176 884 0.02 2 638 2.06 1 570 12.24 40.49

Adder8 24 216 900 0.02 2 676 6.79 1 623 13.00 39.35

216GF()-Mult 48 363 3 435 0.13 10 305 9.44 5 865 38.96 43.09

Mod-Adder1 024 28 865 4 285 0.09 12 855 18.19 7 403 57.77 42.41

232GF()-Mult 96 1 305 13 593 0.30 40 779 38.71 23 069 157.25 43.43

264GF()-Mult 192 4 539 53 691 1.17 161 073 146.63 91 065 635.20 43.46

2128GF()-Mult 384 17 275 213 883 5.59 641 649 584.97 362 429 3 656.48 43.52

2131GF()-Mult 393 18 333 224 265 5.90 672 795 616.90 379 766 3 927.99 43.55

2163GF()-Mult 489 27 705 346 533 9.67 1 039 599 945.51 587 034 7 452.82 43.53

n N N0
GCom N1 GSur N2

GSur ti (i = 0, 1, 2) ∆ (N1 −N2)/N1×
100%

Note: : the number of qubits. : the gate count of the circuit. : the gate count of the circuit after decomposition without
optimization on gate set . : the gate count of the circuit after rewriting without optimization on gate set . : the gate
count of the circuit after rewriting with optimization on gate set . : running time in seconds. :

.

Hui Jiang et al.: A Pattern Matching Based Framework for Quantum Circuit Rewriting 1325

https://doi.org/10.1145/3307650.3322273
https://doi.org/10.1109/TCAD.2021.3057583
https://doi.org/10.1145/3168822
https://doi.org/10.1145/3297858.3304023
https://doi.org/10.1109/HPCA51647.2021.00024
https://doi.org/10.1109/HPCA51647.2021.00024

quantum computers. ACM Trans. Architecture and Code

Optimization, 2024, 21(1): Article No. 9. DOI: 10.1145/

3631525.

 Childs A M, Schoute E, Unsal C M. Circuit transforma-

tions for quantum architectures. In Proc. the 14th Confer-

ence on the Theory of Quantum Computation, Communi-

cation and Cryptography (TQC 2019), May 2019, Article

No. 3. DOI: 10.4230/LIPIcs.TQC.2019.3.

[15]

 Tan B, Cong J. Optimality study of existing quantum

computing layout synthesis tools. IEEE Trans. Comput-

ers, 2021, 70(9): 1363–1373. DOI: 10.1109/TC.2020.

3009140.

[16]

 Nam Y, Ross N J, Su Y, Childs A M, Maslov D. Auto-

mated optimization of large quantum circuits with contin-

[17]

uous parameters. npj Quantum Information, 2018, 4: Arti-

cle No. 23. DOI: 10.1038/s41534-018-0072-4.

 Sivarajah S, Dilkes S, Cowtan A, Simmons W, Edgington

A, Duncan R. t|ket⟩: A retargetable compiler for NISQ de-

vices. Quantum Science and Technology, 2021, 6(1):

014003. DOI: 10.1088/2058-9565/ab8e92.

[18]

 Jia Z, Padon O, Thomas J, Warszawski T, Zaharia M,

Aiken A. TASO: Optimizing deep learning computation

with automatic generation of graph substitutions. In Proc.

the 27th ACM Symposium on Operating Systems Princi-

ples, Oct. 2019, pp.47–62. DOI: 10.1145/3341301.3359630.

[19]

 Kissinger A, Wetering J. PyZX: Large scale automated

diagrammatic reasoning. In Proc. the 16th International

Conference on Quantum Physics and Logic, Jun. 2019,

[20]

Table 4. Comparison of Depth of Circuits Generated by QRewriting from the Benchmark Circuits[17]

Benchmark n d d0 t0 d1 t1 d2 t2 ∆(%)

Toff-NC3 5 7 23 0.00 64 0.03 42 0.50 34.38

Toff-Barenco3 5 9 31 0.00 86 0.07 52 0.52 39.53

Mod 54 5 15 36 0.00 97 0.09 49 0.57 49.48

Toff-NC4 7 11 38 0.00 104 0.10 67 0.89 35.58

Toff-Barenco4 7 17 61 0.00 166 0.19 102 1.12 38.55

Toff-NC5 9 15 53 0.00 144 0.18 92 1.34 36.11

Toff-Barenco5 9 25 91 0.01 246 0.32 152 1.70 38.21

VBE-Adder3 10 20 70 0.00 194 0.34 113 1.51 41.75

24GF()-Mult 12 17 85 0.01 236 0.58 145 2.68 38.56

Mod-Mult55 9 14 43 0.00 118 0.20 80 1.04 32.20

25GF()-Mult 15 20 111 0.01 310 0.80 187 3.74 39.68

CSLA-MUX3 15 17 59 0.01 166 0.44 107 2.23 35.54

Toff-NC10 19 35 128 0.01 344 0.49 217 3.31 36.92

26GF()-Mult 18 25 139 0.02 384 1.19 235 5.36 38.80

Toff-Barenco10 19 65 241 0.01 646 0.95 402 4.76 37.77

RC-Adder6 14 28 93 0.01 261 0.93 166 2.66 36.40

Mod-Red21 11 43 141 0.01 383 0.93 238 3.39 37.86

27GF()-Mult 21 29 166 0.02 458 1.61 280 7.37 38.86

CSUM-MUX9 30 15 53 0.01 147 1.57 96 3.98 34.69

QCLA-Com7 24 15 70 0.01 192 1.02 115 5.98 40.10

QCLA-Adder10 36 15 64 0.01 182 1.31 111 7.29 39.01

28GF()-Mult 24 39 199 0.02 544 2.35 335 12.95 38.42

29GF()-Mult 27 36 219 0.03 606 2.72 367 12.09 39.44

210GF()-Mult 30 40 246 0.03 680 3.36 412 14.90 39.41

QCLA-Mod7 26 39 172 0.02 487 2.06 284 12.24 41.68

Adder8 24 55 191 0.02 527 6.79 315 13.00 40.23

216GF()-Mult 48 71 415 0.13 1 136 9.44 699 38.96 38.47

Mod-Adder1024 28 521 2 218 0.09 6 397 18.19 3 775 57.77 40.99

232GF()-Mult 96 137 849 0.30 2 324 38.71 1 447 157.25 37.74

264GF()-Mult 192 263 1 711 1.17 4 688 146.63 2 856 635.20 39.08

2128GF()-Mult 384 517 3 437 5.59 9 420 584.97 5 750 3 656.48 38.96

2131GF()-Mult 393 537 3 526 5.90 9 658 616.90 5 902 3 927.99 38.89

2163GF()-Mult 489 665 4 390 9.67 12 026 945.51 7 310 7 452.82 39.22

n d d0
GCom d1 GSur d2

GSur ti (i = 0, 1, 2) ∆ (d1 − d2)/d1 × 100%

Note: : the number of qubits. : the depth of the circuit. : the depth of the circuit after decomposition without optimization on
gate set . : the depth of the circuit after rewriting without optimization on gate set . : the depth of the circuit after
rewriting with optimization on gate set . : running time in seconds. : .

1326 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

https://doi.org/10.1145/3631525
https://doi.org/10.1145/3631525
https://doi.org/10.4230/LIPIcs.TQC.2019.3
https://doi.org/10.1109/TC.2020.3009140
https://doi.org/10.1109/TC.2020.3009140
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1145/3341301.3359630

pp.229–241.
 Pointing J, Padon O, Jia Z H, Ma H, Hirth A, Palsberg J,

Aiken A. Quanto: Optimizing quantum circuits with auto-

matic generation of circuit identities. Quantum Science

and Technology, 2024, 9(4): 045009.

[21]

 Xu M, Li Z, Padon O, Lin S, Pointing J, Hirth A, Ma H,

Palsberg J, Aiken A, Acar U A, Jia Z. Quartz: Superopti-

mization of quantum circuits. In Proc. the 43rd ACM

SIGPLAN International Conference on Programming

Language Design and Implementation, Jun. 2022,

pp.625–640. DOI: 10.1145/3519939.3523433.

[22]

 McKeeman W M. Peephole optimization. Communica-

tions of the ACM, 1965, 8(7): 443–444. DOI: 10.1145/

364995.365000.

[23]

 Abdessaied N, Soeken M, Wille R, Drechsler R. Exact

template matching using Boolean satisfiability. In Proc.

the 43rd IEEE International Symposium on Multiple-Val-

ued Logic, May 2013, pp.328–333. DOI: 10.1109/ISMVL.

2013.26.

[24]

 Iten R, Moyard R, Metger T, Sutter D, Woerner S. Ex-

act and practical pattern matching for quantum circuit

optimization. ACM Trans. Quantum Computing, 2022,

3(1): Article No. 4. DOI: 10.1145/3498325.

[25]

 Rahman M M, Dueck G W. Optimal quantum circuits of

three qubits. In Proc. the 42nd IEEE International Sym-

posium on Multiple-Valued Logic, May 2012, pp.161–166.
DOI: 10.1109/ISMVL.2012.43.

[26]

 Prasad A K, Shende V V, Markov I L, Hayes J P, Patel

K N. Data structures and algorithms for simplifying re-

versible circuits. ACM Journal on Emerging Technologies

in Computing Systems, 2006, 2(4): 277–293. DOI: 10.

1145/1216396.1216399.

[27]

 Soeken M, Dueck G W, Rahman M M, Miller D M. An

extension of transformation-based reversible and quan-

tum circuit synthesis. In Proc. the 2016 IEEE Interna-

tional Symposium on Circuits and Systems (ISCAS), May

2016, pp.2290–2293. DOI: 10.1109/ISCAS.2016.7539041.

[28]

 Chen M, Zhang Y, Li Y. A quantum circuit optimization

framework based on pattern matching. SPIN, 2021, 11(3):

2140008. DOI: 10.1142/S2010324721400087.

[29]

 Wagner R A, Fischer M J. The string-to-string correction

problem. Journal of the ACM, 1974, 21(1): 168–173. DOI:

10.1145/321796.321811.

[30]

 Bellman R. Dynamic programming. Science, 1966,

153(3731): 34–37. DOI: 10.1126/science.153.3731.34.

[31]

 Zhang Y, Deng H, Li Q, Song H, Nie L. Optimizing quan-

tum programs against decoherence: Delaying qubits into

quantum superposition. In Proc. the 2019 International

Symposium on Theoretical Aspects of Software Engineer-

ing, Jul. 2019, pp.184–191. DOI: 10.1109/TASE.2019.000-2.

[32]

 Iwama K, Kambayashi Y, Yamashita S. Transformation

rules for designing CNOT-based quantum circuits. In

Proc. the 39th Annual Design Automation Conference,

Jun. 2002, pp.419–424. DOI: 10.1145/513918.514026.

[33]

 Amy M, Azimzadeh P, Mosca M. On the controlled-NOT

complexity of controlled-NOT–phase circuits. Quantum

Science and Technology, 2018, 4(1): Article No. 015002.

DOI: 10.1088/2058-9565/aad8ca.

[34]

Hui Jiang received her B.Eng. de-

gree in computer science and technolo-

gy from Sichuan Agriculture Universi-

ty, Ya'an, in 2019. She is currently a

Ph.D. candidate at Shanghai Key Lab-

oratory of Trustworthy Computing,

East China Normal University, Shang-

hai. Her research interests include quantum circuit com-

pilation and optimization.

Dian-Kang Li received his B.S. de-

gree in educational technology in 2020,

and M.E. degree in software engineer-

ing in 2023, both from East China

Normal University, Shanghai. He is

currently an engineer at Meituan. His

primary research interests lie in the

fields of quantum machine learning and quantum deep

learning.

Yu-Xin Deng received his B.Eng.

degree in thermal energy engineering

and M.Sc. degree in computer science

from Shanghai Jiao Tong University,

Shanghai, in 1999 and 2002, respec-

tively, and his Ph.D. degree in com-

puter science from Ecole des Mines de

Paris, Paris, in 2005. He is a professor at East China

Normal University, Shanghai. His research interests in-

clude concurrency theory, especially about process cal-

culi, formal semantics of programming languages, as well

as quantum computing.

Ming Xu received his B.Eng de-

gree in software engineering and Ph.D.

degree in system sciences from East

China Normal University (ECNU),

Shanghai, in 2005 and 2010, respec-

tively. He is currently an associate re-

search professor at Shanghai Key Lab-

oratory of Trustworthy Computing, ECNU, Shanghai.

His research interests include computer algebra, pro-

gram verification, and quantum computing.

Hui Jiang et al.: A Pattern Matching Based Framework for Quantum Circuit Rewriting 1327

https://doi.org/10.1145/3519939.3523433
https://doi.org/10.1145/364995.365000
https://doi.org/10.1145/364995.365000
https://doi.org/10.1109/ISMVL.2013.26
https://doi.org/10.1109/ISMVL.2013.26
https://doi.org/10.1145/3498325
https://doi.org/10.1109/ISMVL.2012.43
https://doi.org/10.1145/1216396.1216399
https://doi.org/10.1145/1216396.1216399
https://doi.org/10.1109/ISCAS.2016.7539041
https://doi.org/10.1142/S2010324721400087
https://doi.org/10.1145/321796.321811
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.1109/TASE.2019.000-2
https://doi.org/10.1109/TASE.2019.000-2
https://doi.org/10.1109/TASE.2019.000-2
https://doi.org/10.1145/513918.514026
https://doi.org/10.1088/2058-9565/aad8ca
https://doi.org/10.1088/2058-9565/aad8ca
https://doi.org/10.1088/2058-9565/aad8ca

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Circuit Representation
	5 Quantum Circuit Rewriting
	5.1 Pattern Matching Algorithm
	5.2 Replacement Algorithm
	5.3 Quantum Circuit Optimization

	6 Case Studies
	6.1 Rewriting a Circuit for Surface-17
	6.2 Optimization with a Stochastic Policy

	7 Experiments
	8 Conclusions
	Conflict of Interest
	References

