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Abstract    The critical node problem (CNP) aims to deal with critical node identification in a graph, which has exten-
sive applications in many fields. Solving CNP is a challenging task due to its computational complexity, and it attracts
much attention from both academia and industry. In this paper, we propose a population-based heuristic search algorithm
called CPHS (Cut Point Based Heuristic Search) to solve CNP, which integrates two main ideas. The first one is a cut
point based greedy strategy in the local search, and the second one involves the functions used to update the solution pool
of the algorithm. Besides, a mutation strategy is applied to solutions with probability based on the overall average similar-
ity  to  maintain  the  diversity  of  the  solution  pool.  Experiments  are  performed  on  a  synthetic  benchmark,  a  real-world
benchmark, and a large-scale network benchmark to evaluate our algorithm. Compared with state-of-the-art algorithms,
our algorithm has better performance in terms of both solution quality and run time on all the three benchmarks.
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1    Introduction

Identifying  critical  nodes  is  an  essential  issue  in

complex network analysis, and the critical node prob-

lem (CNP) plays an important role in many applica-

tion fields, such as network security[1], biological inter-

action  networks[2, 3],  smart  grid[4],  pandemic  preven-

tion[5],  and  social  network  analysis[6, 7].  The  task  of

CNP is  to  find a  subset  of  nodes  such that  a  prede-

fined connectivity  measure  of  the  remaining graph is

minimized. 

1.1    Previous Work

CNP  has  proven  to  be  NP-hard  in  the  general

case, though some special cases can be solved in poly-

nomial  time  such  as  the  tree-structured  graphs[8, 9].

The  research  direction  of  developing  algorithms  for

solving CNP has  drawn much attention from the AI

community due to its significant importance in prac-

tice[10].

There are two major classes of practical approach-

es for solving CNP: exact algorithms and heuristic al-

gorithms.  Exact  algorithms  are  mostly  based  on  the

integer programming model, and usually solve a CNP

instance through adopting the branch-and-cut frame-

work.  However,  transforming  CNP instances  into  in-

teger  programming  models  suffers  from  introducing

exponential  number  of  constraints,  and  exact  algo-
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rithms become ineffective when solving large CNP in-

stances. For example, Di Summa et al.[11] proposed an

integer linear programming model to formulate CNP:

for the formulated model, the number of constraints is

not polynomial with regard to the size of the instance.

Also,  the  computational  experiments  conducted  in

[11]  were  performed  on  only  small  and  random  in-

stances.  Recently,  Pavlikov[12] has provided some im-

provements to mixed-integer linear programming for-

mulations discussed in the literature[13], which can re-

duce  the  number  of  constraints.  Nevertheless,  the

number  of  constraints  is  still  large,  which  results  in

the moderate performance in practice. Walteros et al.[14]

also formulated CNP with a mixed-integer linear pro-

gramming  model,  and  proposed  novel  valid  inequali-

ties  and  preprocessing  techniques  to  speed  up  the

search process of the branch-and-cut algorithm. Their

algorithm was tested on both real-world and random

instances,  showing an advantage over  previous  work.

These  exact  approaches  can  prove  the  optimal  solu-

tion, but they usually fail to solve large graphs.

An alternative way is heuristic search. Some early

researches  include  variable  neighborhood  search[15],

approximation  algorithms[16],  and  global  search  algo-

rithms[17]. Recently, local search based heuristic CNP

algorithms  have  witnessed  remarkable  progress,  and

an  obvious  tendency  for  CNP heuristic  algorithms  is

to  solve  larger  instances.  In  this  research  direction,

Ventresca  and  Aleman[18] proposed  a  depth-first

search greedy algorithm whose time complexity is lin-

ear to the graph size. Six real-world graphs with up to

20 000 nodes  were  used  to  test  their  algorithm.  Ar-

inghieri et  al.[15] developed  a  variable  neighborhood

search algorithm for  CNP,  and further  improved the

algorithm with efficient neighborhoods, leading to im-

proved best-known results on some randomly generat-

ed  graphs  with  up  to 5 000 nodes[19].  With  the  pur-

pose  of  dealing  with  sparse  real-world  graphs,

Pullan[20] proposed  a  multi-start  greedy  algorithm

CNA1  which  showed  better  results  than  previous

heuristic  algorithms  on  solving  graphs  containing  up

to about 10 000 nodes and 25 000 edges. Zhou et al.[21]

proposed a memetic algorithm named MACNP, which

combines several search strategies, including a double

backbone-based  crossover  operator,  a  component-

based  neighborhood  search  procedure,  and  a  rank-

based pool updating strategy. They tested their algo-

rithm  on  real-world  graphs  with  more  than 20 000

nodes,  showing  better  performance  than  previous  al-

gorithms including those from [19, 20, 22, 23], and re-

ported  new  upper  bounds  for  some  instances.  Later,

MACNP was enhanced by a sizing mechanism which

dynamically  adjusts  the  population  size  during  the

search[24],  leading  to  the  VPMS  algorithm,  and  im-

proved upper bounds for some instances were discov-

ered. Seen from the literature[24], MACNP and VPMS

represent  the  latest  state-of-the-art  in  solving  CNP.

For  more  details  on  CNP  algorithms,  we  refer  to  a

survey paper[10]. 

1.2    Contributions

In  this  paper,  we  propose  an  efficient  heuristic

search  algorithm  called  CPHS  (Cut  Point  Based

Heuristic  Search)  to  solve  CNP.  Our  algorithm  is  a

population-based  heuristic  search  algorithm,  and  has

two main ideas.

Cut  Point  Based  Node  Selection  Strategy. Local

search is an important component of the memetic al-

gorithm,  and  the  node  selection  strategy  directly  af-

fects the performance of the local search. Previous al-

gorithms[20, 21, 24] for CNP usually select nodes accord-

ing  to  the  information  of  the  nodes  such  as  age  and

degree,  and  ignore  the  structural  information  of  the

graph.  We  propose  a  cut  point  based  node  selection

strategy and prove that it can minimize the size of a

certain  connected component  so  as  to  make the  best

movement to minimize the objective value.

Dynamic  Pool  Updating  Strategy. Our  algorithm

maintains a solution pool. It is desirable that the pool

contains  high-quality  and  diverse  solutions.  Previous

heuristic  algorithms  for  CNP usually  use  static  scor-

ing  functions  to  decide  which  nodes  should  be  re-

moved  or  added  to  the  pool.  However,  such  static

functions cannot adapt well according to the algorith-

mic behavior. For example, when the solutions in the

pool have similar structures,  then we should increase

the  diversity  of  solutions  in  the  pool,  to  avoid  being

trapped in a small search area. Based on this consid-

eration,  we  propose  a  metric  called  overall  average

similarity  and  propose  a  dynamic  scoring  function

based on this metric, to make the pool more robust.

We  carry  out  experiments  to  evaluate  CPHS  on

the benchmarks in the literature as well as a group of

large graphs which are popular for testing algorithms

for  solving  large-scale  combinatorial  optimization

problems.  We  compare  our  algorithm  with  state-of-

the-art  heuristic  algorithms  CNA1[20],  FastCNP[25],

MACNP[21],  and VPMS[24],  and the strong results in-

dicate  that  CPHS  has  much  better  performance  on
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both  traditional  benchmarks  and  a  large-scale  net-

work benchmark.  Further  analyses  confirm the  effec-

tiveness of the important ideas in our algorithm. 

1.3    Paper Organization

The  remainder  of  this  paper  is  structured  as  fol-

lows. Section 2 introduces  preliminary  knowledge.

Section 3 presents the CPHS algorithm on a top level,

while Section 4 and Section 5 introduce the key func-

tions. Section 6 describes  the  improvements  com-

pared with previous algorithms. Experimental studies

are presented in Section 7. Finally, we give some con-

cluding remarks in Section 8. 

2    Preliminary
 

2.1    Notions and Notation

For  convenience,  we  provide  a  brief  introduction

of notions and notations about the graph theory used

in this paper.

G = (V, E)

V E ⊆ V × V

V (G) E(G)

G N(v) = {u ∈ V |
(u, v) ∈ E} v

d(v) = |N(v)| v

S ⊂ V G[S]

V (G[S]) = S

E(G[S]) = {(u, v) ∈ E(G)|u, v ∈ S}

An undirected graph  consists of a set

of nodes  and a set of edges . The nota-

tions  and  denote  the  node  set  and  the

edge  set  of  graph ,  respectively. 

 is  the  set  of  neighbors  of  node ,  and

 is  the  degree  of  node .  Given  that  a

subset of node set , the induced subgraph 

is  the  graph  whose  node  set ,  and  edge

set  .

{C1, C2, . . . , CL}

C v ∈ C

A pair of  nodes are connected if  there is  an edge

path from one  to  the  other.  A graph can be  divided

into several connected components ,

in  which  each  pair  of  nodes  in  the  same  connected

component  are  connected  and  each  pair  of  nodes  in

the  different  connected  components  are  not  connect-

ed.  In  a  connected  component ,  a  node  is  a

cut point iff removing it (and its incident edges) dis-

connects the graph. For example, the graph shown in

Fig.1 has three cut points 3, 4, and 5.
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Fig.1.  Connected component with three cut points.
 

Given an unconnected graph, which is divided in-

to connected components (disjoint connect subgraphs)

{C1, C2, . . . , CL}
|C1| ⩽ |C2| ⩽ . . . ⩽ |CL|

Ci

|Ci| ⩾ (|C1|+ |CL|)/2

,  without  loss  of  generality,  let  us

assume ,  and  then  we  call  a

connected  component  a  large  component  iff

. 

2.2    Problem Description

G = (V, E) K

S ⊂ V |S| ⩽ K

G[V \S]
{C1, C2, . . . , CL}

f(S)

Given a graph  and an integer , the

critical node problem (CNP) aims to extract a subset

of  nodes ,  where ,  to  minimize  the  to-

tal  number  of  connected  pairs  in  the  residual  graph

.  The  residual  graph  is  divided  into  several

connected components , and the ob-

jective function  of the CNP is defined as
 

f(S) =
L∑

i=1

(
|Ci|
2

)
,

L

G[V \S]
where  is  the  total  number  of  connected  compo-

nents of the residual graph .

K = 2 S = {2, 4}

S = {3, 4}

Considering  the  easy  graph  in Fig.2(a)  with

, Fig.2(b)  shows  a  feasible  solution 

and its cost is 3, while Fig.2(c) shows the optimal so-

lution  and its cost is 2.
 
 

6

4 5

2 31

(a)
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6

4 5
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(c)

K

S = {2, 4} f(S) =
(3
2

)
= 3

S = {3, 4}
f(S) =

(2
2

)
+

(2
2

)
= 2

Fig.2.   (a)  Easy graph with 6  nodes  and  = 2.  (b)  Feasible

solution ( ), whose objective function .

(c)  Optimal  solution  ( ),  whose  objective  function

.
 

3    Framework of Algorithm CPHS

In  this  section,  we  introduce  the  main  procedure

of  our  proposed CPHS algorithm (as  shown in Algo-

rithm 1), and we will leave the two important sub-al-

gorithms  ImproveLS  and  UpdatePool  for Section 4

and Section 5, respectively.

P
P

S∗

The  algorithm  maintains  a  solution  pool .  The

solutions  in  will  be  updated during  the  search.  In

the beginning, the algorithm generates some initial so-

lutions  as  the  solution  pool  (line  1),  and  the  best-

found solution  is initialized as the best initial solu-

tion  (line  2).  After  that,  the  algorithm  executes  the

main loop (lines 3–8) until reaching the preset cutoff

time. In each iteration, a new solution is generated by
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P
S

S ′

S
′

S∗ S∗

S
′

S
′

P
S∗

a  cross  operation,  which  absorbs  the  advantages  of

two random solutions from  (lines 4 and 5). The re-

sulting solution  is improved by a local search proce-

dure  (the ImproveLS function),  leading  to  an  im-

proved (possibly the same) solution  (line 6). At the

end of each iteration, if  is better than , then 

is updated as  (line 7). Also, a procedure is used to

decide  whether  should  be  added  to  the  solution

pool  (line 8). Finally, when reaching the time limit,

CPHS returns the best-found solution  (line 9). Be-

low we explain the Initialization and Cross functions

of CPHS.

Algorithm 1. Pseudocode of CPHS

G = (V, E) cutoff K　　Input: graph , the  time, an integer 

S∗　　Output: the best solution  found

P ← Initialization();1　

S∗ ← argminSi∈Pf(S
i);2　

elapsedtime < cutoff3　while:  do

Si, Sj P4　  randomly select two solutions  from 

S ← Cross(Si, Sj);5　 

S
′ ← ImproveLS(S);6　 

(f(S
′
) < f(S∗)) S∗ ← S

′
;7　  if  then 

UpdatePool(S
′
);8　 

S∗;9　return 
 

3.1    Initialization

K

Poolsize

Poolsize

To  construct  an  initial  solution,  we  first  pick 

nodes randomly as a solution and then improve it by

the ImproveLS procedure.  This  is  repeated 

times so as to form a solution pool, where  is

a parameter representing the size of the solution pool. 

3.2    Cross

The Cross procedure  selects  common  nodes  from

two solutions in the solution pool, and adds some oth-

er nodes to construct a new solution randomly.

Si Sj

P
S

Si Sj S S = Si
∩

Sj

v Si Sj

v ∈ (Si
∪

Sj)\(Si
∩

Sj)

S p0 p0

S

To be specific, let  and  be the two solutions

randomly chosen from , and let us denote the new-

ly  generated  solution  as .  Firstly,  we  put  the  com-

mon nodes of  and  to , i.e., . Then,

for each node  appearing in either  or  but not

both  (formally, ),  it  is  added

to  with  a  probability ,  where  is  an  algorith-

mic parameter. For this resulting node set , we have

three different cases.

|S| = K● . In this case, we directly pass it to the

ImproveLS procedure for further improvements.

|S| > K S● .  This  means  is  not  a  solution,  and

|S| −K S

f |S| = K

S

we remove  nodes from  with a greedy man-

ner  w.r.t.  the  objective  function ,  making ,

and thus  becomes a valid solution.

|S| < K f(S)

S |S| = K

S

|S| = K S

K

S |S| = K

f(S)

● .  can  be  reduced  by  adding  more

nodes  to  until .  As  we  will  prove  in  Sec-

tion 4,  adding cut points to the solution is  usually a

good choice for this aim, although not necessarily op-

timal. Thus, after picking a random large component,

CPHS iteratively adds a random cut point to  (and

removes it from the component) until there is no cut

point in the component or . If the size of  is

still smaller than  after adding all the cut points in

the  component,  then  some  more  random nodes  from

the  component  are  added  to  until ,  which

further brings down the value of . 

4    Local Search for Improving Solution

A  main  idea  of  this  work  lies  in  the ImproveLS
procedure, which is the critical function of the CPHS

algorithm.  This  section  presents  the  details  of  this

sub-algorithm, and provides some theoretical insights

of our cut point based strategy.

S

S S

MaxIter

S ′

The ImproveLS procedure (depicted in Algorithm

2) aims to improve an input solution  by iteratively

adding a new node to  and removing a node from ,

it terminates when continuous  rounds have

no improvement (line 2), and the best-improved solu-

tion  during this  procedure is  returned by the Im-
proveLS procedure.

Algorithm 2. ImproveLS

S MaxIter　　Input: a solution , step limit 

S
′

　　Output: improved solution 

S
′ ← S1　 ;

no_improve_steps < MaxIter2　while:  do

CR ← G[V \ S]3　　　  a random large connected component in ;

no_improve_steps > Limit4　　　if  then

v ← CR5　　　　　  the oldest node from ;

6　　　else

CutP ← FindCutnode(CR) ̸= ∅7　　　　　if  then

8　　　　　　　if with half probability then

v ← v CutP9　　　　　　　　　  a random node  from ;
10  else

v ← argminx∈CutPf(S
∪
{x})11　　　　　　　　 ;

v ← CR12　　　　　else  the oldest node from ;

S ← S
∪
{v}13　　　 ;

u← argminx∈Sf(S \ {x})14　　　 ;

S ← S \ {u}15　　　 ;

(f(S) < f(S
′
)) S

′ ← S16　　　if  then ;

S
′

17　return ;

CRIn each iteration, a large connected component 

is  selected  randomly  (line  3).  After  that,  a  node
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v ∈ CR

no_improve_steps

Limit

 is  selected  to  be  added  to  the  solution.  Two

node  selection  strategies  are  employed  alternatively,

one of  which exploits  cut  points  while  the other  is  a

simple diversification strategy. Let 

be  the  counter  of  consecutive  no  improvement  itera-

tions and  a parameter which is a positive inte-

ger.  The ImproveLS procedure  switches  between two

modes according to the behavior.

Limit

no_improve_steps < Limit

CR

Limit CR

CR

age

v S v ∈ S

v /∈ S

v S

u

f(S) S

S ′ S

When  improvement  is  made  within  last 

rounds, i.e., ,  the strategy

based  on  cut  point  detection  is  employed  to  choose

the  node.  Specifically,  if  there  exists  a  cut  point  or

there exist cut points in , with a probability of 0.5,

we greedily select the cut point that can minimize the

objective  function  value  the  most  (lines  10  and  11),

and otherwise we randomly select a cut point (line 8

and 9).  Otherwise,  if  the solution is  not improved in

last  rounds  or  if  there  is  no  cut  point  in ,

the  oldest  node  in  is  picked  (lines  4,  5,  and  12).

(We define the  of a node as the number of rounds

since the last time it changed the state, where a node

 has two states w.r.t. the solution , i.e.,  and

. Then the oldest node is the one with the maxi-

mum age.) The selected node  is then added into 

(line  13).  After  that,  the  node  whose  removal  re-

sults in the smallest value of  is removed from 

(lines 14 and 15). The algorithm replaces  with  if

it is better than the old one (line 16). 

4.1    Greedy Strategy Based on Cut Point

CR

CR

v ∈ CR S

This  subsection  presents  a  greedy  node  selection

strategy based on cut point. Recall that in each itera-

tion of the ImproveLS procedure, we randomly choose

a  large  connected component .  If  there  is  at  least

one cut point in , the cut point based strategy se-

lects a cut point  to be added into  (equiva-

lently, removing it from the component it belongs to).

Proposition 1 states a desirable property of this strat-

egy.

CR

v ∈ CR

T (CR, v)

v CR v∗

T (CR, v) v∗

Proposition 1. In a connected component  with
at least one cut point, for any node , we define

 be  the  number  of  connected  pairs  after  re-
moving  from .  Let  be  the  minimizer  of

, and then  must be a cut point.
CR n = |CR|

v1 ∈ CR v2 ∈ CR

T (CR, v2) =
(
n−1

2

)
T (CR, v1)

Proof. For a connected component , let ,

and let  be a cut point while  is not a

cut  point.  Obviously, .  In  the  fol-

lowing of the proof, we mainly calculate .

v1 CR CR kSuppose  removing  from  divides  into 

T (CR, v1) =
∑k

i=1

(
ni

2

)
, ni

i
∑k

i=1
ni = n− 1

parts,  then  where  is  the

size of the -th part and .

k = 2First we prove the case where ,
 

T (CR, v1) =
2∑

i=1

(
ni

2

)
=

1

2
(n2

1 + n2
2 − n1 − n2),

while
 

T (CR, v2) =

(
n− 1

2

)
=

(
n1 + n2

2

)
=

1

2
(n1 + n2 − 1)(n1 + n2)

=
1

2
(n2

1 + n2
2 + 2n1n2 − n1 − n2).

T (CR, v1) T (CR, v2)Comparing  and ,
 

T (CR, v2)− T (CR, v1) = n1n2 ⩾ 0 (n1, n2 ⩾ 1),

T (CR, v2) T (CR, v1)

v∗ k = 2

where  is larger than , which means

that  must be a cut point when .

k > 2Now, we prove the case where . According to

the arguments above,
  (

n1

2

)
+

(
n2

2

)
⩽

(
n1 + n2

2

)
.

Similarly, we have
 

T (CR, v1) =
k∑

i=1

(
ni

2

)
⩽

(
n1 + n2 + . . .+ nk

2

)
⩽

(
n− 1

2

)
= T (CR, v2).

v∗ k > 2This proves that  must be a cut point when .

□

CR

v CR Cost(v)

v ∈ CR

v Cost(v)

v

v {x0, x1, . . . , xk}
x sizex Cost(v)

Inspired by Tarjan's algorithm[26], we design an al-

gorithm that  can not  only  find all  cut  points  in ,

but  also  calculate  the  number  of  connected  pairs  re-

maining after removing  from  (denoted as )

for each node . In detail, during the search pro-

cess  of  Tarjan's  algorithm,  we  maintain  the  children

and the subtree size of each node, so that once the al-

gorithm finds a cut point ,  can be easily cal-

culated  using  the  subtree  size  of 's  children.  Sup-

pose  the  children  of  are  and  the

subtree size of  is , then  is
  (

sizex0

2

)
+

(
sizex1

2

)
+ . . .+

(
sizexk

2

)
+(

|CR| − sizex0
− sizex1

− . . .− sizexk
− 1

2

)
.
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O(|V (CR)|+ |E(CR)|)
The  complexity  of  this  improved  algorithm  is

,  which is  the  same as  Tarjan's

algorithm.

CR

S

Cost

If there is no cut point in , we select the oldest

node to be added to . If there exists a cut point or

there exist cut points, with a probability of 0.5, we se-

lect  the  node  with  the  smallest ,  and  otherwise

we randomly select a cut point. 

4.2    Enhancement for Cut Point Based

Strategy

The  cut  point  based  strategy  is  quite  aggressive.

Looking at just one iteration, a cut point is the best

choice we can make. However, the local search proce-

dure  performs  many  iterations,  and  the  cut  point

based strategy may lead to a local optimum.

v9 v9

(
7

2

)
= 21

v2 v5(
4

2

)
+
(
4

2

)
= 12

For example, considering the case in Fig.3, we can

remove  two  nodes.  Supposing  we  are  using  the  cut

point based strategy, in the first round, the graph on-

ly  has  one  connected  component,  which  has  exactly

one  cut  point .  Therefore,  is  chosen  to  be  re-

moved. In the second round, the graph has two con-

nected components, both of which have no cut point,

indeed  we  are  leaving  with  a  cycle,  and  no  matter

which node we remove, the remaining number of the

connected  pairs  of  this  graph  is .  However,

the optimal solution is removing  and , leading to

 connected pairs.

 
 

6

4

5

2

3

1

7

8

9 10

Fig.3.  Simple graph with only one cut point.
 

Limit

To avoid being trapped in a sub-optimal solution

by  choosing  cut  points  constantly,  our  algorithm  in-

troduces more diversification.  If  the solution was up-

dated within previous  rounds, we choose a cut

point;  otherwise,  the  oldest  node  is  chosen  to  be

added to the solution. 

5    Similarity-Aware Solution Pool Updating

CPHS  maintains  a  solution  pool  during  the

search,  which  is  updated  by  the UpdatePool proce-

dure.  In  this  section,  we  introduce  the  details  of  the

UpdatePool procedure.  The  principle  is  to  strike  a

balance between the quality of  the solutions and the

diversity of the solution pool.

P = {S1, S2, . . . , Sp}
P+ = P ∪ {S ′} S ′

P

The pseudo-code of UpdatePool is shown in Algo-

rithm 3.  Suppose  at  the  time  when UpdatePool is

called, the solution pool . Let us

denote  (  is the newly generated so-

lution) (line 1). We should take into account both the

quality of the solutions and the diversity of the solu-

tions  in  the  solution  pool .  This  is  easy  to  under-

stand, if the solutions in the pool are similar, the al-

gorithm would visit only a small part of the solution

space; on the other hand, since the new solutions are

generated on the basis of the solution pool, the quali-

ty of the solutions in the pool has a direct impact on

the quality of the newly generated solutions. We use a

scoring  mechanism based  on  the  population  manage-

ment strategy in [27] to measure each solution in the

pool:
 

Score(A) = rankf(A)× p1 + rankSim(A)× (1− p1),

rankf

f rankSim

where  represents  the  ranking  of  the  solution

w.r.t the  value and  represents the ranking

of the solution w.r.t the similarity value.

Algorithm 3. UpdatePool

P = {S1, S2, . . . , Sp}
S ′

　　Input: a  solution  pool  and  a  newly

  generated solution 

P　　Output: an updated solution pool 

P+ ← P
∪
{S ′}1　  ;

Sp+1 ← S ′2　  ;

i = 1, 2, . . . , p+ 13　  for  do

Scorei ← Si4　　   score  of  calculated  by  the  scoring  mecha-
  nism;

w ← argmaxx∈{1, 2, ..., p+1}Scorex5　  ;

P ← P+ \ {Sw}6　  ;

Sw ← Sp+17　  ;

Sim← P8　  the overall average similarity of ;

Sim
9　   Update  the  proportion  parameter  in  the  scoring  mecha-
  nism according to 

i = 1, 2, . . . , p10　  for  do

Si Sim11　   mutates with a probability based on ;
P12   Return ;

p1

The proportion of the quality and diversity in the

scoring mechanism of [27] is fixed. Differently, we pro-

pose  to  dynamically  adjust  this  proportion  based

on the overall average similarity
 

Sim =
∑

A, B∈P, A ̸=B

|A ∩B|
K|P|(|P| − 1)

,

and an obvious intuition is that if the overall average
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p1

similarity is higher, which means the solutions in the

solution  pool  have  similar  structures,  the  proportion

of diversity in the scoring function should be larger to

prevent  the  search  from  getting  trapped  in  a  local

space. Otherwise the proportion of diversity should be

smaller  in  order  to  reserve  better  quality  solutions.

Therefore we set  like this:
 

p1 =

{
0.7, if Sim < 0.6,
1− 0.5Sim, otherwise.

The details will be presented in Section 7.

Score

A ∈ P+ P
P ← P+ \ {W} W

Score Sim

p1

After calculating the  value of each solution

 (lines 2–4), the solution pool  is updated as

 (lines 6 and 7), where  is the solu-

tion with the biggest  value (line 5). Then 

is updated (line 8), causing a change of  (line 9).

Moreover, to introduce diversification to the solu-

tion  pool,  our  algorithm employs  mutation  operation

(lines  10  and  11).  After  updating  the  solution  pool,

each  solution  will  mutate  with  a  probability  also

based on the overall average similarity:
 

p2 × Sim
p3

,

0 < p2 < 1, p3 ⩾ 1 Si ∈ P
Si

Si

Si

where . Specifically, for each ,

when  it  mutates,  each  node  in  is  replaced  with  a

node which is not in  with a probability of 0.5, and

then  is improved by the ImproveLS procedure. 

6    Discussion

Compared  with  the  state-of-the-art  CNP  algo-

rithms  MACNP  and  VPMS,  CPHS  also  adopts  the

framework of the memetic algorithm. However, it has

made improvements in each component, including the

following points.

S

K

S

● Cross.  If  the size  of  the result  set  generated

from the  initial  operation is  less  than ,  CPHS will

prioritize  selecting  cut  points  from  large  connected

components  to  be  added  to ,  while  MACNP  and

VPMS select nodes randomly.

● Local  Search.  In  each  round  of  node  selection,

CPHS prioritizes selecting cut points to accelerate the

search  convergence  process,  while  MACNP  and

VPMS prioritize selecting the oldest node.

● Pool Updating.  The proportion of diversity and

quality in the pool management scoring mechanism of

CPHS  is  dynamically  adjusted,  while  it  is  fixed  in

MACNP and VPMS.

● Mutation.  In CPHS, a mutation strategy is ap-

plied to the solutions with a probability based on the

overall average similarity to enhance solution diversi-

ty. 

7    Experiments

We evaluate  the  performance  of  CPHS and com-

pare  it  with  state-of-the-art  algorithms.  In  addition,

we perform experimental analyses on the strategies in

CPHS.  The  source  code  and  detailed  experiment  re-

sults are available online①. 

7.1    Benchmarks

Our  computational  studies  are  carried  out  with

three benchmarks.

K

● The  synthetic  benchmark  is  used  in  the  litera-

ture[16, 20, 21, 24].  The  number  of  critical  nodes  ( )  is

given along with each graph.

K

● The  real -world  benchmark  consists  of  26  real-

world  graphs  from  various  practical  applications  in

areas  like  biology,  electronics,  transportation,  and

complex  networks[21].  The  number  of  critical  nodes

( ) is given along with each graph.

K K |V |/5, |V |/10, |V |/20
K

[|V |/20, |V |/5]
23× 3 = 69

● The  network  benchmark  comes  from  Network

Data  Repository[28]②,  which  collects  massive  graphs

from the real world. We only report the results on the

graphs  with  no  more  than 1 000 000  edges,  resulting

in 23 graphs. Those larger graphs are too difficult to

solve even within two hours③. For each instance, the

 values  are  set  as = ,  respec-

tively,  as  the  value  is  always  in  the  range

 in the synthetic and real-world bench-

marks.  This  finally  leads  to  instances  in

total.  This  benchmark  has  been  widely  used  for

graph-theoretic  combinatorial  optimization  problems

including  maximum  clique[29],  coloring[30],  and  domi-

nating set problems[31]. 

7.2    Implementations

CPHS  was  implemented  in  C++,  and  was  com-

piled using GNU gcc 9.2.0 with ‘‘-O2’’ option. For pa-

rameter  tuning,  we  randomly  select  five  instances
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①https://github.com/iHaN-o/CPHS, Nov. 2024.
 

②http://www.graphrepository.com/networks.php, Nov. 2024.
 

③For those graphs with more than one million edges, CPHS can find a solution for 10 graphs within two hours while the other
algorithms fail to solve any of them within two hours.

https://github.com/iHaN-o/CPHS
https://github.com/iHaN-o/CPHS
https://github.com/iHaN-o/CPHS
http://www.graphrepository.com/networks.php


from each  benchmark  with  various  sizes  and  various

levels  of  difficulty.  The  algorithmic  parameters  of

CPHS are divided into the following two categories.

PoolSize 20 MaxIter

1 000 Limit 100 p0 = 0.9 p2 0.001 p3 = 8

● Static  Parameters.  = , =

,  = , ,  = , and .

We tune each of the parameters while fixing other pa-

rameter  values  unchanged.  For  each  configuration,

CPHS is executed for 10 runs on each instance within

3 600 seconds.

p1

Sim

p1 ∈ [0.5, 0.7]
Sim

p1

p1 Sim

● Dynamic Parameters.  In CPHS,  is an adap-

tive dynamic parameter based on the overall average

similarity , and its setting is described in Section

5. The constants 0.7 and 0.5 in the formula are tuned

according  to  an  observation  that  CPHS  reaches  its

peak  performance  at  when  we  set  it

statically. When  is particularly small, the search

is  insufficient  probably,  and  thus  we  fix  to  0.7.

Otherwise,  decreases to 0.5 as  increases. 

7.3    Competitors

We compare CPHS with state-of-the-art heuristic

CNP  algorithms,  including  CNA1[20],  FastCNP[25],

MACNP[21],  and  VPMS[24].  The  codes  of  these  algo-

rithms are kindly provided by their  authors.  For the

synthetic  benchmark  and  the  real-world  benchmark,

we set their parameters as described in [21] and [24],

respectively,  which  are  tuned  by  their  authors  for

these  two  benchmarks.  For  the  network  benchmark,

we  tune  its  parameters  in  the  same  way  as  we  tune

our  Static  parameters.  Because  CNA1  is  worse  than

the other two algorithms on nearly all  the instances,

except  for  some  easy  instances,  we  do  not  report  its

results. 

7.4    Experimental Settings

The  experiments  are  conducted  on  a  server  with

Intel® Xeon® Platinum  8153  256-core  processor  with

2.00  GHz and 1  024 GB RAM under  the  Linux sys-

tem. Each algorithm is executed 10 runs for each in-

stance with different random seeds (1, 2, ..., 10). The

time limit for each run is 3 600 seconds, as suggested

in the previous CNP heuristic algorithms[20, 21, 25].

f ∗

f f ∗

f

For  each  instance,  we  report  for  each  algorithm

the  best  objective  value  among  the  10  trials  ( )  as

well  as  the  average  objective  value  ( ).  The best 

and  found among the algorithms are shown in bold.

However,  for  some  instances  of  the  synthetic  bench-

mark  and  real-world  benchmark,  all  algorithms  ob-

tain the same quality solution (i.e, the same minimal

and  average  values),  and  for  such  instances,  we  re-

port the average run time. 

7.5    Comparative Performance

Results  on  Synthetic  Benchmark. As  seen  from
 

Table  1.    Comparison Results on the Synthetic Benchmark

Instance K FastCNP MACNP VPMS CPHS

f∗ f f∗ f f∗ f f∗ f

BA500 50 195.0 195.0 195.0 195.0 195.0 195.0 195.0 195.0

BA1000 75 558.0 558.0 558.0 558.0 558.0 558.0 558.0 558.0

BA2500 100 3 704.0 3 704.0 3 704.0 3 704.0 3 704.0 3 704.0 3 704.0 3 704.0

BA5000 150 10 196.0 10 196.0 10 196.0 10 196.0 10 196.0 10 196.0 10 196.0 10 196.0

ER250 50 295.0 295.0 295.0 295.0 295.0 295.0 295.0 295.0

ER500 80 1 524.0 1 525.5 1 524.0 1 524.0 1 524.0 1 524.0 1 524.0 1 524.0

ER1000 140 5 030.0 5 183.6 5 012.0 5 025.3 5 020.0 5 037.2 5 012.0 5 013.4

ER2500 200 996 023.0 1 025 661.8 904 494.0 926 635.3 918 082.0 936 760.9 903 273.0 915 874.6

FF250 50 194.0 194.0 194.0 194.0 194.0 194.0 194.0 194.0

FF500 110 257.0 257.0 257.0 257.0 257.0 257.0 257.0 257.0

FF1000 150 1 260.0 1 260.0 1 260.0 1 260.0 1 260.0 1 260.0 1 260.0 1 260.0

FF2000 200 4 545.0 4 545.0 4 545.0 4 545.5 4 545.0 4 545.0 4 545.0 4 545.0

WS250 70 3 179.0 3 386.5 3 083.0 3 130.5 3 083.0 3 089.4 3 083.0 3 120.1

WS500 125 2 101.0 2 120.5 2 072.0 2 082.0 2 085.0 2 085.0 2 072.0 2 083.3

WS1000 200 135 856.0 139 744.4 126 496.0 154 264.6 121 788.0 135 236.8 111 594.0 119 758.1

WS1500 265 13 923.0 14 212.8 13 099.0 13 224.7 13 098.0 13 189.6 13 221.0 13 395.8

Note:  The  underlined  CPHS's  results  indicate  that  they  are  significantly  superior  to  other  algorithms  according  to  the  Wilcoxon
signed-rank test.
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Table 1, FastCNP is far too weak in comparison with

MACNP,  VPMS and  CPHS.  These  three  algorithms

have  similar  results  on  the  benchmark,  with  CPHS

being  the  best  among  them.  Specifically,  CPHS  has

better  performance  than  FastCNP  on  all  instances.

CPHS finds better solutions than MACNP on five in-

stances and worse on two instances, and these figures

are three and two when compared with VPMS, while

obtaining  the  same  results  for  the  remaining  in-

stances.

f

Results on Real-World Benchmark. The results on

the real-world benchmark are summarized in Table 2

(we round off the average objective value ( ) due to

the space limit), which apparently demonstrates that

CPHS  performs  significantly  better  than  FastCNP,

MACNP and VPMS on real-world instances. For the

five easy instances (from Bovine to Treni_Roma), the

four algorithms find solutions of the same quality. For

f ∗ f

the  remaining  21  instances,  CPHS  dominates  the

competitors.  Specifically,  CPHS  dominates  FastCNP

on  all  instances,  while  it  finds  better  solutions  than

MACNP on 20 out of these 21 instances, in terms of

both  and . Similarly, CPHS dominates VPMS on

20  out  of  these  21  instances.  It  is  worth  noting  that

no algorithm dominates CPHS on any instance.

f ∗

f

Results  on  Network  Benchmark. The  detailed  re-

sults  are  provided as  supplementary file④ due to the

space limit.  As MACNP and VPMS have much bet-

ter  performance  than  FastCNP  on  almost  all  in-

stances,  especially  on  massive  instances,  we  focus  on

the comparison results of CPHS against MACNP and

VPMS.  CPHS  finds  better  than  MACNP  on  55

out of the 69 instances, while finding the same result

on seven instances, and the averaged solution quality

( ) is better on 62 instances and same results on two

instances.  When  compared  with  VPMS,  CPHS  finds
 

Table  2.    Comparison Results on the Real-World Benchmark

Instance K FastCNP MACNP VPMS CPHS

f∗ f f∗ f f∗ f f∗ f

Bovine 3 268 268 268 268 268 268 268 268

Circuit 25 2 099 2 099 2 099 2 099 2 099 2 099 2 099 2 099

Ecoli 15 806 806 806 806 806 806 806 806

humanD 52 1 115 1 115 1 115 1 115 1 115 1 115 1 115 1 115

Treni_Roma 26 918 918 918 918 918 918 918 918

yeast1 202 1 412 1 412 1 412 1 412 1 412 1 412 1 412 1 412

astroph 1 877 59 929 379 60 933 263 61 269 470 61 948 413 56 229 708 57 421 239 53 436 604 53 832 208

condmat 2 313 12 701 426 13 234 928 9 271 118 9 850 815 6 057 949 6 593 803 3 732 788 4 046 156

EU_fl 119 349 100 350 596 350 762 354 870 348 268 349 848 348 268 349 266

facebook 404 751 425 790 614 722 113 787 886 696 418 761 198 680 258 762 154

grqc 524 15 871 16 084 13 631 13 644 13 635 13 653 13 595 13 631

H1000 100 316 727 322 606 309 362 312 737 306 349 311 437 306 349 310 359

H2000 200 1 317 841 1 331 228 1 264 907 1 284 196 1 247 922 1 259 022 1 246 172 1 254 923

H3000a 300 2 989 389 3 023 400 2 911 248 2 955 816 2 840 529 2 853 246 2 799 139 2 833 486

H3000b 300 2 978 787 3 018 403 2 886 180 2 960 133 2 839 488 2 857 123 2 822 633 2 834 821

H3000c 300 2 968 978 3 011 465 2 889 965 2 936 136 2 835 510 2 844 654 2 782 091 2 821 088

H3000d 300 3 018 962 3 033 349 2 913 031 2 970 674 2 830 238 2 858 304 2 783 038 2 821 378

H3000e 300 2 435 534 2 469 112 2 898 302 2 963 916 2 846 889 2 863 676 2 219 321 2 256 196

H4000 400 5 362 144 5 415 118 5 211 185 5 345 563 5 109 197 5 148 288 4 973 910 5 065 126

H5000 500 8 486 534 8 529 798 8 415 527 8 581 551 8 102 079 8 146 342 7 911 029 8 023 562

hepph 1 201 10 769 287 11 448 988 10 080 780 10 590 445 10 046 236 10 508 820 5 805 879 6 133 045

hepth 988 149 294 252 648 106 674 108 178 113 747 116 076 105 079 105 790

OClinks 190 617 790 619 790 615 574 616 460 612 313 614 261 612 303 613 823

openfl 186 29 676 30 083 28 700 29 109 26 875 28 676 26 777 28 315

powerg 494 16 063 16 146 15 904 15 927 15 952 15 998 15 856 15 863

USAir97 33 4 726 5 181 4 336 4 336 4 336 5 331 4 336 4 336

Note:  The  underlined  CPHS's  results  indicate  that  they  are  significantly  superior  to  other  algorithms  according  to  the  Wilcoxon
signed-rank test.
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④https://github.com/iHaN-o/CPHS/blob/main/Newwork_compare_with_sota.pdf, Nov. 2024.

https://github.com/iHaN-o/CPHS/blob/main/Newwork_compare_with_sota.pdf
https://github.com/iHaN-o/CPHS/blob/main/Newwork_compare_with_sota.pdf
https://github.com/iHaN-o/CPHS/blob/main/Newwork_compare_with_sota.pdf
https://github.com/iHaN-o/CPHS/blob/main/Newwork_compare_with_sota.pdf
https://github.com/iHaN-o/CPHS/blob/main/Newwork_compare_with_sota.pdf
https://github.com/iHaN-o/CPHS/blob/main/Newwork_compare_with_sota.pdf
https://github.com/iHaN-o/CPHS/blob/main/Newwork_compare_with_sota.pdf
https://github.com/iHaN-o/CPHS/blob/main/Newwork_compare_with_sota.pdf
https://github.com/iHaN-o/CPHS/blob/main/Newwork_compare_with_sota.pdf


f ∗

f

better  on  45  instances,  and  same  on  seven  in-

stances, and  is better on 50 instances and same on

three instances. These strong results clearly show the

superiority of CPHS on these large-scale instances.

Results  on  Average  Run  Time. We  also  compare

the  average  run  time  of  the  algorithms  for  those  in-

stances  where  they  find  the  same  quality  solutions,

and the results are depicted in Fig.4. The average run

time of CPHS is significantly less than that of FastC-

NP and VPMS, and is usually more than 10x faster.

CPHS is also faster than MACNP for most instances,

with only two exceptions.
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Fig.4.   Average  run  time  of  CPHS  and  competitors  on  all  in-
stances where the algorithms find the same quality solutions.
 

p

Summarized  Results. The  results  on  the  three

benchmarks are summarized in Table 3. In particular,

for any comparison between CPHS and each competi-

tor,  we  perform  the  Wilcoxon  signed-rank  test[32] to

examine the statistical significance. For each instance,

if  all  the -values  of  Wilcoxon  signed-rank  tests  at

95%  confidence  level  are  smaller  than  0.05  (indicat-

ing statistical  significance)[32, 33],  the performance im-

provement of CPHS over all its competitors is consid-

ered  to  be  statistically  significant,  and  the  results  of

CPHS are marked using the underline.  As seen from

Tables 1–3,  the performance of  CPHS is  significantly

better than that of all competitors. 

7.6    Component Analysis

We also study the effectiveness of the key strate-

gies  of  our  algorithm.  We  modify  CPHS  to  obtain

four alternative versions.

● CPHS0 removes the age based diversification en-

hancement.

● CPHS1 removes the greedy strategy based on cut

point  (always  selects  the  oldest  node  to  be  added to

the solution).

● CPHS2 removes the mutation operation.

● CPHS3 replaces dynamic parameters in the mu-

tation operation and pool updating with static param-

eters.

1

The  comparison  of  CPHS and  its  alternatives  on

the  synthetic  benchmark  and  the  real-world  bench-

mark is  shown in Table 4 (15 easy instances  are  not

reported since all variants can find the same optimal

solution). For the network benchmark, the results are

provided  as  supplementary  file⑤.  And we  summarize

the comparison results: as seen from Table 5, the per-

formance  of  every  alternative  is  far  weaker  than

CPHS,  of  which  CPHS  is  the  worst.  These  results

demonstrate  the  effectiveness  of  the  strategies  in

CPHS especially the cut point based greedy strategy. 

8    Conclusions

This paper proposed an effective local search algo-

rithm  CPHS  to  solve  the  critical  node  problem

(CNP),  which  integrates  two  main  novel  ideas.  The

first  one is  a  cut  point  based local  search procedure,

while  the  second  one  is  a  dynamic  pool  updating

strategy.  The comparison results  between CPHS and

state-of-the-art  CNP  algorithms  showed  that  CPHS

dominates on a wide range of benchmarks. Particular-

ly, CPHS performs much better on real-world graphs
 

Table  3.    Summarized Results of CPHS with MACNP and VPMS on Three Benchmarks

CPHS vs MACNP CPHS vs VPMS

Synthetic Real-World Network Synthetic Real-World Network

f∗ f f∗ f f∗ f f∗ f f∗ f f∗ f

Better 2 5 19 20 55 62 4 4 17 19 45 50

Same 13 9 7 6 7 2 11 10 9 6 7 3

Worse 1 2 0 0 7 5 1 2 0 1 17 16
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⑤https://github.com/iHaN-o/CPHS/blob/main/Network_compare_with_alternatives.pdf, Nov. 2024.
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and  large-scale  graphs.  Based  on  these  results,  we

concluded that our algorithm pushes the state-of-the-

art in solving CNP over a broad range of benchmarks.

It would be interesting to study the dynamic up-

dating  method  to  population-based  heuristic  search

algorithms for other problems. 
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