

Heuristic Search with Cut Point Based Strategy for Critical Node
Problem

Zhi-Han Chen1, 2 (陈志翰), Shao-Wei Cai1, 2, * (蔡少伟), Senior Member, CCF, Jian Gao3 (高　健)
Shi-Ke Ge4 (葛士可), Chan-Juan Liu4 (刘婵娟), Member, IEEE, and Jin-Kun Lin5 (林锦坤)

1 School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 101408, China
2 Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
3 College of Information Science and Technology, Northeast Normal University, Changchun 130024, China
4 School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
5 SeedMath Technology Limited, Beijing 100086, China

E-mail: chenzh@ios.ac.cn; caisw@ios.ac.cn; gaojian@nenu.edu.cn; shike.ge@mail.dlut.edu.cn; chanjuanliu@dlut.edu.cn
linjk@seedmaas.com

Received September 21, 2022; accepted July 3, 2024.

Abstract The critical node problem (CNP) aims to deal with critical node identification in a graph, which has exten-
sive applications in many fields. Solving CNP is a challenging task due to its computational complexity, and it attracts
much attention from both academia and industry. In this paper, we propose a population-based heuristic search algorithm
called CPHS (Cut Point Based Heuristic Search) to solve CNP, which integrates two main ideas. The first one is a cut
point based greedy strategy in the local search, and the second one involves the functions used to update the solution pool
of the algorithm. Besides, a mutation strategy is applied to solutions with probability based on the overall average similar-
ity to maintain the diversity of the solution pool. Experiments are performed on a synthetic benchmark, a real-world
benchmark, and a large-scale network benchmark to evaluate our algorithm. Compared with state-of-the-art algorithms,
our algorithm has better performance in terms of both solution quality and run time on all the three benchmarks.

Keywords local search, cut point, heuristic search, critical node problem

1 Introduction

Identifying critical nodes is an essential issue in

complex network analysis, and the critical node prob-

lem (CNP) plays an important role in many applica-

tion fields, such as network security[1], biological inter-

action networks[2, 3], smart grid[4], pandemic preven-

tion[5], and social network analysis[6, 7]. The task of

CNP is to find a subset of nodes such that a prede-

fined connectivity measure of the remaining graph is

minimized.

1.1 Previous Work

CNP has proven to be NP-hard in the general

case, though some special cases can be solved in poly-

nomial time such as the tree-structured graphs[8, 9].

The research direction of developing algorithms for

solving CNP has drawn much attention from the AI

community due to its significant importance in prac-

tice[10].

There are two major classes of practical approach-

es for solving CNP: exact algorithms and heuristic al-

gorithms. Exact algorithms are mostly based on the

integer programming model, and usually solve a CNP

instance through adopting the branch-and-cut frame-

work. However, transforming CNP instances into in-

teger programming models suffers from introducing

exponential number of constraints, and exact algo-

Regular Paper

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant Nos.
XDA0320000 and XDA0320300, and the National Natural Science Foundation of China under Grant No. 61972063.

*Corresponding Author

Chen ZH, Cai SW, Gao J et al. Heuristic search with cut point based strategy for critical node problem. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 39(6): 1328−1340 Nov. 2024. DOI: 10.1007/s11390-024-2850-0

©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-024-2850-0
https://doi.org/10.1007/s11390-024-2850-0
https://doi.org/10.1007/s11390-024-2850-0
https://doi.org/10.1007/s11390-024-2850-0
https://doi.org/10.1007/s11390-024-2850-0
https://doi.org/10.1007/s11390-024-2850-0
https://doi.org/10.1007/s11390-024-2850-0

rithms become ineffective when solving large CNP in-

stances. For example, Di Summa et al.[11] proposed an

integer linear programming model to formulate CNP:

for the formulated model, the number of constraints is

not polynomial with regard to the size of the instance.

Also, the computational experiments conducted in

[11] were performed on only small and random in-

stances. Recently, Pavlikov[12] has provided some im-

provements to mixed-integer linear programming for-

mulations discussed in the literature[13], which can re-

duce the number of constraints. Nevertheless, the

number of constraints is still large, which results in

the moderate performance in practice. Walteros et al.[14]

also formulated CNP with a mixed-integer linear pro-

gramming model, and proposed novel valid inequali-

ties and preprocessing techniques to speed up the

search process of the branch-and-cut algorithm. Their

algorithm was tested on both real-world and random

instances, showing an advantage over previous work.

These exact approaches can prove the optimal solu-

tion, but they usually fail to solve large graphs.

An alternative way is heuristic search. Some early

researches include variable neighborhood search[15],

approximation algorithms[16], and global search algo-

rithms[17]. Recently, local search based heuristic CNP

algorithms have witnessed remarkable progress, and

an obvious tendency for CNP heuristic algorithms is

to solve larger instances. In this research direction,

Ventresca and Aleman[18] proposed a depth-first

search greedy algorithm whose time complexity is lin-

ear to the graph size. Six real-world graphs with up to

20 000 nodes were used to test their algorithm. Ar-

inghieri et al.[15] developed a variable neighborhood

search algorithm for CNP, and further improved the

algorithm with efficient neighborhoods, leading to im-

proved best-known results on some randomly generat-

ed graphs with up to 5 000 nodes[19]. With the pur-

pose of dealing with sparse real-world graphs,

Pullan[20] proposed a multi-start greedy algorithm

CNA1 which showed better results than previous

heuristic algorithms on solving graphs containing up

to about 10 000 nodes and 25 000 edges. Zhou et al.[21]

proposed a memetic algorithm named MACNP, which

combines several search strategies, including a double

backbone-based crossover operator, a component-

based neighborhood search procedure, and a rank-

based pool updating strategy. They tested their algo-

rithm on real-world graphs with more than 20 000

nodes, showing better performance than previous al-

gorithms including those from [19, 20, 22, 23], and re-

ported new upper bounds for some instances. Later,

MACNP was enhanced by a sizing mechanism which

dynamically adjusts the population size during the

search[24], leading to the VPMS algorithm, and im-

proved upper bounds for some instances were discov-

ered. Seen from the literature[24], MACNP and VPMS

represent the latest state-of-the-art in solving CNP.

For more details on CNP algorithms, we refer to a

survey paper[10].

1.2 Contributions

In this paper, we propose an efficient heuristic

search algorithm called CPHS (Cut Point Based

Heuristic Search) to solve CNP. Our algorithm is a

population-based heuristic search algorithm, and has

two main ideas.

Cut Point Based Node Selection Strategy. Local

search is an important component of the memetic al-

gorithm, and the node selection strategy directly af-

fects the performance of the local search. Previous al-

gorithms[20, 21, 24] for CNP usually select nodes accord-

ing to the information of the nodes such as age and

degree, and ignore the structural information of the

graph. We propose a cut point based node selection

strategy and prove that it can minimize the size of a

certain connected component so as to make the best

movement to minimize the objective value.

Dynamic Pool Updating Strategy. Our algorithm

maintains a solution pool. It is desirable that the pool

contains high-quality and diverse solutions. Previous

heuristic algorithms for CNP usually use static scor-

ing functions to decide which nodes should be re-

moved or added to the pool. However, such static

functions cannot adapt well according to the algorith-

mic behavior. For example, when the solutions in the

pool have similar structures, then we should increase

the diversity of solutions in the pool, to avoid being

trapped in a small search area. Based on this consid-

eration, we propose a metric called overall average

similarity and propose a dynamic scoring function

based on this metric, to make the pool more robust.

We carry out experiments to evaluate CPHS on

the benchmarks in the literature as well as a group of

large graphs which are popular for testing algorithms

for solving large-scale combinatorial optimization

problems. We compare our algorithm with state-of-

the-art heuristic algorithms CNA1[20], FastCNP[25],

MACNP[21], and VPMS[24], and the strong results in-

dicate that CPHS has much better performance on

Zhi-Han Chen et al.: Heuristic Search with Cut Point Based Strategy for Critical Node Problem 1329

both traditional benchmarks and a large-scale net-

work benchmark. Further analyses confirm the effec-

tiveness of the important ideas in our algorithm.

1.3 Paper Organization

The remainder of this paper is structured as fol-

lows. Section 2 introduces preliminary knowledge.

Section 3 presents the CPHS algorithm on a top level,

while Section 4 and Section 5 introduce the key func-

tions. Section 6 describes the improvements com-

pared with previous algorithms. Experimental studies

are presented in Section 7. Finally, we give some con-

cluding remarks in Section 8.

2 Preliminary

2.1 Notions and Notation

For convenience, we provide a brief introduction

of notions and notations about the graph theory used

in this paper.

G = (V, E)

V E ⊆ V × V

V (G) E(G)

G N(v) = {u ∈ V |
(u, v) ∈ E} v

d(v) = |N(v)| v

S ⊂ V G[S]

V (G[S]) = S

E(G[S]) = {(u, v) ∈ E(G)|u, v ∈ S}

An undirected graph consists of a set

of nodes and a set of edges . The nota-

tions and denote the node set and the

edge set of graph , respectively.

 is the set of neighbors of node , and

 is the degree of node . Given that a

subset of node set , the induced subgraph

is the graph whose node set , and edge

set .

{C1, C2, . . . , CL}

C v ∈ C

A pair of nodes are connected if there is an edge

path from one to the other. A graph can be divided

into several connected components ,

in which each pair of nodes in the same connected

component are connected and each pair of nodes in

the different connected components are not connect-

ed. In a connected component , a node is a

cut point iff removing it (and its incident edges) dis-

connects the graph. For example, the graph shown in

Fig.1 has three cut points 3, 4, and 5.

64 5

2

3

1

Fig.1. Connected component with three cut points.

Given an unconnected graph, which is divided in-

to connected components (disjoint connect subgraphs)

{C1, C2, . . . , CL}
|C1| ⩽ |C2| ⩽ . . . ⩽ |CL|

Ci

|Ci| ⩾ (|C1|+ |CL|)/2

, without loss of generality, let us

assume , and then we call a

connected component a large component iff

.

2.2 Problem Description

G = (V, E) K

S ⊂ V |S| ⩽ K

G[V \S]
{C1, C2, . . . , CL}

f(S)

Given a graph and an integer , the

critical node problem (CNP) aims to extract a subset

of nodes , where , to minimize the to-

tal number of connected pairs in the residual graph

. The residual graph is divided into several

connected components , and the ob-

jective function of the CNP is defined as

f(S) =
L∑

i=1

(
|Ci|
2

)
,

L

G[V \S]
where is the total number of connected compo-

nents of the residual graph .

K = 2 S = {2, 4}

S = {3, 4}

Considering the easy graph in Fig.2(a) with

, Fig.2(b) shows a feasible solution

and its cost is 3, while Fig.2(c) shows the optimal so-

lution and its cost is 2.

6

4 5

2 31

(a)

6

4 5

2 31

(b)

6

4 5

2 31

(c)

K

S = {2, 4} f(S) =
(3
2

)
= 3

S = {3, 4}
f(S) =

(2
2

)
+

(2
2

)
= 2

Fig.2. (a) Easy graph with 6 nodes and = 2. (b) Feasible

solution (), whose objective function .

(c) Optimal solution (), whose objective function

.

3 Framework of Algorithm CPHS

In this section, we introduce the main procedure

of our proposed CPHS algorithm (as shown in Algo-

rithm 1), and we will leave the two important sub-al-

gorithms ImproveLS and UpdatePool for Section 4

and Section 5, respectively.

P
P

S∗

The algorithm maintains a solution pool . The

solutions in will be updated during the search. In

the beginning, the algorithm generates some initial so-

lutions as the solution pool (line 1), and the best-

found solution is initialized as the best initial solu-

tion (line 2). After that, the algorithm executes the

main loop (lines 3–8) until reaching the preset cutoff

time. In each iteration, a new solution is generated by

1330 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

P
S

S ′

S
′

S∗ S∗

S
′

S
′

P
S∗

a cross operation, which absorbs the advantages of

two random solutions from (lines 4 and 5). The re-

sulting solution is improved by a local search proce-

dure (the ImproveLS function), leading to an im-

proved (possibly the same) solution (line 6). At the

end of each iteration, if is better than , then

is updated as (line 7). Also, a procedure is used to

decide whether should be added to the solution

pool (line 8). Finally, when reaching the time limit,

CPHS returns the best-found solution (line 9). Be-

low we explain the Initialization and Cross functions

of CPHS.

Algorithm 1. Pseudocode of CPHS

G = (V, E) cutoff K　　Input: graph , the time, an integer

S∗　　Output: the best solution found

P ← Initialization();1　

S∗ ← argminSi∈Pf(S
i);2　

elapsedtime < cutoff3　while: do

Si, Sj P4　 randomly select two solutions from

S ← Cross(Si, Sj);5　

S
′ ← ImproveLS(S);6　

(f(S
′
) < f(S∗)) S∗ ← S

′
;7　 if then

UpdatePool(S
′
);8　

S∗;9　return

3.1 Initialization

K

Poolsize

Poolsize

To construct an initial solution, we first pick

nodes randomly as a solution and then improve it by

the ImproveLS procedure. This is repeated

times so as to form a solution pool, where is

a parameter representing the size of the solution pool.

3.2 Cross

The Cross procedure selects common nodes from

two solutions in the solution pool, and adds some oth-

er nodes to construct a new solution randomly.

Si Sj

P
S

Si Sj S S = Si
∩

Sj

v Si Sj

v ∈ (Si
∪

Sj)\(Si
∩

Sj)

S p0 p0

S

To be specific, let and be the two solutions

randomly chosen from , and let us denote the new-

ly generated solution as . Firstly, we put the com-

mon nodes of and to , i.e., . Then,

for each node appearing in either or but not

both (formally,), it is added

to with a probability , where is an algorith-

mic parameter. For this resulting node set , we have

three different cases.

|S| = K● . In this case, we directly pass it to the

ImproveLS procedure for further improvements.

|S| > K S● . This means is not a solution, and

|S| −K S

f |S| = K

S

we remove nodes from with a greedy man-

ner w.r.t. the objective function , making ,

and thus becomes a valid solution.

|S| < K f(S)

S |S| = K

S

|S| = K S

K

S |S| = K

f(S)

● . can be reduced by adding more

nodes to until . As we will prove in Sec-

tion 4, adding cut points to the solution is usually a

good choice for this aim, although not necessarily op-

timal. Thus, after picking a random large component,

CPHS iteratively adds a random cut point to (and

removes it from the component) until there is no cut

point in the component or . If the size of is

still smaller than after adding all the cut points in

the component, then some more random nodes from

the component are added to until , which

further brings down the value of .

4 Local Search for Improving Solution

A main idea of this work lies in the ImproveLS
procedure, which is the critical function of the CPHS

algorithm. This section presents the details of this

sub-algorithm, and provides some theoretical insights

of our cut point based strategy.

S

S S

MaxIter

S ′

The ImproveLS procedure (depicted in Algorithm

2) aims to improve an input solution by iteratively

adding a new node to and removing a node from ,

it terminates when continuous rounds have

no improvement (line 2), and the best-improved solu-

tion during this procedure is returned by the Im-
proveLS procedure.

Algorithm 2. ImproveLS

S MaxIter　　Input: a solution , step limit

S
′

　　Output: improved solution

S
′ ← S1　 ;

no_improve_steps < MaxIter2　while: do

CR ← G[V \ S]3　　　 a random large connected component in ;

no_improve_steps > Limit4　　　if then

v ← CR5　　　　　 the oldest node from ;

6　　　else

CutP ← FindCutnode(CR) ̸= ∅7　　　　　if then

8　　　　　　　if with half probability then

v ← v CutP9　　　　　　　　　 a random node from ;
10 else

v ← argminx∈CutPf(S
∪
{x})11　　　　　　　　 ;

v ← CR12　　　　　else the oldest node from ;

S ← S
∪
{v}13　　　 ;

u← argminx∈Sf(S \ {x})14　　　 ;

S ← S \ {u}15　　　 ;

(f(S) < f(S
′
)) S

′ ← S16　　　if then ;

S
′

17　return ;

CRIn each iteration, a large connected component

is selected randomly (line 3). After that, a node

Zhi-Han Chen et al.: Heuristic Search with Cut Point Based Strategy for Critical Node Problem 1331

v ∈ CR

no_improve_steps

Limit

 is selected to be added to the solution. Two

node selection strategies are employed alternatively,

one of which exploits cut points while the other is a

simple diversification strategy. Let

be the counter of consecutive no improvement itera-

tions and a parameter which is a positive inte-

ger. The ImproveLS procedure switches between two

modes according to the behavior.

Limit

no_improve_steps < Limit

CR

Limit CR

CR

age

v S v ∈ S

v /∈ S

v S

u

f(S) S

S ′ S

When improvement is made within last

rounds, i.e., , the strategy

based on cut point detection is employed to choose

the node. Specifically, if there exists a cut point or

there exist cut points in , with a probability of 0.5,

we greedily select the cut point that can minimize the

objective function value the most (lines 10 and 11),

and otherwise we randomly select a cut point (line 8

and 9). Otherwise, if the solution is not improved in

last rounds or if there is no cut point in ,

the oldest node in is picked (lines 4, 5, and 12).

(We define the of a node as the number of rounds

since the last time it changed the state, where a node

 has two states w.r.t. the solution , i.e., and

. Then the oldest node is the one with the maxi-

mum age.) The selected node is then added into

(line 13). After that, the node whose removal re-

sults in the smallest value of is removed from

(lines 14 and 15). The algorithm replaces with if

it is better than the old one (line 16).

4.1 Greedy Strategy Based on Cut Point

CR

CR

v ∈ CR S

This subsection presents a greedy node selection

strategy based on cut point. Recall that in each itera-

tion of the ImproveLS procedure, we randomly choose

a large connected component . If there is at least

one cut point in , the cut point based strategy se-

lects a cut point to be added into (equiva-

lently, removing it from the component it belongs to).

Proposition 1 states a desirable property of this strat-

egy.

CR

v ∈ CR

T (CR, v)

v CR v∗

T (CR, v) v∗

Proposition 1. In a connected component with
at least one cut point, for any node , we define

 be the number of connected pairs after re-
moving from . Let be the minimizer of

, and then must be a cut point.
CR n = |CR|

v1 ∈ CR v2 ∈ CR

T (CR, v2) =
(
n−1

2

)
T (CR, v1)

Proof. For a connected component , let ,

and let be a cut point while is not a

cut point. Obviously, . In the fol-

lowing of the proof, we mainly calculate .

v1 CR CR kSuppose removing from divides into

T (CR, v1) =
∑k

i=1

(
ni

2

)
, ni

i
∑k

i=1
ni = n− 1

parts, then where is the

size of the -th part and .

k = 2First we prove the case where ,

T (CR, v1) =
2∑

i=1

(
ni

2

)
=

1

2
(n2

1 + n2
2 − n1 − n2),

while

T (CR, v2) =

(
n− 1

2

)
=

(
n1 + n2

2

)
=

1

2
(n1 + n2 − 1)(n1 + n2)

=
1

2
(n2

1 + n2
2 + 2n1n2 − n1 − n2).

T (CR, v1) T (CR, v2)Comparing and ,

T (CR, v2)− T (CR, v1) = n1n2 ⩾ 0 (n1, n2 ⩾ 1),

T (CR, v2) T (CR, v1)

v∗ k = 2

where is larger than , which means

that must be a cut point when .

k > 2Now, we prove the case where . According to

the arguments above,
 (

n1

2

)
+

(
n2

2

)
⩽

(
n1 + n2

2

)
.

Similarly, we have

T (CR, v1) =
k∑

i=1

(
ni

2

)
⩽

(
n1 + n2 + . . .+ nk

2

)
⩽

(
n− 1

2

)
= T (CR, v2).

v∗ k > 2This proves that must be a cut point when .

□

CR

v CR Cost(v)

v ∈ CR

v Cost(v)

v

v {x0, x1, . . . , xk}
x sizex Cost(v)

Inspired by Tarjan's algorithm[26], we design an al-

gorithm that can not only find all cut points in ,

but also calculate the number of connected pairs re-

maining after removing from (denoted as)

for each node . In detail, during the search pro-

cess of Tarjan's algorithm, we maintain the children

and the subtree size of each node, so that once the al-

gorithm finds a cut point , can be easily cal-

culated using the subtree size of 's children. Sup-

pose the children of are and the

subtree size of is , then is
 (

sizex0

2

)
+

(
sizex1

2

)
+ . . .+

(
sizexk

2

)
+(

|CR| − sizex0
− sizex1

− . . .− sizexk
− 1

2

)
.

1332 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

O(|V (CR)|+ |E(CR)|)
The complexity of this improved algorithm is

, which is the same as Tarjan's

algorithm.

CR

S

Cost

If there is no cut point in , we select the oldest

node to be added to . If there exists a cut point or

there exist cut points, with a probability of 0.5, we se-

lect the node with the smallest , and otherwise

we randomly select a cut point.

4.2 Enhancement for Cut Point Based

Strategy

The cut point based strategy is quite aggressive.

Looking at just one iteration, a cut point is the best

choice we can make. However, the local search proce-

dure performs many iterations, and the cut point

based strategy may lead to a local optimum.

v9 v9

(
7

2

)
= 21

v2 v5(
4

2

)
+
(
4

2

)
= 12

For example, considering the case in Fig.3, we can

remove two nodes. Supposing we are using the cut

point based strategy, in the first round, the graph on-

ly has one connected component, which has exactly

one cut point . Therefore, is chosen to be re-

moved. In the second round, the graph has two con-

nected components, both of which have no cut point,

indeed we are leaving with a cycle, and no matter

which node we remove, the remaining number of the

connected pairs of this graph is . However,

the optimal solution is removing and , leading to

 connected pairs.

6

4

5

2

3

1

7

8

9 10

Fig.3. Simple graph with only one cut point.

Limit

To avoid being trapped in a sub-optimal solution

by choosing cut points constantly, our algorithm in-

troduces more diversification. If the solution was up-

dated within previous rounds, we choose a cut

point; otherwise, the oldest node is chosen to be

added to the solution.

5 Similarity-Aware Solution Pool Updating

CPHS maintains a solution pool during the

search, which is updated by the UpdatePool proce-

dure. In this section, we introduce the details of the

UpdatePool procedure. The principle is to strike a

balance between the quality of the solutions and the

diversity of the solution pool.

P = {S1, S2, . . . , Sp}
P+ = P ∪ {S ′} S ′

P

The pseudo-code of UpdatePool is shown in Algo-

rithm 3. Suppose at the time when UpdatePool is

called, the solution pool . Let us

denote (is the newly generated so-

lution) (line 1). We should take into account both the

quality of the solutions and the diversity of the solu-

tions in the solution pool . This is easy to under-

stand, if the solutions in the pool are similar, the al-

gorithm would visit only a small part of the solution

space; on the other hand, since the new solutions are

generated on the basis of the solution pool, the quali-

ty of the solutions in the pool has a direct impact on

the quality of the newly generated solutions. We use a

scoring mechanism based on the population manage-

ment strategy in [27] to measure each solution in the

pool:

Score(A) = rankf(A)× p1 + rankSim(A)× (1− p1),

rankf

f rankSim

where represents the ranking of the solution

w.r.t the value and represents the ranking

of the solution w.r.t the similarity value.

Algorithm 3. UpdatePool

P = {S1, S2, . . . , Sp}
S ′

　　Input: a solution pool and a newly

 generated solution

P　　Output: an updated solution pool

P+ ← P
∪
{S ′}1　 ;

Sp+1 ← S ′2　 ;

i = 1, 2, . . . , p+ 13　 for do

Scorei ← Si4　　 score of calculated by the scoring mecha-
 nism;

w ← argmaxx∈{1, 2, ..., p+1}Scorex5　 ;

P ← P+ \ {Sw}6　 ;

Sw ← Sp+17　 ;

Sim← P8　 the overall average similarity of ;

Sim
9　 Update the proportion parameter in the scoring mecha-
 nism according to

i = 1, 2, . . . , p10　 for do

Si Sim11　 mutates with a probability based on ;
P12 Return ;

p1

The proportion of the quality and diversity in the

scoring mechanism of [27] is fixed. Differently, we pro-

pose to dynamically adjust this proportion based

on the overall average similarity

Sim =
∑

A, B∈P, A ̸=B

|A ∩B|
K|P|(|P| − 1)

,

and an obvious intuition is that if the overall average

Zhi-Han Chen et al.: Heuristic Search with Cut Point Based Strategy for Critical Node Problem 1333

p1

similarity is higher, which means the solutions in the

solution pool have similar structures, the proportion

of diversity in the scoring function should be larger to

prevent the search from getting trapped in a local

space. Otherwise the proportion of diversity should be

smaller in order to reserve better quality solutions.

Therefore we set like this:

p1 =

{
0.7, if Sim < 0.6,
1− 0.5Sim, otherwise.

The details will be presented in Section 7.

Score

A ∈ P+ P
P ← P+ \ {W} W

Score Sim

p1

After calculating the value of each solution

 (lines 2–4), the solution pool is updated as

 (lines 6 and 7), where is the solu-

tion with the biggest value (line 5). Then

is updated (line 8), causing a change of (line 9).

Moreover, to introduce diversification to the solu-

tion pool, our algorithm employs mutation operation

(lines 10 and 11). After updating the solution pool,

each solution will mutate with a probability also

based on the overall average similarity:

p2 × Sim
p3

,

0 < p2 < 1, p3 ⩾ 1 Si ∈ P
Si

Si

Si

where . Specifically, for each ,

when it mutates, each node in is replaced with a

node which is not in with a probability of 0.5, and

then is improved by the ImproveLS procedure.

6 Discussion

Compared with the state-of-the-art CNP algo-

rithms MACNP and VPMS, CPHS also adopts the

framework of the memetic algorithm. However, it has

made improvements in each component, including the

following points.

S

K

S

● Cross. If the size of the result set generated

from the initial operation is less than , CPHS will

prioritize selecting cut points from large connected

components to be added to , while MACNP and

VPMS select nodes randomly.

● Local Search. In each round of node selection,

CPHS prioritizes selecting cut points to accelerate the

search convergence process, while MACNP and

VPMS prioritize selecting the oldest node.

● Pool Updating. The proportion of diversity and

quality in the pool management scoring mechanism of

CPHS is dynamically adjusted, while it is fixed in

MACNP and VPMS.

● Mutation. In CPHS, a mutation strategy is ap-

plied to the solutions with a probability based on the

overall average similarity to enhance solution diversi-

ty.

7 Experiments

We evaluate the performance of CPHS and com-

pare it with state-of-the-art algorithms. In addition,

we perform experimental analyses on the strategies in

CPHS. The source code and detailed experiment re-

sults are available online①.

7.1 Benchmarks

Our computational studies are carried out with

three benchmarks.

K

● The synthetic benchmark is used in the litera-

ture[16, 20, 21, 24]. The number of critical nodes () is

given along with each graph.

K

● The real -world benchmark consists of 26 real-

world graphs from various practical applications in

areas like biology, electronics, transportation, and

complex networks[21]. The number of critical nodes

() is given along with each graph.

K K |V |/5, |V |/10, |V |/20
K

[|V |/20, |V |/5]
23× 3 = 69

● The network benchmark comes from Network

Data Repository[28]②, which collects massive graphs

from the real world. We only report the results on the

graphs with no more than 1 000 000 edges, resulting

in 23 graphs. Those larger graphs are too difficult to

solve even within two hours③. For each instance, the

 values are set as = , respec-

tively, as the value is always in the range

 in the synthetic and real-world bench-

marks. This finally leads to instances in

total. This benchmark has been widely used for

graph-theoretic combinatorial optimization problems

including maximum clique[29], coloring[30], and domi-

nating set problems[31].

7.2 Implementations

CPHS was implemented in C++, and was com-

piled using GNU gcc 9.2.0 with ‘‘-O2’’ option. For pa-

rameter tuning, we randomly select five instances

1334 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

①https://github.com/iHaN-o/CPHS, Nov. 2024.

②http://www.graphrepository.com/networks.php, Nov. 2024.

③For those graphs with more than one million edges, CPHS can find a solution for 10 graphs within two hours while the other
algorithms fail to solve any of them within two hours.

https://github.com/iHaN-o/CPHS
https://github.com/iHaN-o/CPHS
https://github.com/iHaN-o/CPHS
http://www.graphrepository.com/networks.php

from each benchmark with various sizes and various

levels of difficulty. The algorithmic parameters of

CPHS are divided into the following two categories.

PoolSize 20 MaxIter

1 000 Limit 100 p0 = 0.9 p2 0.001 p3 = 8

● Static Parameters. = , =

, = , , = , and .

We tune each of the parameters while fixing other pa-

rameter values unchanged. For each configuration,

CPHS is executed for 10 runs on each instance within

3 600 seconds.

p1

Sim

p1 ∈ [0.5, 0.7]
Sim

p1

p1 Sim

● Dynamic Parameters. In CPHS, is an adap-

tive dynamic parameter based on the overall average

similarity , and its setting is described in Section

5. The constants 0.7 and 0.5 in the formula are tuned

according to an observation that CPHS reaches its

peak performance at when we set it

statically. When is particularly small, the search

is insufficient probably, and thus we fix to 0.7.

Otherwise, decreases to 0.5 as increases.

7.3 Competitors

We compare CPHS with state-of-the-art heuristic

CNP algorithms, including CNA1[20], FastCNP[25],

MACNP[21], and VPMS[24]. The codes of these algo-

rithms are kindly provided by their authors. For the

synthetic benchmark and the real-world benchmark,

we set their parameters as described in [21] and [24],

respectively, which are tuned by their authors for

these two benchmarks. For the network benchmark,

we tune its parameters in the same way as we tune

our Static parameters. Because CNA1 is worse than

the other two algorithms on nearly all the instances,

except for some easy instances, we do not report its

results.

7.4 Experimental Settings

The experiments are conducted on a server with

Intel® Xeon® Platinum 8153 256-core processor with

2.00 GHz and 1 024 GB RAM under the Linux sys-

tem. Each algorithm is executed 10 runs for each in-

stance with different random seeds (1, 2, ..., 10). The

time limit for each run is 3 600 seconds, as suggested

in the previous CNP heuristic algorithms[20, 21, 25].

f ∗

f f ∗

f

For each instance, we report for each algorithm

the best objective value among the 10 trials () as

well as the average objective value (). The best

and found among the algorithms are shown in bold.

However, for some instances of the synthetic bench-

mark and real-world benchmark, all algorithms ob-

tain the same quality solution (i.e, the same minimal

and average values), and for such instances, we re-

port the average run time.

7.5 Comparative Performance

Results on Synthetic Benchmark. As seen from

Table 1. Comparison Results on the Synthetic Benchmark

Instance K FastCNP MACNP VPMS CPHS

f∗ f f∗ f f∗ f f∗ f

BA500 50 195.0 195.0 195.0 195.0 195.0 195.0 195.0 195.0

BA1000 75 558.0 558.0 558.0 558.0 558.0 558.0 558.0 558.0

BA2500 100 3 704.0 3 704.0 3 704.0 3 704.0 3 704.0 3 704.0 3 704.0 3 704.0

BA5000 150 10 196.0 10 196.0 10 196.0 10 196.0 10 196.0 10 196.0 10 196.0 10 196.0

ER250 50 295.0 295.0 295.0 295.0 295.0 295.0 295.0 295.0

ER500 80 1 524.0 1 525.5 1 524.0 1 524.0 1 524.0 1 524.0 1 524.0 1 524.0

ER1000 140 5 030.0 5 183.6 5 012.0 5 025.3 5 020.0 5 037.2 5 012.0 5 013.4

ER2500 200 996 023.0 1 025 661.8 904 494.0 926 635.3 918 082.0 936 760.9 903 273.0 915 874.6

FF250 50 194.0 194.0 194.0 194.0 194.0 194.0 194.0 194.0

FF500 110 257.0 257.0 257.0 257.0 257.0 257.0 257.0 257.0

FF1000 150 1 260.0 1 260.0 1 260.0 1 260.0 1 260.0 1 260.0 1 260.0 1 260.0

FF2000 200 4 545.0 4 545.0 4 545.0 4 545.5 4 545.0 4 545.0 4 545.0 4 545.0

WS250 70 3 179.0 3 386.5 3 083.0 3 130.5 3 083.0 3 089.4 3 083.0 3 120.1

WS500 125 2 101.0 2 120.5 2 072.0 2 082.0 2 085.0 2 085.0 2 072.0 2 083.3

WS1000 200 135 856.0 139 744.4 126 496.0 154 264.6 121 788.0 135 236.8 111 594.0 119 758.1

WS1500 265 13 923.0 14 212.8 13 099.0 13 224.7 13 098.0 13 189.6 13 221.0 13 395.8

Note: The underlined CPHS's results indicate that they are significantly superior to other algorithms according to the Wilcoxon
signed-rank test.

Zhi-Han Chen et al.: Heuristic Search with Cut Point Based Strategy for Critical Node Problem 1335

Table 1, FastCNP is far too weak in comparison with

MACNP, VPMS and CPHS. These three algorithms

have similar results on the benchmark, with CPHS

being the best among them. Specifically, CPHS has

better performance than FastCNP on all instances.

CPHS finds better solutions than MACNP on five in-

stances and worse on two instances, and these figures

are three and two when compared with VPMS, while

obtaining the same results for the remaining in-

stances.

f

Results on Real-World Benchmark. The results on

the real-world benchmark are summarized in Table 2

(we round off the average objective value () due to

the space limit), which apparently demonstrates that

CPHS performs significantly better than FastCNP,

MACNP and VPMS on real-world instances. For the

five easy instances (from Bovine to Treni_Roma), the

four algorithms find solutions of the same quality. For

f ∗ f

the remaining 21 instances, CPHS dominates the

competitors. Specifically, CPHS dominates FastCNP

on all instances, while it finds better solutions than

MACNP on 20 out of these 21 instances, in terms of

both and . Similarly, CPHS dominates VPMS on

20 out of these 21 instances. It is worth noting that

no algorithm dominates CPHS on any instance.

f ∗

f

Results on Network Benchmark. The detailed re-

sults are provided as supplementary file④ due to the

space limit. As MACNP and VPMS have much bet-

ter performance than FastCNP on almost all in-

stances, especially on massive instances, we focus on

the comparison results of CPHS against MACNP and

VPMS. CPHS finds better than MACNP on 55

out of the 69 instances, while finding the same result

on seven instances, and the averaged solution quality

() is better on 62 instances and same results on two

instances. When compared with VPMS, CPHS finds

Table 2. Comparison Results on the Real-World Benchmark

Instance K FastCNP MACNP VPMS CPHS

f∗ f f∗ f f∗ f f∗ f

Bovine 3 268 268 268 268 268 268 268 268

Circuit 25 2 099 2 099 2 099 2 099 2 099 2 099 2 099 2 099

Ecoli 15 806 806 806 806 806 806 806 806

humanD 52 1 115 1 115 1 115 1 115 1 115 1 115 1 115 1 115

Treni_Roma 26 918 918 918 918 918 918 918 918

yeast1 202 1 412 1 412 1 412 1 412 1 412 1 412 1 412 1 412

astroph 1 877 59 929 379 60 933 263 61 269 470 61 948 413 56 229 708 57 421 239 53 436 604 53 832 208

condmat 2 313 12 701 426 13 234 928 9 271 118 9 850 815 6 057 949 6 593 803 3 732 788 4 046 156

EU_fl 119 349 100 350 596 350 762 354 870 348 268 349 848 348 268 349 266

facebook 404 751 425 790 614 722 113 787 886 696 418 761 198 680 258 762 154

grqc 524 15 871 16 084 13 631 13 644 13 635 13 653 13 595 13 631

H1000 100 316 727 322 606 309 362 312 737 306 349 311 437 306 349 310 359

H2000 200 1 317 841 1 331 228 1 264 907 1 284 196 1 247 922 1 259 022 1 246 172 1 254 923

H3000a 300 2 989 389 3 023 400 2 911 248 2 955 816 2 840 529 2 853 246 2 799 139 2 833 486

H3000b 300 2 978 787 3 018 403 2 886 180 2 960 133 2 839 488 2 857 123 2 822 633 2 834 821

H3000c 300 2 968 978 3 011 465 2 889 965 2 936 136 2 835 510 2 844 654 2 782 091 2 821 088

H3000d 300 3 018 962 3 033 349 2 913 031 2 970 674 2 830 238 2 858 304 2 783 038 2 821 378

H3000e 300 2 435 534 2 469 112 2 898 302 2 963 916 2 846 889 2 863 676 2 219 321 2 256 196

H4000 400 5 362 144 5 415 118 5 211 185 5 345 563 5 109 197 5 148 288 4 973 910 5 065 126

H5000 500 8 486 534 8 529 798 8 415 527 8 581 551 8 102 079 8 146 342 7 911 029 8 023 562

hepph 1 201 10 769 287 11 448 988 10 080 780 10 590 445 10 046 236 10 508 820 5 805 879 6 133 045

hepth 988 149 294 252 648 106 674 108 178 113 747 116 076 105 079 105 790

OClinks 190 617 790 619 790 615 574 616 460 612 313 614 261 612 303 613 823

openfl 186 29 676 30 083 28 700 29 109 26 875 28 676 26 777 28 315

powerg 494 16 063 16 146 15 904 15 927 15 952 15 998 15 856 15 863

USAir97 33 4 726 5 181 4 336 4 336 4 336 5 331 4 336 4 336

Note: The underlined CPHS's results indicate that they are significantly superior to other algorithms according to the Wilcoxon
signed-rank test.

1336 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

④https://github.com/iHaN-o/CPHS/blob/main/Newwork_compare_with_sota.pdf, Nov. 2024.

https://github.com/iHaN-o/CPHS/blob/main/Newwork_compare_with_sota.pdf
https://github.com/iHaN-o/CPHS/blob/main/Newwork_compare_with_sota.pdf
https://github.com/iHaN-o/CPHS/blob/main/Newwork_compare_with_sota.pdf
https://github.com/iHaN-o/CPHS/blob/main/Newwork_compare_with_sota.pdf
https://github.com/iHaN-o/CPHS/blob/main/Newwork_compare_with_sota.pdf
https://github.com/iHaN-o/CPHS/blob/main/Newwork_compare_with_sota.pdf
https://github.com/iHaN-o/CPHS/blob/main/Newwork_compare_with_sota.pdf
https://github.com/iHaN-o/CPHS/blob/main/Newwork_compare_with_sota.pdf
https://github.com/iHaN-o/CPHS/blob/main/Newwork_compare_with_sota.pdf

f ∗

f

better on 45 instances, and same on seven in-

stances, and is better on 50 instances and same on

three instances. These strong results clearly show the

superiority of CPHS on these large-scale instances.

Results on Average Run Time. We also compare

the average run time of the algorithms for those in-

stances where they find the same quality solutions,

and the results are depicted in Fig.4. The average run

time of CPHS is significantly less than that of FastC-

NP and VPMS, and is usually more than 10x faster.

CPHS is also faster than MACNP for most instances,

with only two exceptions.

103

102

101

100

10-1

10-2

10-2 10-1 100 103101 102

R
u
n
 T

im
e
 o

f
T

h
re

e
 C

o
m

p
e
ti
to

rs
 (

s)

Run Time of CPHS (s)

CPHS vs FastCNP

CPHS vs MACNP

CPHS vs VPMS

Fig.4. Average run time of CPHS and competitors on all in-
stances where the algorithms find the same quality solutions.

p

Summarized Results. The results on the three

benchmarks are summarized in Table 3. In particular,

for any comparison between CPHS and each competi-

tor, we perform the Wilcoxon signed-rank test[32] to

examine the statistical significance. For each instance,

if all the -values of Wilcoxon signed-rank tests at

95% confidence level are smaller than 0.05 (indicat-

ing statistical significance)[32, 33], the performance im-

provement of CPHS over all its competitors is consid-

ered to be statistically significant, and the results of

CPHS are marked using the underline. As seen from

Tables 1–3, the performance of CPHS is significantly

better than that of all competitors.

7.6 Component Analysis

We also study the effectiveness of the key strate-

gies of our algorithm. We modify CPHS to obtain

four alternative versions.

● CPHS0 removes the age based diversification en-

hancement.

● CPHS1 removes the greedy strategy based on cut

point (always selects the oldest node to be added to

the solution).

● CPHS2 removes the mutation operation.

● CPHS3 replaces dynamic parameters in the mu-

tation operation and pool updating with static param-

eters.

1

The comparison of CPHS and its alternatives on

the synthetic benchmark and the real-world bench-

mark is shown in Table 4 (15 easy instances are not

reported since all variants can find the same optimal

solution). For the network benchmark, the results are

provided as supplementary file⑤. And we summarize

the comparison results: as seen from Table 5, the per-

formance of every alternative is far weaker than

CPHS, of which CPHS is the worst. These results

demonstrate the effectiveness of the strategies in

CPHS especially the cut point based greedy strategy.

8 Conclusions

This paper proposed an effective local search algo-

rithm CPHS to solve the critical node problem

(CNP), which integrates two main novel ideas. The

first one is a cut point based local search procedure,

while the second one is a dynamic pool updating

strategy. The comparison results between CPHS and

state-of-the-art CNP algorithms showed that CPHS

dominates on a wide range of benchmarks. Particular-

ly, CPHS performs much better on real-world graphs

Table 3. Summarized Results of CPHS with MACNP and VPMS on Three Benchmarks

CPHS vs MACNP CPHS vs VPMS

Synthetic Real-World Network Synthetic Real-World Network

f∗ f f∗ f f∗ f f∗ f f∗ f f∗ f

Better 2 5 19 20 55 62 4 4 17 19 45 50

Same 13 9 7 6 7 2 11 10 9 6 7 3

Worse 1 2 0 0 7 5 1 2 0 1 17 16

Zhi-Han Chen et al.: Heuristic Search with Cut Point Based Strategy for Critical Node Problem 1337

⑤https://github.com/iHaN-o/CPHS/blob/main/Network_compare_with_alternatives.pdf, Nov. 2024.

https://github.com/iHaN-o/CPHS/blob/main/Network_compare_with_alternatives.pdf
https://github.com/iHaN-o/CPHS/blob/main/Network_compare_with_alternatives.pdf
https://github.com/iHaN-o/CPHS/blob/main/Network_compare_with_alternatives.pdf
https://github.com/iHaN-o/CPHS/blob/main/Network_compare_with_alternatives.pdf
https://github.com/iHaN-o/CPHS/blob/main/Network_compare_with_alternatives.pdf
https://github.com/iHaN-o/CPHS/blob/main/Network_compare_with_alternatives.pdf
https://github.com/iHaN-o/CPHS/blob/main/Network_compare_with_alternatives.pdf
https://github.com/iHaN-o/CPHS/blob/main/Network_compare_with_alternatives.pdf
https://github.com/iHaN-o/CPHS/blob/main/Network_compare_with_alternatives.pdf

and large-scale graphs. Based on these results, we

concluded that our algorithm pushes the state-of-the-

art in solving CNP over a broad range of benchmarks.

It would be interesting to study the dynamic up-

dating method to population-based heuristic search

algorithms for other problems.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Shen Y, Nguyen N P, Xuan Y, Thai M T. On the discov-

ery of critical links and nodes for assessing network vul-

nerability. IEEE/ACM Trans. Networking, 2013, 21(3):

963–973. DOI: 10.1109/TNET.2012.2215882.

[1]

 Boginski V, Commander C W. Identifying critical nodes

in protein-protein interaction networks. In Clustering

[2]

Challenges in Biological Networks, Butenko S, Chaovalit-

wongse W A, Pardalos P M (eds.), World Scientific, 2009,

pp.153–167. DOI: 10.1142/9789812771667_0007.
 Tomaino V, Arulselvan A, Veltri P, Pardalos P M.

Studying connectivity properties in human protein–pro-

tein interaction network in cancer pathway. In Data Min-

ing for Biomarker Discovery, Pardalos P M, Xanthopou-

los P, Zervakis M (eds.), Springer-Verlag, 2012,

pp.187–197. DOI: 10.1007/978-1-4614-2107-8_10.

[3]

 Nguyen D T, Shen Y, Thai M T. Detecting critical nodes

in interdependent power networks for vulnerability assess-

ment. IEEE Trans. Smart Grid, 2013, 4(1): 151–159. DOI:

10.1109/TSG.2012.2229398.

[4]

 Aspnes J, Chang K, Yampolskiy A. Inoculation strategies

for victims of viruses and the sum-of-squares partition

problem. Journal of Computer and System Sciences, 2006,

72(6): 1077–1093. DOI: 10.1016/j.jcss.2006.02.003.

[5]

 Kempe D, Kleinberg J, Tardos É. Maximizing the spread[6]

Table 4. Comparison Results of CPHS and Its Alternatives on the Synthetic Benchmark and Real-World Benchmark

Instance 0CPHS 1CPHS 2CPHS 3CPHS CPHS

f∗ f f∗ f f∗ f f∗ f f∗ f

ER1000 5 014 5 014.0 5 012 5 013.0 5 012 5 014.1 5 012 5 013.2 5 012 5 013.4

ER2500 914 658 928 366.7 907 630 924 858.3 909 568 921 895.6 910 112 922 141.2 903 273 915 874.6

FF2000 4 545 4 545.1 4 545 4 545.0 4 545 4 545.2 4 545 4 545.0 4 545 4 545.0

WS1000 100 321 111 481.2 118 019 134 621.5 105 221 117 973.7 102 563 114 768.8 111 594 119 758.1

WS1500 13 212 13 355.7 13 209 13 450.0 13 277 13 502.4 13 212 13 433.6 13 221 13 395.8

WS500 2 085 2 085.0 2 085 2 086.9 2 085 2 096.8 2 072 2 083.3 2 072 2 083.3

WS250 3 083 3 097.2 3 083 3 144.6 3 083 3 152.4 3 083 3 112.0 3 083 3 120.1

astroph 54 845 785 55 335 760.0 61 010 134 61 690 842.9 53 240 664 53 780 643.3 53 277 103 53 743 429.4 53 436 604 53 832 207.7

condmat 4 897 042 5 418 729.0 5 131 547 5 768 460.5 4 063 158 4 341 527.6 3 969 536 4 393 034.7 3 732 788 4 046 156.0

EU_flights 350 762 351 681.5 348 268 349 764.4 348 268 350 263.2 348 268 349 515.0 348 268 349 265.6

facebook 743 835 757 193.0 777 553 811 807.0 760 395 796 718.5 714 610 789 844.4 680 258 762 153.7

grqc 13 605 13 637.3 13 602 13 639.8 13 701 13 740.1 13 625 13 682.9 13 595 13 631.4

Ham1000 313 403 318 673.9 309 722 312 194.2 307 279 310 141.5 306 349 309 248.7 306 349 310 358.8

Ham2000 1 280 590 1 298 453.8 1 246 886 1 255 201.6 1 244 002 1 253 642.4 1 239 349 1 256 853.4 1 246 172 1 254 923.3

Ham3000a 2 888 682 2 938 656.7 2 835 573 2 848 173.8 2 813 353 2 849 744.9 2 827 676 2 856 395.7 2 799 139 2 833 485.7

Ham3000b 2 863 941 2 921 528.1 2 812 876 2 842 161.8 2 807 253 2 839 806.0 2 819 521 2 849 315.0 2 822 633 2 834 820.9

Ham3000c 2 859 843 2 907 585.4 2 806 678 2 833 888.5 2 802 685 2 836 148.3 2 802 896 2 843 865.0 2 782 091 2 821 087.8

Ham3000d 2 901 115 2 952 580.6 2 812 166 2 861 616.0 2 794 781 2 828 627.7 2 808 517 2 846 102.9 2 783 038 2 821 378.2

Ham3000e 2 295 684 2 339 004.9 2 254 927 2 277 048.2 2 237 303 2 265 403.5 2 226 559 2 267 203.3 2 219 321 2 256 195.7

Ham4000 5 152 243 5 234 590.2 5 015 960 5 079 097.2 5 055 748 5 099 579.0 5 032 353 5 081 813.6 4 973 910 5 065 125.9

Ham5000 8 127 622 8 196 694.7 7 978 287 8 034 887.5 7 896 059 7 972 842.2 7 953 752 8 032 924.6 7 911 029 8 023 561.6

hepph 6 422 337 7 144 325.7 7 581 238 8 008 581.6 5 856 258 6 239 015.8 5 520 826 5 935 976.9 5 805 879 6 133 044.9

hepth 104 424 105 222.4 105 182 106 423.9 105 835 106 313.4 105 892 107 002.7 105 079 105 790.2

OClinks 612 303 614 149.2 612 303 614 810.9 611 250 614 484.0 612 303 613 728.1 612 303 613 822.6

openflights 27 024 28 305.9 26 777 28 211.3 26 842 28 555.1 26 777 28 357.9 26 777 28 315.4

powergrid 15 854 15 858.7 15 853 15 860.2 15 870 15 881.7 15 861 15 902.1 15 856 15 863.2

USAir97 5 418 5 436.2 4 336 4 336.0 4 336 4 336.0 4 336 4 336.0 4 336 4 336.0

Table 5. Summarized Results of CPHS with Its Alternatives on Three Benchmarks

0CPHS vs CPHS 1CPHS vs CPHS 2CPHS vs CPHS 3CPHS vs CPHS

f∗ f f∗ f f∗ f f∗ f

Better 39 42 61 64 45 52 40 48

Same 9 5 3 3 8 6 8 6

Worse 21 22 5 2 16 11 21 15

1338 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

https://doi.org/10.1109/TNET.2012.2215882
https://doi.org/10.1142/9789812771667_0007
https://doi.org/10.1142/9789812771667_0007
https://doi.org/10.1142/9789812771667_0007
https://doi.org/10.1007/978-1-4614-2107-8_10
https://doi.org/10.1007/978-1-4614-2107-8_10
https://doi.org/10.1007/978-1-4614-2107-8_10
https://doi.org/10.1007/978-1-4614-2107-8_10
https://doi.org/10.1007/978-1-4614-2107-8_10
https://doi.org/10.1007/978-1-4614-2107-8_10
https://doi.org/10.1007/978-1-4614-2107-8_10
https://doi.org/10.1007/978-1-4614-2107-8_10
https://doi.org/10.1007/978-1-4614-2107-8_10
https://doi.org/10.1007/978-1-4614-2107-8_10
https://doi.org/10.1007/978-1-4614-2107-8_10
https://doi.org/10.1109/TSG.2012.2229398
https://doi.org/10.1016/j.jcss.2006.02.003

of influence through a social network. In Proc. the 9th

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Aug. 2003, pp.137–146. DOI:

10.1145/956750.956769.

 Borgatti S P. Identifying sets of key players in a social

network. Computational & Mathematical Organization

Theory, 2006, 12: 21–34. DOI: 10.1007/s10588-006-7084-x.

[7]

 Arulselvan A, Commander C W, Elefteriadou L, Parda-

los P M. Detecting critical nodes in sparse graphs. Com-

puters & Operations Research, 2009, 36(7): 2193–2200.

DOI: 10.1016/j.cor.2008.08.016.

[8]

 Shen S, Smith J C. Polynomial-time algorithms for solv-

ing a class of critical node problems on trees and series-

parallel graphs. Networks, 2012, 60(2): 103–119. DOI: 10.

1002/net.20464.

[9]

 Lalou M, Tahraoui M A, Kheddouci H. The critical node

detection problem in networks: A survey. Computer Sci-

ence Review, 2018, 28: 92–117. DOI: 10.1016/j.cosrev.

2018.02.002.

[10]

 Di Summa M, Grosso A, Locatelli M. Branch and cut al-

gorithms for detecting critical nodes in undirected graphs.

Computational Optimization and Applications, 2012,

53(3): 649–680. DOI: 10.1007/s10589-012-9458-y.

[11]

 Pavlikov K. Improved formulations for minimum connec-

tivity network interdiction problems. Computers & Oper-

ations Research, 2018, 97: 48–57. DOI: 10.1016/j.cor.2018.

04.012.

[12]

 Dinh T N, Thai M T. Precise structural vulnerability as-

sessment via mathematical programming. In Proc. the

2011 Military Communications Conference, Nov. 2011,

pp.1351–1356. DOI: 10.1109/MILCOM.2011.6127492.

[13]

 Walteros J L, Veremyev A, Pardalos P M, Pasiliao E L.

Detecting critical node structures on graphs: A mathe-

matical programming approach. Networks, 2019, 73(1):

48–88. DOI: 10.1002/net.21834.

[14]

 Aringhieri R, Grosso A, Hosteins P, Scatamacchia R.

VNS solutions for the critical node problem. Electronic

Notes in Discrete Mathematics, 2015, 47: 37–44. DOI: 10.

1016/j.endm.2014.11.006.

[15]

 Ventresca M, Aleman D. A derandomized approximation

algorithm for the critical node detection problem. Com-

puters & Operations Research, 2014, 43: 261–270. DOI:

10.1016/j.cor.2013.09.012.

[16]

 Ventresca M. Global search algorithms using a combina-

torial unranking-based problem representation for the

critical node detection problem. Computers & Operations

Research, 2012, 39(11): 2763–2775. DOI: 10.1016/j.cor.

2012.02.008.

[17]

 Ventresca M, Aleman D. A fast greedy algorithm for the

critical node detection problem. In Proc. the 8th Interna-

tional Conference on Combinatorial Optimization and Ap-

plications, Dec. 2014, pp.603–612. DOI: 10.1007/978-3-

319-12691-3_45.

[18]

 Aringhieri R, Grosso A, Hosteins P, Scatamacchia R. Lo-

cal search metaheuristics for the critical node problem.

Networks, 2016, 67(3): 209–221. DOI: 10.1002/net.21671.

[19]

 Pullan W. Heuristic identification of critical nodes in

sparse real-world graphs. Journal of Heuristics, 2015,

21(5): 577–598. DOI: 10.1007/s10732-015-9290-5.

[20]

 Zhou Y, Hao J K, Glover F. Memetic search for identify-

ing critical nodes in sparse graphs. IEEE Trans. Cyber-

netics, 2019, 49(10): 3699–3712. DOI: 10.1109/TCYB.

2018.2848116.

[21]

 Addis B, Aringhieri R, Grosso A, Hosteins P. Hybrid con-

structive heuristics for the critical node problem. Annals

of Operations Research, 2016, 238(1/2): 637–649. DOI: 10.

1007/s10479-016-2110-y.

[22]

 Aringhieri R, Grosso A, Hosteins P, Scatamacchia R. A

general evolutionary framework for different classes of

critical node problems. Engineering Applications of Artifi-

cial Intelligence, 2016, 55: 128–145. DOI: 10.1016/j.engap-

pai.2016.06.010.

[23]

 Zhou Y, Hao J K, Fu Z H, Wang Z, Lai X. Variable pop-

ulation memetic search: A case study on the critical node

problem. IEEE Trans. Evolutionary Computation, 2021,

25(1): 187–200. DOI: 10.1109/TEVC.2020.3011959.

[24]

 Zhou Y, Hao J K. A fast heuristic algorithm for the criti-

cal node problem. In Proc. the Genetic and Evolutionary

Computation Conference Companion, Jul. 2017,

pp.121–122. DOI: 10.1145/3067695.3075993.

[25]

 Tarjan R. Depth-first search and linear graph algorithms.

SIAM Journal on Computing, 1972, 1(2): 146–160. DOI:

10.1137/0201010.

[26]

 Lü Z, Hao J K. A memetic algorithm for graph coloring.

European Journal of Operational Research, 2010, 203(1):

241–250. DOI: 10.1016/j.ejor.2009.07.016.

[27]

 Rossi R A, Ahmed N K. The network data repository

with interactive graph analytics and visualization. In

Proc. the 29th AAAI Conference on Artificial Intelligence,

Jan. 2015, pp.4292–4293. DOI: 10.1609/aaai.v29i1.9277.

[28]

 Rossi R A, Gleich D F, Gebremedhin A H, Patwary M M

A. Fast maximum clique algorithms for large graphs. In

Proc. the 23rd Int. Conf. World Wide Web, Apr. 2014,

pp.365–366. DOI: 10.1145/2567948.2577283.

[29]

 Lin J, Cai S, Luo C, Su K. A reduction based method for

coloring very large graphs. In Proc. the 26th Internation-

al Joint Conference on Artificial Intelligence, Aug. 2017,

pp.517–523. DOI: 10.24963/ijcai.2017/73.

[30]

 Cai S, Hou W, Wang Y, Luo C, Lin Q. Two-goal local

search and inference rules for minimum dominating set. In

Proc. the 29th International Joint Conference on Artifi-

cial Intelligence, Jul. 2020, pp.1467–1473. DOI: 10.24963/

ijcai.2020/204.

[31]

 Conover W J. Practical Nonparametric Statistics (3rd

edition). John Wiley & Sons, 1999.

[32]

 Luo C, Zhao Q, Cai S, Zhang H, Hu C. SamplingCA: Ef-

fective and efficient sampling-based pairwise testing for

highly configurable software systems. In Proc. the 30th

ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineer-

ing, Nov. 2022, pp.1185–1197. DOI: 10.1145/3540250.

3549155.

[33]

Zhi-Han Chen et al.: Heuristic Search with Cut Point Based Strategy for Critical Node Problem 1339

https://doi.org/10.1145/956750.956769
https://doi.org/10.1007/s10588-006-7084-x
https://doi.org/10.1007/s10588-006-7084-x
https://doi.org/10.1007/s10588-006-7084-x
https://doi.org/10.1007/s10588-006-7084-x
https://doi.org/10.1007/s10588-006-7084-x
https://doi.org/10.1007/s10588-006-7084-x
https://doi.org/10.1007/s10588-006-7084-x
https://doi.org/10.1016/j.cor.2008.08.016
https://doi.org/10.1002/net.20464
https://doi.org/10.1002/net.20464
https://doi.org/10.1016/j.cosrev.2018.02.002
https://doi.org/10.1016/j.cosrev.2018.02.002
https://doi.org/10.1007/s10589-012-9458-y
https://doi.org/10.1007/s10589-012-9458-y
https://doi.org/10.1007/s10589-012-9458-y
https://doi.org/10.1007/s10589-012-9458-y
https://doi.org/10.1007/s10589-012-9458-y
https://doi.org/10.1007/s10589-012-9458-y
https://doi.org/10.1007/s10589-012-9458-y
https://doi.org/10.1016/j.cor.2018.04.012
https://doi.org/10.1016/j.cor.2018.04.012
https://doi.org/10.1109/MILCOM.2011.6127492
https://doi.org/10.1002/net.21834
https://doi.org/10.1016/j.endm.2014.11.006
https://doi.org/10.1016/j.endm.2014.11.006
https://doi.org/10.1016/j.cor.2013.09.012
https://doi.org/10.1016/j.cor.2012.02.008
https://doi.org/10.1016/j.cor.2012.02.008
https://doi.org/10.1007/978-3-319-12691-3_45
https://doi.org/10.1007/978-3-319-12691-3_45
https://doi.org/10.1007/978-3-319-12691-3_45
https://doi.org/10.1007/978-3-319-12691-3_45
https://doi.org/10.1007/978-3-319-12691-3_45
https://doi.org/10.1007/978-3-319-12691-3_45
https://doi.org/10.1007/978-3-319-12691-3_45
https://doi.org/10.1007/978-3-319-12691-3_45
https://doi.org/10.1007/978-3-319-12691-3_45
https://doi.org/10.1007/978-3-319-12691-3_45
https://doi.org/10.1007/978-3-319-12691-3_45
https://doi.org/10.1002/net.21671
https://doi.org/10.1007/s10732-015-9290-5
https://doi.org/10.1007/s10732-015-9290-5
https://doi.org/10.1007/s10732-015-9290-5
https://doi.org/10.1007/s10732-015-9290-5
https://doi.org/10.1007/s10732-015-9290-5
https://doi.org/10.1007/s10732-015-9290-5
https://doi.org/10.1007/s10732-015-9290-5
https://doi.org/10.1109/TCYB.2018.2848116
https://doi.org/10.1109/TCYB.2018.2848116
https://doi.org/10.1007/s10479-016-2110-y
https://doi.org/10.1007/s10479-016-2110-y
https://doi.org/10.1007/s10479-016-2110-y
https://doi.org/10.1007/s10479-016-2110-y
https://doi.org/10.1007/s10479-016-2110-y
https://doi.org/10.1007/s10479-016-2110-y
https://doi.org/10.1007/s10479-016-2110-y
https://doi.org/10.1007/s10479-016-2110-y
https://doi.org/10.1016/j.engappai.2016.06.010
https://doi.org/10.1016/j.engappai.2016.06.010
https://doi.org/10.1016/j.engappai.2016.06.010
https://doi.org/10.1109/TEVC.2020.3011959
https://doi.org/10.1145/3067695.3075993
https://doi.org/10.1137/0201010
https://doi.org/10.1016/j.ejor.2009.07.016
https://doi.org/10.1609/aaai.v29i1.9277
https://doi.org/10.1145/2567948.2577283
https://doi.org/10.24963/ijcai.2017/73
https://doi.org/10.24963/ijcai.2020/204
https://doi.org/10.24963/ijcai.2020/204
https://doi.org/10.1145/3540250.3549155
https://doi.org/10.1145/3540250.3549155

Zhi-Han Chen received his B.S. de-

gree in computer science and technolo-

gy from Peking University, Beijing, in

2020. He is currently pursuing his

Ph.D. degree with the School of Com-

puter Science and Technology, Univer-

sity of Chinese Academy of Sciences,

Beijing. His current research interests include con-

straint solving and electronic design automation.

Shao-Wei Cai received his Ph.D.

degree in computer science from

Peking University, Beijing, in 2012. He

is currently a professor in Institute of

Software, Chinese Academy of Sci-

ences, Beijing. He has developed effi-

cient SAT/SMT/MaxSAT solvers,

which have received many awards in SAT/SMT/MaxSAT

competitions (or evaluations). He has won the best pa-

per award of SAT 2021 conference. His current research

interests include constraint solving and electronic de-

sign automation.

Jian Gao received his Ph.D. degree

in computer application technology

from Dalian Maritime University,

Dalian. He is currently a professor of

computer science in Northeast Nor-

mal University, Changchun. His re-

search interests include automated

reasoning, constraint programming and heuristics.

Shi-Ke Ge received his B.E. degree

in computer science and technology

from Shenyang University of Technol-

ogy, Shenyang, in 2021. He is current-

ly a master degree candidate in com-

puter science and technology from

Dalian University of Technology,

Dalian. His research interest includes constraint solving.

Chan-Juan Liu received her Ph.D.

degree in computer software and theo-

ry from Peking University, Beijing, in

2016. She is currently an associate

professor with School of Computer

Science and Technology, Dalian Uni-

versity of Technology, Dalian. Her

current research interests include game theory and mul-

ti-agent decision making.

Jin-Kun Lin received his Ph.D. de-

gree in computer science and theory

from Peking University, Beijing, in

2018. He is currently the chief technol-

ogy officer with SeedMath Technolo-

gy Limited, Beijing. His current re-

search interests include software test-

ing and heuristic search.

1340 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

	1 Introduction
	1.1 Previous Work
	1.2 Contributions
	1.3 Paper Organization

	2 Preliminary
	2.1 Notions and Notation
	2.2 Problem Description

	3 Framework of Algorithm CPHS
	3.1 Initialization
	3.2 Cross

	4 Local Search for Improving Solution
	4.1 Greedy Strategy Based on Cut Point
	4.2 Enhancement for Cut Point Based Strategy

	5 Similarity-Aware Solution Pool Updating
	6 Discussion
	7 Experiments
	7.1 Benchmarks
	7.2 Implementations
	7.3 Competitors
	7.4 Experimental Settings
	7.5 Comparative Performance
	7.6 Component Analysis

	8 Conclusions
	Conflict of Interest
	References

