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Abstract    Die-stacked dynamic random access memory (DRAM) caches are increasingly advocated to bridge the perfor-

mance gap between the on-chip cache and the main memory. To fully realize their potential,  it  is  essential  to improve

DRAM cache hit rate and lower its cache hit latency. In order to take advantage of the high hit-rate of set-association and

the  low hit  latency  of  direct-mapping  at  the  same time,  we  propose  a  partial  direct-mapped  die-stacked  DRAM cache

called P3DC. This design is motivated by a key observation, i.e., applying a unified mapping policy to different types of

blocks cannot achieve a high cache hit rate and low hit latency simultaneously. To address this problem, P3DC classifies

data blocks into leading blocks and following blocks, and places them at static positions and dynamic positions, respective-

ly, in a unified set-associative structure. We also propose a replacement policy to balance the miss penalty and the tempo-

ral locality of different blocks. In addition, P3DC provides a policy to mitigate cache thrashing due to block type varia-

tions. Experimental results demonstrate that P3DC can reduce the cache hit latency by 20.5% while achieving a similar

cache hit rate compared with typical set-associative caches. P3DC improves the instructions per cycle (IPC) by up to 66%

(12% on average) compared with the state-of-the-art direct-mapped cache—BEAR, and by up to 19% (6% on average)

compared with the tag-data decoupled set-associative cache—DEC-A8.
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1    Introduction

In  the  post-Moore's  Law  era,  the  memory  wall

problem  has  become  a  critical  topic  of  interests  for

both  academic  and  industrial  communities.  3D  die-

stacked  dynamic  random  access  memory  (DRAM)

such  as  High  Bandwidth  Memory  (HBM)[1] and  Hy-

brid  Memory  Cube  (HMC)[2] provides  high  band-

width  as  well  as  high  energy  efficiency.  It  has  been

widely exploited to address the memory wall problem

in  high-performance  servers[3, 4].  For  example,  the

next-generation  Intel  Sapphire  Rapids  Xeon  scalable

processors  offer  optional  on-chip  HBM  memory  as

large as 64 GB. It can be used as the last-level cache

or  the  main  memory  to  improve  the  system  perfor-

mance[5, 6].

Although 3D die-stacked DRAM can achieve giga-

byte-scale memory capacity, it is not large enough to

replace  the  off-chip  DRAM  as  the  main  memory.

Thus, it is often utilized as the last-level cache, name-

ly DRAM cache or near memory[7–18].  Because of the

relatively  large  capacity  of  3D  DRAM,  the  DRAM
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cache's  tag  storage  overhead  is  very  high.  This  is  a

significant  challenge  to  design  a  high-performance

DRAM  cache.  For  instance,  for  a  512  MB  DRAM

cache  with  64B  cache  lines,  its  tags  occupy  about

24 MB storage.  To reduce the storage overhead,  pri-

or studies propose two solutions: 1) storing tags in the

DRAM cache with a small granularity of cache lines,

and  2)  storing  all  tags  in  the  static  random  access

memory  (SRAM)  with  a  large  granularity  of  cache

lines. However, they both have limitations. The co-lo-

cation of data lines and tag lines serializes the tag ac-

cess and data access from the DRAM cache, increas-

ing the cache hit  latency.  The large-sized cache lines

suffer from high DRAM bandwidth consumption, high

read/write amplification, and low capacity scalability

of  DRAM  cache.  In  this  paper,  we  mainly  focus  on

DRAM cache designs with small cache lines.

Hit latency and cache hit rate are the two impor-

tant performance metrics in DRAM cache designs. Al-

loy  Cache[9] was  proposed  to  merge  a  data  line  with

its tag in a tag-and-data (TAD) unit and implements

tag  lookup  by  issuing  a  Compare-and-Swap  (CAS)

command.  In  this  way,  the  tag-data  access  serializa-

tion  has  been  eliminated,  reducing  hit  latency.  How-

ever,  TAD  can  only  be  applied  to  direct-mapping

caches,  thereby  reducing  hit  rates.  LH Cache[7, 8] ar-

chitects  the  DRAM  cache  as  a  set-associative  cache

by co-locating the tags with data blocks in the same

row,  to  achieve  high  hit  rates.  Upon  a  request,  the

DRAM cache controller has to search all tag lines in a

set  by issuing a CAS DRAM command before ascer-

taining  the  location  of  the  requested  data  line.  The

cumbersome tag access latency increases the data hit

latency. Some studies[19, 20] propose to cache the tags

in a small on-chip SRAM to accelerate the tag lookup

for  the  set-associative  DRAM  cache.  Upon  a  tag-

cache  hit,  the  data  block  can  be  fetched  from  the

DRAM cache without accessing the tag in the DRAM

cache.  However,  upon  a  tag  cache  miss,  the  tag

should be fetched into the tag cache before  the data

block is accessed. Therefore, the TAD access serializa-

tion cannot be completely avoided from the data ac-

cess  path,  resulting  in  sub-optimal  performance.

These studies organize the DRAM cache as a direct-

mapped  cache  or  a  set-associative  cache  exclusively,

and  cannot  optimize  the  hit  latency  and  hit  rate  si-

multaneously.

The tag cache using SRAM is an effective way to

reduce the DRAM hit latency[19].  We also have some

interesting  observations  on  the  set  associative  cache

with a  tag cache.  On the tag cache miss,  a  batch of

tags  will  be  fetched  from  the  DRAM cache  into  the

SRAM  tag  cache  before  the  requested  data  is  ac-

cessed in the DRAM cache. The target data block in

the  first  access  of  this  set  is  referred  to  the  leading

block,  and  the  remaining  blocks  are  referred  to  the

following blocks. Only the leading block incurs the tag

fetching overhead, while the following blocks can ben-

efit from the fast tag lookup in SRAM.

Motivated by the above key observations, we pro-

pose  P3DC,  a  partial  direct-mapped  die-stacked

DRAM cache that exploits different access overheads

of leading blocks and following blocks to achieve both

low hit latency and high cache hit rates. Specifically,

P3DC maps leading blocks to the fix position in a set

(referred to as static mapping) to reduce cache hit la-

tency, and maps following blocks to the remaining po-

sitions  in  a  set  (referred  to  as  dynamic  mapping)  to

improve  cache  hit  rates.  However,  P3DC  still  faces

two  challenges.  Firstly,  we  find  that  leading  blocks

and  following  blocks  have  different  miss  penalties  in

terms  of  latency  and  bandwidth.  Secondly,  the  fre-

quent  block  type  transitions  should  be  handled  effi-

ciently  to  mitigate  performance  degradation.  To  ad-

dress  these  challenges,  we  propose  a  new  cache  re-

placement policy and a high-frequent  block variation

filter accordingly. Overall,  the major contributions of

this paper are summarized as follows.

● We  find  that  two  different  block  types,  i.e.,

leading and following blocks, have distinct impacts on

the hit latency and hit rate of DRAM cache mapping

policies.  These  findings  challenge  the  single  mapping

policy on all blocks proposed by conventional designs.

● We propose a partial direct-mapped die-stacked

DRAM cache,  called  P3DC,  to  achieve  both  low  hit

latency and high cache hit rates simultaneously. Spec-

ifically,  it  applies  static  and  dynamic  mapping  to

leading and following blocks, respectively. Apart from

the  novel  mapping  scheme,  we  propose  a  cache  re-

placement policy called Range-Variable CLOCK (RV-

CLOCK)  to  further  improve  the  cache  performance,

considering the miss penalties of data blocks with dif-

ferent  block  types.  Furthermore,  we  propose  a  high-

frequent  variation  filter  to  handle  the  frequent  block

type transitions.

● Through extensive evaluations, we demonstrate

that P3DC can reduce the cache hit latency by 20.5%

while achieving a comparable hit rate compared with

set-associative caches. P3DC improves the IPC by up

to 66% and 19% compared with BEAR[21] and DEC-

A8[22], respectively.

The rest of this paper is organized as follows. We

present the background in Section 2 and motivations
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in Section 3. Section 4 introduces  the  system  design.

Experimental  methodologies  are  given  in Section 5,

followed by evaluations  in Section 6.  We present  the

related  work  in Section 7 and  conclude  the  paper  in

Section 8. 

2    Background
 

2.1    DRAM Cache Organizations

The  stacked  DRAM[23–27] can  be  organized  as  ei-

ther  a  direct-mapped  cache[9, 21] or  a  set-associative

cache[7, 28],  as  shown  in Fig.1.  The  set-associative

cache organizes each DRAM row as a set. Upon inser-

tions,  data  blocks  can  be  dynamically  placed  to  any

associated  cache  lines.  This  offers  good  replacement

flexibility  at  the  expense  of  high  lookup  latency  be-

cause all tags in the set must be checked in order to

locate the requested data block. To address this prob-

lem, the set-associative cache combines several tags as

one  batch  to  reduce  the  tag  access  requests.  In  con-

trast, the direct-mapped cache integrates tags and da-

ta into a single entity to reduce the hit latency. Up-

on an L3 miss, tags and data can be directly located

by  a  static  mapping  function.  The  whole  entity  is

read by a single request, rather than by serialized tags

and data accesses.

Storing tags in stacked DRAM show better scala-

bility for large DRAM caches, but may introduce non-

trivial probe latency. A widely-adopted solution is to

use a portion of on-die SRAM as a tag cache[10, 21, 28].

In  the  set-associative  cache,  tags  are  fetched  in  a

batch.  These  tags  are  then  cached  in  the  on-chip

SRAM after the tag lookup, to effectively exploit spa-

cial  locality.  The  direct-mapped cache  organizes  tags

and  data  in  an  interleaving  manner.  Upon  each

DRAM cache access, the tag of the next block can be

fetched along with the currently requested data. The

prefetched adjacent tag is  then cached in the SRAM

for future tag lookup. 

2.2    Access Latency Breakdown

A1

B1

D1

C1

Fig.2 illustrates  the  access  latency  of  the  two

cache  structures.  The  direct-mapped  cache  can  offer

the lowest hit latency by fetching tags and data in a

single request when the DRAM cache is hit (cases 

and ).  However,  if  there  is  a  simultaneous  tag

cache miss  and DRAM cache miss  (case ),  an ex-

tra cache probe is needed before the main memory is

accessed.  If  the tag cache misses,  i.e.,  the data block

does not exist in the DRAM cache (case ), the re-

quest will be sent to the main memory.

B2

A2 C2 D2

Unlike  the  direct-mapped  cache,  the  set-associa-

tive cache would suffer from the cache probe latency

even  if  the  request  hits  the  DRAM cache  (case ).

For  the  other  cases  (cases , ,  and ),  the  set-

associative cache behaves in the same way as the di-

rect-mapped cache, resulting in similar access latency.

From Fig.2,  we  find  that  the  benefits  of  the  di-

rect-mapped structure depend on whether the DRAM

cache hits or not. It provides good hit latency, but its

performance is worse in cache misses. In addition, the

tag  fetching  procedure  introduces  non-trivial  latency

in the set-associative  cache.  If  a  request  involves  tag

fetching,  the  overall  latency  can  be  close  to  a  main

memory access, even if the DRAM cache is hit. 

3    Motivation

We  first  present  several  key  definitions  that  are

used in the rest of this paper. A section is defined as a

continuous  logical  address  region  mapped to  a  single

cache  set  and  hence  data  blocks  in  the  same  region

are mapped to the same cache set. This mapping en-

ables  us  to  preserve  the  spatial  locality  exhibited  in
 

D

Tag Cache

T T T T T T TT D D D D D D D

T D T D T D T D T D T D T D T D

T DTag Data

DRAM Cache

1. Fetch Tag-and-Data Entity 

1. Fetch Tag Batch   2. Fetch Data 

Access Unit

Direct-Mapped

Set-Associative

Fig.1.  Basic organizations of a direct-mapped cache and a set-associative cache.
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workloads. A section is called active if any of its tags

is  cached  in  the  tag  cache,  or  is  currently  being

fetched. Otherwise, it is inactive. We also define two

block types. A leading block is the first accessed block

within  an  individual  section  when  the  section  be-

comes active, and the following blocks are the remain-

ing ones accessed subsequently until the section is no

longer  active.  There  could  be  multiple  sections

mapped to the same set at the same time. For exam-

ple,  data blocks in section A and data blocks in sec-

tion C reside in the same set, as shown in Fig.3. Al-

though this mapping seems to be worse than the con-

ventional  mapping  in  high-level  caches,  our  experi-

mental results show it achieves a hit rate close to the

conventional  mapping  in  a  DRAM cache  due  to  the

poor  locality.  For  each  L3 cache  miss,  the  tag  cache

should be checked before accessing the DRAM cache.

On  a  tag  cache  miss,  all  tags  in  the  target  DRAM

cache  set,  referred  to  as  a  tag  batch,  are  fetched  to

the tag cache in SRAM. A section is active if any of

its tags is cached in the tag cache, or is currently be-

ing fetched. Otherwise, it is inactive. A leading block

changes  the  corresponding  section  from  an  inactive

state  to  an active  state,  and subsequent  accesses  are

following  blocks  before  the  section  becomes  inactive,

which  is  caused  by  tag  cache  replacement.  In  other

words, a leading block is the data block experiencing

tag  cache  miss  and  the  subsequently-accessed  blocks

in  the  same  section  are  following  blocks  when  their

tags are in the tag cache.

α β

α

α1 β β3

β6 β3 β4

β5 β3

β3

β4 β5

β5 β

α2

β3

β α

β7

β

β6

We use  several  simple  examples  to  elaborate  the

leading  blocks  and  following  blocks,  as  shown  in

Fig.3.  Assume  that  there  are  eight  data  blocks  from

section  and  section  in  the  same  DRAM  cache

set,  and their  tags are not in the tag cache.  Accord-

ingly, these two sections are in inactive state. We as-

sume that during the last time the cache set was re-

placed from the tag cache, section  has one leading

block  and  section  has  two  leading  blocks 

and . In case 1 with the access sequence of , 

and ,  becomes a leading block, because it miss-

es the tag cache. After  has been served, the set's

tag has been fetched to the tag cache, and the subse-

quent accesses to  and  hit the tag cache. They

become  following  blocks.  Case  2  shows  new  leading

block, ,  in  section  because  its  access  misses  the

tag  cache,  denoting  the  existence  of  multiple  leading

blocks for  a section.  In case 3,  becomes a follow-

ing  block  because  when  is  accessed,  the  whole

cache set is uploaded to the tag cache which not only

activates section , but also activates section . Case

4  presents  that  is  also  a  following  block  even  its

tag cache misses because section  has been activat-

ed by .

In  this  section,  we  would  ask  the  following  four

questions that motivate the P3DC design.

 

Tag Cache Latency

Tag-Batch Fetch Latency Data Fetch Latency

Main Memory Latency

Direct-Mapped Cache:

Case  : Tag Cache Hit, DRAM Cache Hit

Case : Tag Cache Miss, DRAM Cache Hit

Case  : Tag Cache Hit, DRAM Cache Miss

Case : Tag Cache Miss, DRAM Cache Miss

Case  : Tag Cache Hit, DRAM Cache Hit

Case : Tag Cache Miss, DRAM Cache Hit

Case  : Tag Cache Hit, DRAM Cache Miss

Case : Tag Cache Miss, DRAM Cache Miss

Cycle

0 100 200 300 400 500

DRAM Cache Latency Main Memory Latency

(a)

Set-Associative Cache:

(b)

Tag-and-Data Fetch Latency

Fig.2.   Latency  breakdown.  (a)  Direct-mapped  cache.  (b)  Set-
associative cache.
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Fig.3.  Leading and following data blocks in a set.
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● How  much  reduction  in  hit  latency  can  we

achieve from leading blocks?

● What  improvement  in  hit  rate  can  we  achieve

by following blocks?

● Should we consider  the  different  miss  penalties

of leading blocks and following blocks in the data re-

placement policy?

● Do leading blocks and following blocks frequent-

ly shift to each other?

In order to answer the above questions, we experi-

mentally  study  two  state-of-the-art  cache  designs,

namely  BEAR  cache  (direct-mapped  cache)[21] and

DEC-A8 cache  (set-associative  cache)[22].  The  experi-

mental methodology is detailed in Section 5. 

3.1    Hit  Latency  Reduction  from  Leading

Blocks

∼

A set-associative cache offers higher hit rates, but

incurs  higher  hit  latency.  In  the  DRAM  cache,  the

large  associativity  necessitates  the  tags  co-located

with the data blocks in the same row, and tags should

be fetched before data blocks.  Such a serialization of

tag and data blocks is the root cause for high hit la-

tency. Our experimental results show that the serial-

ized tags and data accesses will  significantly increase

the cache's hit latency by 1.7x 2.3x.

Tag cache is an effective way to reduce the hit la-

tency in the DRAM cache. Upon a tag cache miss, all

tags of the set are fetched from the DRAM cache and

then are stored in SRAM to accelerate the tag lookup

for following accesses. Due to spatial locality, most of

following  accesses  benefit  from  the  quick  tag  lookup

in  SRAM,  avoiding  tag  fetching  from  the  DRAM

cache.

In Fig.4,  our experiments show the breakdown of

tag fetching caused by the leading blocks and the fol-

lowing  blocks  for  18  workloads  (detailed  in Subsec-

tion 5.2). We find that on average 89% tag fetches are

triggered by the leading blocks, which experience the

serializations of  data and tag accesses.  Therefore,  re-

moving  these  serializations  could  effectively  reduce

the hit latency. This observation motivates us to ap-

ply  the  direct  mapping  to  the  leading  blocks.  With-

out tag probation latency, the direct mapping can re-

move  89%  tag  and  data  serializations,  reducing  the

hit latency. 

3.2    Hit  Rate  Improvement  from  Following

Blocks

Different  from  leading  blocks,  most  following

blocks involve only data fetching since their  tags are

cached in SRAM. Our experimental results show that

97% of  the following block hit  latency is  contributed

by the data fetching. Applying static mapping to fol-

lowing blocks can hardly further reduce the hit laten-

cy.  Moreover,  static  mapping  limits  the  replacement

flexibility  and  can  decrease  the  hit  rate  greatly.

Above  observations  motivate  us  to  apply  dynamic

mapping  for  following  blocks  to  increase  hit  rates

while maintaining similar hit latency with static map-

ping.

The proportion of  following blocks  affects  the hit

rate  improvement  in  dynamic  mapping.  In  a  corner

case  with  no  following  blocks,  the  DRAM cache  de-

generates  into  a  direct-mapped  cache  with  a  low  hit

rate. In contrast, if the proportion of following blocks

is  100%,  the  DRAM cache  becomes  a  set-associative

cache with high hit  latency.  In practice,  this  propor-

tion is determined by workload behaviors. Our experi-

ments with 18 typical workloads show that the aver-

age  proportion  of  following  blocks  is  88%,  which  is

large enough to approximate the set-associative cache. 

3.3    Block Miss Penalty

Fig.5 shows  the  miss  penalty  of  a  leading  block

and a  following block. Fig.5(a)  compares  the  DRAM

cache hit with the DRAM cache miss for the leading

block. Since the leading block is statically mapped to

the DRAM cache, the DRAM cache controller direct-

ly  fetches  the  requested  leading  block  from  the

DRAM cache, requiring only one DRAM cache access.

After  reading  the  leading  block  from  the  DRAM

cache, the cache controller detects the cache miss, and

fetches the tag batch from the DRAM cache and the

requested data block from off-chip DRAM simultane-

ously, as shown in Fig.5(b).

Fig.5 shows  that  the  miss  penalty  of  the  leading

block is attributed to a data block access from the off-

chip  DRAM  in  terms  of  latency  and  a  tag  batch

transfer over the DRAM cache in terms of bandwidth.
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Fig.5(a)  shows  the  miss  penalty  of  the  following

block,  which is  the  difference  in  latency between the

DRAM cache and the off-chip DRAM. For the follow-

ing block, the cache controller can quickly determine

the cache miss/hit  with the help of  the tag batch in

SRAM. Upon a DRAM cache hit, the requested block

is fetched from the DRAM cache. Otherwise, one off-

chip DRAM access is involved. Therefore, the leading

block  has  larger  miss  penalties  than  the  following

block  in  terms  of  both  latency  and  bandwidth  con-

sumption.

Table 1 shows  the  average  latency  and  band-

width consumption of 28 workloads for different cases.

It  demonstrates  that  the  leading  blocks  incur  larger

miss penalty than the following blocks in terms of la-

tency and bandwidth. Upon a leading block miss, the

cache controller  should first  access  the  DRAM cache

to  request  both  tags  and  data,  and  then  the  data  is

fetched  from  the  main  memory.  Compared  with  the

case  of  the  leading  block  hit,  the  leading  block  miss

incurs  extra latency of  273 cycles  and occupies  addi-

tional  memory  bandwidth  of  64  bytes.  For  following

blocks, their miss penalty is much lower because block

locations  can  be  given  by  the  tag  cache.  Upon  a

DRAM cache miss, the following block is read direct-

ly  from  the  main  memory  without  accessing  the

DRAM cache, and the latency penalty is only 112 cy-

cles.  Furthermore,  the  following  block  miss  uses  64-

byte memory bandwidth, which is the same as the hit

case. The different miss penalty of leading and follow-

ing  blocks  motivates  us  to  minimize  leading  block

misses in our data replacement policy. 

3.4    Block Type Stability

1/M M

The block type stability is important for our cache

mapping  design.  Some  leading  blocks  and  following

blocks  may  switch  roles  when  a  section  becomes  ac-

tive in different periods. For example, assuming a fol-

lowing  block  is  cached  in  the  DRAM  cache  via  dy-

namic mapping, when the corresponding section is ac-

tivated again due to the following accesses, this block

may  become  a  leading  block  and  static  mapping

should be applied. Because the mapping switches, we

have only  (  is the set associativity) probabili-

ty to locate the right position of this block.

We  measure  the  percentage  of  blocks  that  their

types  dynamically  switch for  18  workloads  and show

the sorted results in Fig.6. The average percentage of

block  type  switches  is  less  than  10%,  and  only  two

workloads  (e.g.,  R7:  vpr)  have  more  than  30%  type

switches.  These results show that block types are al-

most  stable,  implying  that  it  is  feasible  for  most

workloads  to  apply  different  mapping  schemes  to

leading  and  following  blocks,  respectively.  However,

we still face the challenge of minimizing the impact of

block type switching for some workloads, such as R7

and R8. 
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Table   1.      Miss  Penalty  of  Leading  Blocks  and  Following
Blocks

Type Parameter Latency (Cycle) Bandwidth (Byte)

Leading Hit 185 Cache: 128 (tag+data)

blocks Miss 458 Cache: 128 (tag+data)

Memory: 64 (data)

Penalty 273 Cache: 64 (data)

Following Hit 147 Cache: 64 (data)

blocks Miss 259 Memory: 64 (data)

Penalty 112 –
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4    P3DC Design

This  section  describes  the  design  of  P3DC.  We

first present the overview of P3DC in Subsection 4.1,

and then describe the block mapping policy in Subsec-

tion 4.2.  The proposed DRAM cache replacement  al-

gorithm  and  the  scheme  of  handling  frequent  block

type switches are detailed in Subsection 4.3 and Sub-

section 4.4, respectively. 

4.1    Overview

Fig.7 shows the  architecture  of  P3DC.  Each core

is  configured  with  a  MAP-I  predictor  to  estimate

whether the requested data is hit in the DRAM cache

or  not[9].  If  a  cache  miss  is  predicted,  the  DRAM

cache  and  the  main  memory  are  accessed  simultane-

ously.  An SRAM Tag-cache is  used to  store  a  batch

of associated tags, and thus can further reduce memo-

ry access  latency.  Like BEAR[21],  P3DC can also by-

pass  the  DRAM cache  to  directly  fetch  data  with  a

low reuse probability to CPUs, and thus improves the

DRAM cache utilization and reduces bandwidth con-

sumption.

As  discussed  in Section 3,  using  different  map-

ping  schemes  for  leading  blocks  and  following  blocks

could improve the hit latency and hit rates simultane-

ously  in  the  context  of  a  tag  cache.  This  is  the  key

idea of P3DC. The type of the requested data blocks

determines how P3DC serves the request. For a lead-

ing  block,  its  direct  mapping  enables  the  cache  con-

troller to fetch the data from a specific position in the

DRAM cache set without consulting the tag, and the

related tag batch is also transferred to the tag cache

in  SRAM.  In  this  way,  the  cache  controller  can  de-

tect the DRAM cache miss for the leading block,  af-

ter  checking  the  tag  batch.  In  order  to  concurrently

transfer both the leading block and the tag batch, the

dataset and the corresponding tags are stored in dif-

ferent  banks,  as  shown  in Fig.8.  For  the  following

block,  the  requested  data  needs  to  consulting  its  tag

to determine the position in the set, since the dynam-

ic mapping is applied to the following block. The fol-

lowing  block  is  most  likely  to  hit  the  tag  cache  and

can be quickly accessed from the DRAM cache.

H C

Fig.8(a)  shows  the  organization  of  a  tag  row.  A

tag batch contains the tags for the data blocks stored

in the corresponding cache set, which is similar to the

tag batching mechanism in previous work[7]. Four ex-

tra bits are introduced to a tag: a reference bit (A), a

priority bit  ( ),  and a two-bit  filter  ( ).  The refer-

ence bit represents the recency of the block. The pri-

ority bit denotes the block's caching priority and also

acts  as  the  flag  of  block  types  (1  and  0  denote  the

leading and following blocks,  respectively).  The filter

bits record the transition of block types, as discussed

in Subsection 4.4.

Fig.8(b)  illustrates  the  organization  of  the  data

row. In conventional designs, the direct-mapped cache

and the set-associative cache are commonly viewed as

two exclusive structures. Generally, the cache associa-

tivity  and the  mapping  policy  are  closely  coupled.  If

the cache associativity is 1, the mapping policy degen-

erates to a static direct-mapping scheme. On the con-

trary, if the cache associativity is greater than 1, the

mapping  policy  becomes  a  dynamic  set-associative

mapping.  In  order  to  support  both  static  mapping

and  dynamic  mapping  in  a  unified  structure,  we  de-

couple  the  set  associativity  from  the  data  mapping

policy.  Basically,  P3DC  organizes  the  DRAM  cache

similar to set-associative caches. Each DRAM row has

several sets and each set contains 16 data lines. Thus,
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P3DC  actually  adopts  an  organization  of  a  16-way

set-associative  cache.  Within  each  cache  set,  data

blocks  can  be  mapped  via  either  static  or  dynamic

mapping, depending on their block types, as shown in

Fig.8.  Specifically,  following  blocks  are  placed  in  the

set  according  to  the  replacement  algorithm,  while

leading  blocks'  positions  are  determined  by  static

mapping, which is the predetermined hash function of

the block address.

Fig.8(c) illustrates the layout of the P3DC cache.

The DRAM rows are divided into tag rows and data

rows. Tags and data are mapped to the rows of differ-

ent banks to improve the bank-level parallelism. 

4.2    Mapping Policy

We  apply  static  address  mapping  and  dynamic

address  mapping  to  leading  blocks  and  following

blocks  to  determine  their  positions  in  the  cache  set,

respectively. The tag of each data block has a priori-

ty bit to indicate the block type. For a leading block,

the address of the request block is hashed by the pre-

determined function StaticMapping() and its outcome

is  the  position  for  this  leading  block.  Once  the  posi-

tion  of  a  leading  block  is  determined,  the  memory

controller  directly  retrieves  the  data  block  from  the

DRAM  cache.  It  is  possible  that  there  are  multiple

leading blocks in one cache set since the position de-

pends on the request block address. In that case, posi-

tion conflicts caused by the hash function could lead

to cache evictions. For a following block, its position

in  the  set  can  be  determined  by  probing  the  tags

stored in the tag cache in the case of a tag cache hit.

Otherwise,  the  cache  replacement  algorithm  deter-

mines the position where the following blocks will  be

placed in the cache set. As shown in Algorithm 1, we

use GetPosition()  to  denote  the  position  determined

by the cache replacement policy.

When the data type is transformed from a follow-

ing block to a leading block, it is necessary to update
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the tag bits  of  this  data block and migrate  it  to  the

position  indicated  by  static  mapping. Algorithm 1

shows  how P3DC handles  data  type  transitions.  For

the  transition  to  the  following  one,  P3DC  resets  its

priority bit (lines 4 and 5). For the transition to the

leading one, P3DC tries to migrate it to the statical-

ly  mapped  position  (lines  6–17).  If  the  data  block's

current position corresponds to the given static map-

ping  (lines  7  and  8),  no  migration  is  needed,  and

P3DC sets  its  priority  bit  to  1.  Otherwise,  the  map-

ping is  determined in the following two situations.  If

the static-mapped position is of a high priority, and is

recently referenced, P3DC just resets its reference bit

(lines  10  and  11),  without  data  migration.  In  other

cases,  P3DC  migrates  the  data  to  its  static-mapped

position,  with  an  expectation  that  the  data  will  be

continually accessed as a leading block in the near fu-

ture.

Algorithm 1. Mapping Policy

Input: block_address, type
←1 position GetPosition(block_address)

←2 static_position StaticMapping(block_address)
←3 last_type GetType(block_address)
= =4 if last_type Leading and type  Following then

←5 　　cache[position].priority_bit 0
6 end

= =7 if last_type Following and type  Leading then

=8 　　if position static_position then

←9 　　　　cache[position].priority_bit 1

10 　　else

=11 　　　　if cache[static_position].type  Leading and

=12 　　　　cache[static_position].reference_bit  1 then

←13 　　　　　　cache[static_position].reference_bit 0

14 　　　　else

15 　　　　　　if IsDirty(cache[static_position]) then

16 　　　　　　　　WriteBack(cache[static_position])

17 　　　　　　end

←18 　　　　　　cache[static_position] cache[position]

19 　　　　　　Free(cache[position])

←　　　　　　　 cache[static_position].priority_bit 1

21 　　　　end

22 　　end
23 end
 

4.3    Replacement Policy

As  discussed  in Section 3,  leading  blocks  incur

more miss penalties than following blocks in terms of

latency and bandwidth.  The cache replacement algo-

rithm can improve DRAM cache performance by ex-

ploiting  this  observation.  The  replacement  algorithm

assigns the high caching priority to leading blocks and

the low priority to following blocks. To this end, the

priority bit for each data block is introduced. The pri-

ority  is  set  to  be 1  and 0 for  the leading blocks  and

the following blocks, respectively. In this way, the re-

placement algorithm attempts to keep leading blocks

in  the  cache  longer  to  amortize  its  miss  penalties.

However,  the  leading  blocks  can  gradually  occupy

more cache space than the following blocks due to the

high  priority.  For  example,  there  are  three  leading

blocks and two following blocks in the set,  as  shown

in Fig.9.  This  intensifies  the  cache  space  contention

with  the  following  blocks.  On  the  other  hand,  the

cache space occupied by the cold leading blocks leads

to  lower  cache  utilization  without  considering  the

cache temporal locality.

To balance miss penalties and the cache temporal

locality,  we  propose  the  Range-Variable  CLOCK

(RV-CLOCK)  algorithm,  based  on  the  low  overhead

CLOCK algorithm[29–32].  The CLOCK algorithm uses

a reference bit to indicate the recency of a data block.

If the reference bits of all the following blocks are set

in a cache set, these recently accessed following blocks

are  chosen  as  victims  for  the  upcoming  following

blocks  since  their  priorities  are  lower  than  those  of

the leading blocks. It usually leads to cache thrashing

for the following blocks. In order to address this issue,

we  try  to  evict  a  cold  leading  block  to  increase  the

cache  space  of  following  blocks  if  all  the  following

blocks'  recency  bits  are  set.  Specifically,  we  run  the

CLOCK algorithm for  all  data  blocks  in  a  cache  set

to  find  victims,  without  excluding  leading  blocks,  in

case  that  following  blocks  have  high  temporal  locali-

ties.

As  shown in Fig.9(b),  the  following blocks'  refer-

ence bits can be used to choose victims because it in-

dicates  which  blocks  are  involved  with  the  CLOCK

algorithm. If all the following blocks' recency bits are

set, the rightmost AND gate outputs the logic 1 and

all  data  blocks  in  the  set  are  victim  candidates,  as

shown  in Fig.9(b).  Otherwise,  the  rightmost  AND

gate, with the output of the logic 0, excludes leading

blocks  to  be  victim  candidates,  and  only  following

blocks can be evicted. 

4.4    Managing Block Type Transformation

The mapping policy works well  for the data with

stable  block  types,  as  discussed  in Subsection 3.4.

However,  there  still  exist  some  workloads  in  which

the type of data blocks changes frequently. Such tran-

sitions  lead  to  a  larger  number  of  data  block  migra-
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tions, degrading cache performance. Furthermore, the

mapping  policy  mistakenly  downgrades  the  blocks'

priority  and  prematurely  evicts  blocks.  For  example,

if an unstable block switches from a leading block to

a following block, the mapping policy resets its priori-

ty bit, increasing the eviction probability of the block.

At  the  next  active  period  of  the  section,  it  is  highly

likely  that  this  block  will  switch  back  to  a  leading

block.  In  this  example,  the  mapping  policy  untimely

evicts  this  leading  block,  suffering  from  the  costly

miss penalty.

Lstable

→ → →
→ Lstable

Lstable

Lstable

Lstable ⩽ 2

Lstable > 2

Lstable ⩽ 2

To address the issue, we further study block type

stability.  For  a  single  block,  represents  the

number  of  occurrences  of  the  consecutive  leading  or

following  type.  For  example,  consider  a  type  se-

quence of {leading  leading  following  follow-

ing  leading}.  Their  are 2, 2, 1, respectively.

The larger the value of  is,  the more stable the

block maintains the same type. Fig.10 shows the dis-

tributions  of  whose  values  are  no  greater  than

10. Note that we should only handle workloads whose

proportion  of  type  switches  is  larger  than  10%  from

Fig.10,  and  other  workloads  with  few  type  switches

can  be  handled  by  the  default  strategy.  We  observe

that  about  88%  of  the  type  variations  occur  at

. This implies that these blocks cannot keep

their  types  stable  and  tend  to  continuously  change

their  types,  and  thus  there  is  little  consistency  in

types.  Since  the  percentage  of  type  variations  at

 is  low,  we  should  focus  on  type  variations

at .

Motivated by the above observation, we propose a

→
Lstable ⩽ 2

→

→

→

priority  reservation  mechanism  with  a  frequent  type

transition  filter  to  handle  unstable  blocks.  As  illus-

trated  in Fig.11,  the  key  idea  is  to  track  the  blocks

whose types frequently change, and set them as lead-

ing  blocks  to  avoid  potential  miss  penalties  on  their

following leading transitions. As discussed above, we

mainly focus on the case with . Specifically,

we  use  a  two-bit  counter  to  filter  these  blocks.  If

there  is  a  following leading  transition,  the  block's

counter is increased by 2. The counter is decreased by

1  for  the  following following  transition.  When  the

counter  becomes  0,  the  two-bit  counter  remains “00”
state  for  following following  transitions.  Upon  a

type  transition,  P3DC  identifies  the  block  as  highly

unstable and treats it as a leading block if its count is

not ``00''. Otherwise, this block is deemed as a follow-

ing block. Note that a leading block always keeps its

counter's  state.  This  policy  eliminates  short,  isolated

 

Leading Leading Following ALeading Leading AFollowing Following

Hash

Victim

(a)

(b)

Leading Leading Following ALeading Leading AFollowing Following

Reference Bit

Clock

&

& & &

Victim

Address of Leading Block

Fig.9.  Victim selection policy. (a) Leading blocks occupy more space than following ones. (b) Victim selection upon following block
insertion.

 

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8
R7 R8 R10

R11 R17 AVG

D
is

t
r
ib

u
t
io

n
 
o
f 


s
t
a
b
le

stable

Lstable

Fig.10.  Distributions of block type stability. The points repre-
sent the ratios of the stable subsequences with different .
Each  workload's  result  is  collected  from several  representative
execution  intervals,  with  each  interval  containing  5  billion  in-
structions.

1350 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6



type transitions. 

4.5    Overhead

n

n

Our  design  leads  to  extra  hardware  resources  for

1) hash function, 2) victim selection, and 3) data type

variation threshold. The hash function (GetPosition()

in Algorithm 1)  involves  a  simple  arithmetic  opera-

tion  to  calculate  the  position  for  the  leading  block,

and  its  hardware  implementation  requires  several

AND gates,  XOR gates,  OR gates,  and a shift  regis-

ter. To support the victim selection policy (see Fig.9),

a reference bit is added for each cache line. Each vic-

tim selection logic requires  AND gates, a hand reg-

ister, and a simple CLOCK block, where  is the as-

sociativity of a cache and it is 16 in our design.

×

The  hand  register  indicates  the  position  of  the

hand  in  the  CLOCK  algorithm,  requiring  four  bits.

The  CLOCK  block  includes  a  4:16  decoder  to  indi-

cate the position of the hand, 16 bits mask to specify

which ways  of  cache  lines  are  involved in  the  victim

selection,  and  FSM  to  determine  the  victim.  Note

that  the  victim  selection  logic  is  only  for  a  bank,

rather  than  a  cache  set.  Typically,  there  are  eight

banks in the DRAM cache. To specify the data block

type  for  each  way,  each  cache  line  needs  one  bit,

which is the priority bit in our design. In addition, to

avoid frequent data block type variations, a cache line

needs  two  bits.  Thus,  each  cache  line  requires  three

extra bits, which is a part of the tag of a data block.

Since a tag has 21 bits (see ATcache[19]), the storage

overhead  is  3/(size_of_tag  +  size_of_cacheline)  =

3/(21+64 8) = 0.5% in the DRAM cache. Therefore,

our design introduces negligible area overhead. Opera-

tions  on  these  introduced  parts  are  performed  inside

the DRAM cache controller  and do not incur expen-

sive  data  movements.  Thus,  the  energy  overhead  is

negligible. 

5    Experimental Methodology

We  evaluate  the  performance  of  P3DC  using

Gem5[33],  integrated  with  detailed  models  of  3D-

stacked DRAM and off-chip DRAM[34].  The architec-

tural parameters are summarized in Table 2. We sim-

ulate a processor with eight out-of-order cores, sharing

16 MB L2 cache. The simulated DRAM cache is 1 GB

and has the same latency as the off-chip DRAM. How-

ever,  the  bandwidth  of  the  DRAM  cache  is  8  times

higher than that of the off-chip DRAM.
 
 

Table  2.    Architectural Parameters

Hardware Detailed Parameter

Processor Out-of-order, 3.2 GHz, 8 cores

L1 I/D cache 32 KB I/D-cache, private, 4-way, 2-cycles

L2 cache 16 MB, Shared, 8-way, 20-cycle, non-inclusive

Tag cache 32 K entries, 8-way, 9-cycle

MAP-I
predictor

256 entries, 1-cycle

DRAM cache 1 GB, 1.6 GHz (DDR 3.2 GHz), non-
inclusive,

4 channels, 128 bits per channel,

16 banks per rank, 2 KB row buffer,

tCAS-tRCD-tRP-tRAS 36-36-36-144 cycles

Main memory 16 GB, 800 MHz (DDR 1.6 GHz),

2 channels, 64 bits per channel,

8 banks per rank, 2 KB row buffer,

tCAS-tRCD-tRP-tRAS 36-36-36-144 cycles
 

5.1    Cache Organizations

We  compare  P3DC  with  two  state-of-the-art

DRAM cache designs: the BEAR cache[21] and the tag

data decoupled DEC-A8 cache[22]. The parameters for

these three designs are shown in Table 3.

BEAR  Cache[21].  We  choose  BEAR  as  the  base-

line of the direct-mapped DRAM cache. BEAR uses a

bandwidth-aware  bypassing  (BAB)  scheme  to  im-

prove  the  bandwidth  efficiency  of  filling  missing  en-

tries. Tags and data are placed in DRAM rows in an
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interleaving  manner.  A  read  request  fetches  data,  as

well as the corresponding tag and the next neighbor-

ing tag with one additional burst.

DEC-A8 Cache[22].  DEC-A8 is  an  8-way set-asso-

ciative DRAM cache. It decouples tags and data, and

stores  them  in  two  regions  of  the  DRAM  cache.  It

maps  spatially-adjacent  cache  blocks  to  the  same

DRAM row to fully exploit the spatial locality. In ad-

dition,  DEC-A8  employs  a  DRAM  absence  table  to

implement  the  cache  bypassing  mechanism.  DEC-A8

concurrently  accesses  the  tag  batch  and  data  to  re-

duce  the  access  latency  of  the  DRAM  cache  in  the

case of tag cache misses.

We note  that  although both  P3DC and DEC-A8

place tags and data in different DRAM cache regions

(or banks),  their  access policies  are different.  Specifi-

cally,  DEC-A8  reads  tags  and  data  concurrently  in

the DRAM cache, regardless of data block types. This

access  pattern  partially  decouples  the  sequential  ac-

cesses to tags and data by activating data rows in ad-

vance, but the remaining data still requires a success-

ful tag comparison before the whole data is complete-

ly fetched. As a result, DEC-A8 has higher access la-

tency  than  BEAR.  In  contrast,  P3DC  uses  a  static

mapping  policy  for  leading  blocks,  and  accesses  tags

and data simultaneously. It shows low access latency

similar to BEAR, at the expense of higher bandwidth

consumption.  For  following  blocks,  the  access  policy

and latency of P3DC is the same as those of DEC-A8.

The above  three  approaches  use  the  same size  of

SRAM  tag  caches.  Besides,  the  DRAM  cache  pres-

ence (DCP) bit[21] is implemented in all  designs. The

DCP  tracks  DRAM cache's  present  state  in  L2  and

reduces the cache bandwidth consumption. 

5.2    Workloads

We evaluate the three designs with 18 memory in-

tensive benchmarks from the SPEC CPU2000 and the

SPEC  CPU2006  benchmark  suites①.  The  bench-

marks are classified based on two metrics:  spatial lo-

cality  and  cache  contention.  The  spatial  locality  is

Nleading/Ntotal Nleading Ntotalmeasured as , where  and  are

the access number of leading blocks and the total ac-

cess  number  respectively.  The  cache  contention  is

evaluated as the hit rate of the DRAM cache.

These benchmarks can be classified into four cate-

gories:  contention-dominated  (CD),  locality-dominat-

ed (LD), both-friendly (BF), and non-beneficial (NB).

The  CD  benchmarks  have  high  cache  demands  with

good  spatial  locality.  The  set-associative  cache  is

friendly to these benchmarks since it can improve the

cache  space  utilization  and  does  not  suffer  greatly

from  tag  fetching.  The  direct-mapped  cache  is  suit-

able for LD benchmarks due to the shorter hit laten-

cy.  BF benchmarks  have  much  more  cache  demands

and good spatial locality. Traditional cache organiza-

tions  can  perform  well  on  these  benchmarks.  NB

benchmarks  do not  work well  due  to  their  poor  spa-

cial locality and high miss rates.

Table 4 shows 18 workloads in a rate mode (four

categories, called Rate-CD, Rate-LD, Rate-BF, Rate-

NB in the following results analysis), which means all

cores execute the same benchmark. We also evaluate

10  mixed  workloads  including  intra-category  and  in-

ter-category  combinations,  as  shown  in Table 5.  In

our  experiments,  we focus  on CD workloads  and LD

workloads, to highlight the impact of the hit rate im-

provement and hit latency reduction. For each work-

load,  the  simulation  runs  for  one  billion  instructions

on each core after fast-forwarding the first ten billion

instructions. 

 

Table  3.    System Configurations

Design Mapping Policy Associativity Replacement Tag Prefetch

BEAR[21] Static 1 BAB Neighboring tag

DEC-A8[22] Dynamic 8 CLOCK Tag batch

P3DC Static+dynamic 16 RV-CLOCK Tag batch

 

Table   4.      Workloads  form  SPEC  CU2000  and  SPEC
CPU2006

Category Rate Workload with Tickers

Rate-CD × × ×R1: wupwise 8, R2: lucas 8, R3: gap 8,

× × ×R4: apsi 8, R5: cactusADM 8, R6: lbm 8

Rate-LD × × ×R7: vpr 8, R8: bzip2 8, R9: soplex 8,

× × ×R10: omnetpp 8, R11: astar 8, R12: xalan 8

Rate-BF × × ×R13: equake 8, R14: mgrid 8, R15: gcc 8,

×R16: libquantum 8

Rate-NB × ×R17: GemsFDTD 8, R18: milc 8
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①PEC CPU2000 and SPEC CPU2006 are two versions of industry-standardized CPU performance benchmarks which are used
to  evaluate  both  integer  and  floating-point  computing  performance  of  general-purpose  CPUs.  They  are  available  at:
https://www.spec.org/cpu2000/ and https://www.spec.org/cpu2006/, respectively.



6    Experimental Results

 

6.1    Performance

Fig.12 shows  the  instructions  per  cycle  (IPC)  of

three  designs,  all  normalized  to  BEAR,  a  direct-

mapped  cache.  For  Rate-CD  workloads,  P3DC  out-

performs  BEAR by  38% on  average  and  up  to  66%.

The  performance  of  P3DC  primarily  stems  from  the

hit rate improvement due to the dynamic mapping of

its  following  blocks.  The  Rate-LD  workloads  have

poor  spatial  locality,  which  leads  to  high  miss  rates

for  the  tag  cache.  For  these  workloads,  DEC-A8

shows the worst performance because it causes higher

access  latency  for  leading  blocks.  By  applying  static

mapping to  leading blocks,  P3DC outperforms DEC-

A8 by  8% on  average  and  up  to  16%.  The  Rate-BF

workloads have both small working sets and high spa-

tial  locality,  which  is  sensitive  to  different  designs.

Thus, P3DC outperforms BEAR and DEC-A8 by 6%

and  9%  on  average,  respectively.  Since  the  Rate-NB

workloads have low temporal locality and large work-

ing sets, none of designs perform well on these work-

loads. For mixed workloads, P3DC and DEC-A8 gen-

erally show higher performance than BEAR except for

Mix3,  Mix8 and Mix 10.  Overall,  P3DC outperforms

BEAR and DEC-A8 by 12% and 6% on average,  re-

spectively. 

6.2    DRAM Cache Hit Rate

Fig.13 shows the DRAM cache hit rates of all sys-

tems.  For  Rate-CD  workloads,  BEAR  achieves  rela-

tively  low  hit  rates  because  its  static  data  mapping

 

Table  5.    Mixed Workloads with Tickers

Category Mixed Workload with Tickers

CD M1: wupwise, luca, gap, apsi, cactusADM, lbm,
wupwise, lbm

LD M2: vpr, bzip2, soplex, omnetpp, astar, xalan, vpr,
xalan

BF ×M3: {equake, mgrid, gcc, libquantum} 2

NB ×M4:{milc, GemsFDTD} 4

CD+LD M5: wupwise, gap, apsi, cactusADM, vpr, bzip2,
soplex, omnetpp

CD+BF M6: gap, apsi, cactusADM, lbm, equake, mgrid,
gcc, libquantum

CD+NB
×

M7: lucas, apsi, cactusADM, lbm, {milc,
GemsFDTD} 2

LD+BF M8: soplex, omnetpp, astar, xalan, equake, mgrid,
gcc, libquantum

LD+NB
×

M9: vpr, bzip2, astar, xalan,
{milc, GemsFDTD} 2

BF+NB
×

M10: equake, mgrid, gcc, libquantum,
{milc, GemsFDTD} 2
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Fig.12.  Normalized IPC. All results are normalized to BEAR.
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limits  the  flexibility  of  block  replacement.  Compared

with BEAR, P3DC increases the average hit  rate by

32% to 63%. We note that the average cache hit rate

for all workloads in P3DC is only 3% less than that of

DEC-A8. This implies applying dynamic mapping for

following blocks can offer good flexibility for block re-

placement,  and  the  leading  blocks  can  be  mapped

statically  without  sacrificing  hit  rates.  In  addition,

P3DC adopts a static mapping policy with lower ac-

cess latency for leading blocks, and thus improves the

IPC  by  1.7%  compared  with  DEC-A8,  as  shown  in

Fig.12.

All  the  three  designs  achieve  high  hit  rates  for

Rate-LD workloads, which have small working sets to

fit  in  the  DRAM  cache.  However,  these  workloads

have poor spatial locality, leading to large miss rates

in the tag cache on average,  and introducing a large

ratio of leading blocks. The performance of the cache

system is dominated by the hit latency of the DRAM

cache.  For  DEC-A8,  all  requests  are  served  sequen-

tially  in  a  data-after-tag  manner.  In  contrast,  P3DC

directly  accesses  leading  blocks  in  their  statically-

mapped  positions,  and  meanwhile  fetches  the  corre-

sponding tags concurrently. On average, 69% data re-

quests are served by concurrent tags and data fetch-

ing in P3DC, which is very close to that of BEAR.

The working set of Rate-BF workloads can also fit

in the DRAM cache, while offering high spatial locali-

ty. The tag batching mechanisms in P3DC and DEC-

A8 achieve higher hit rates of the tag cache. But this

does not imply higher performance for the set-associa-

tive cache DEC-A8, because the direct-mapped cache

BEAR offers the same latency in the case of a DRAM

cache  hit.  On the  other  hand,  a  small  portion  of  re-

quests  still  need  to  access  the  tags  in  the  DRAM

cache.  These  requests  slightly  degrade  the  perfor-

mance of DEC-A8 by about 4%.

Due to the large working set and the poor tempo-

ral locality, Rate-NB workloads have low hit rates of

the  DRAM  cache  and  are  insensitive  to  data  map-

ping  policies.  Therefore,  all  the  three  designs  have

similar  request  distributions  and  achieve  a  similar

IPC for these workloads, as shown in Fig.12.

The mixed workloads M1, M5 and M6 provide op-

timization  opportunities  in  both  hit  rate  improve-

ment and hit latency reduction. For these workloads,

P3DC outperforms BEAR and DEC-A8 by 16% and

4% on average,  respectively.  Since the workloads M3

and M8 have extremely high hit rates in the DRAM

cache  (over  99%),  P3DC  and  BEAR  achieve  similar

performance, but higher performance than DEC-A8. 

6.3    Impact  of  Tag  Fetching  Modes  on  Hit

Latency

For  LD  workloads  (R7–R12,  M2)  with  poor  spa-

tial  locality,  the  performance  of  the  cache  system  is

sensitive  to  the  access  latency  of  leading  blocks.

BEAR and  DEC-A8 only  use  a  single  data  mapping

policy (static  or  dynamic),  where neither leading nor

following  blocks  are  taken  into  account.  In  contrast,

P3DC  applies  static  mapping  to  leading  blocks  and

dynamic  mapping  to  following  blocks.  All  three  de-

signs can concurrently fetch tags and data. To serve a

leading block, P3DC issues two parallel DRAM cache

requests for a tag batch and a data block, respective-

ly.  To  co-locate  a  tag  data  pair,  BEAR  issues  a  re-

quest to fetch a tag-and-data entity and this fetching

incurs  an  additional  burst  compared  with  fetching  a

data  block.  Although  DEC-A8  can  also  issue  two

DRAM  cache  access  requests  concurrently,  it  has  a

higher  access  latency  because  the  process  of  reading

tags  and  data  cannot  be  coordinated  fairly,  as  dis-

cussed in Subsection 5.1.

Fig.14 shows hit latencies of three designs, all nor-

malized to BEAR which shows the lowest hit latency.

The cache hit latency of DEC-A8 is 1.41x on average

and  up  to  1.55x  higher  than  that  of  BEAR.  Due  to

the queuing delay of P3DC, not all the tag and data

requests can be done at the same time exactly.  As a

result,  the  hit  latency  of  P3DC  is  1.17x  as  high  as

that of BEAR on average. For LD workloads, the ac-

cess latency of leading blocks directly affects the over-

all  system  performance.  As  shown  in Fig.12,  BEAR

achieves an 11% higher IPC (on average) than DEC-

A8,  while  P3DC  can  lower  this  performance  gap  to

3% with our sophisticated data mapping policy.
High hit  rates benefit  system performance in two

ways.  Firstly,  requests  hiting  the  DRAM  cache  can
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benefit  from  the  high  bandwidth  of  the  die-stacking

DRAM.  Secondly,  high  hit  rates  can  help  to  reduce

the access latency of  off-chip DRAM. Due to the fil-

tering  effect  of  the  DRAM cache,  a  large  portion  of

off-chip  DRAM  accesses  are  eliminated,  resulting  in

relatively low queuing delay in off-chip DRAM. 

6.4    Impact  of  Hit  Rate  Improvement  on

Queuing Latency of Off-Chip DRAM

Fig.15 compares BEAR and P3DC in terms of off-

chip  DRAM queuing  latency  for  CD workloads.  The

portions labeled with left slashes in the left bars and

right  bars  are  the  queuing  latencies  of  the  BEAR

cache  and  the  P3DC  cache,  respectively. Fig.15 also

shows the hit rates with red lines. We can find that a

low  hit  rate  of  the  DRAM  cache  makes  CD  work-

loads suffer from a high queuing latency. In the worst

case, i.e., R3, the queuing latency is up to 58% of the

overall  off-chip  DRAM access  latency.  By  improving

the  hit  rate  of  the  DRAM cache,  P3DC reduces  the

queuing  latency  by  49%  on  average  and  up  to  78%

compared with BEAR. 

6.5    Bandwidth Consumption

Fig.16 shows  the  DRAM  cache  bandwidth  con-

sumption of the three designs, including tag read, tag

write-back,  data  read  hit,  data  read  miss,  data  fill,

and data write-back. Data read miss is the case that

the  data  is  fetched  concurrently  with  the  tag,  but

turns  out  to  be  a  DRAM  cache  miss.  Among  the

three  designs,  BEAR shows  the  best  bandwidth  effi-

ciency.  P3DC  and  DEC-A8  consume  more  band-

width than BEAR in tag read and tag write-back.

Tag  read  is  the  sum  of  on-demand  tag  fetching

and  tag  prefetching.  P3DC  and  DEC-A8  adopt  the

tag batching mechanism that fetches the whole set of

tags in a single request. BEAR only fetches two tags

at  the  same  time:  the  requested  tag  along  with  one

neighboring tag. In general, the tag batching helps to

improve  the  hit  rate  of  the  tag  cache.  However,  for

workloads  with  poor  spatial  locality,  this  mechanism

wastes  bandwidth.  For  example,  for  the  Rate-LD

workload group, the bandwidth consumed by the tag

read in P3DC and DEC-A8 is 7x and 8x larger than

that  in  BEAR.  DEC-A8  does  not  consume  band-
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width upon data read misses because it only reads da-

ta if the corresponding tag is matched successfully. In

contrast,  BEAR  fetches  both  tags  and  data  concur-

rently, which may incur data read misses if the tag is

not  matched.  A  similar  situation  may  occur  when

P3DC accesses leading blocks.

All  the  three  designs  adopt  a  DRAM  bypassing

scheme to reduce the bandwidth consumption on miss

fills.  They  do  not  fill  the  missed  data  block  to  the

DRAM cache after speculating the missed data block

with low reuse probability. Filling all the missed data

to the DRAM cache can improve hit rates in the case

of good temporal locality. However, it may consumes

more bandwidth in the case of poor temporal locality.

On average, as shown in the rightmost group, P3DC

consumes 1.36x more bandwidth than BEAR. The re-

sults  imply  that  there  is  still  large  room for  improv-

ing  P3DC's  performance  towards  better  bandwidth

utilization in the future. 

6.6    High Frequency Type Variation Filter

Lstable

Lstable Lstable Lstable

Lstable > 3

P3DC  relies  on  the  high-frequent  type  variation

filter to track unstable data blocks. Fig.17 shows the

percentage of the identified cases with different .

We can find that the filter has high resistance against

short . The filtering rate of =1 and =

2 are 92% and 95%, respectively. Meanwhile, it pass-

es through all segments with .
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Fig.17.  Success rate of the high frequency type variation filter. 

7    Related Work
 

7.1    Set-Associative and Direct-Mapped

Caches

Set-Associative  Caches.  Loh-Hill et  al.[7, 8] pro-

posed  to  organize  each  DRAM row (2  KB)  as  a  29-

way set-associative cache, with good replacement flex-

ibility. Since the tag and data are stored in the same

row, the data is streamed out right after the tag read,

getting  the  benefits  of  row-buffer  hit.  Bi-Modal

Cache[28] and Unison Cache[35] try  to  take  advantage

of large-sized cache lines to exploit the spatial locali-

ty,  and  exploit  the  set-associative  structure  to  miti-

gate cache conflicts.

Direct-Mapped  Caches.  Alloy  Cache[9] breaks  the

data-after-tag serialization by co-locating a data block

and its tag in the direct-mapped DRAM cache. It is-

sues a command to fetch a data block and its tag to-

gether  at  the  expense  of  one  additional  burst.

CAMEO[36] further  improves  Alloy  Cache  by  remov-

ing the data copy between the 3D DRAM cache and

the off-chip memory.

Some  studies[7–9, 28, 35, 36] proposed  different  opti-

mizations  on  the  set-associative  DRAM cache  or  the

direct-mapped DRAM cache. In this paper, we reveal

that different data blocks have a significant impact on

cache  hit  latency,  and  then  propose  a  partial  direct-

mapped  cache  design  to  achieve  both  the  high  hit

rates of the set-associative structure, and the low hit

latency of the direct-mapped structure. 

7.2    Other Cache Optimization Technologies

Bandwidth  Optimization.  Based  on  the  direct-

mapped  structure,  BEAR[21] focuses  on  reducing

bandwidth  consumption.  It  puts  forward  several

methods  such  as  the  bandwidth-aware  bypassing  for

miss  fills,  DRAM  cache  presence  bit  for  write  back

probe,  and  neighboring  tag  cache  for  miss  probe.

Moreover,  Mostly-Clean  Cache[37] balances  the  band-

width of the DRAM cache and the off-chip DRAM by

fully  utilizing  the  off-chip  bandwidth  when  the

DRAM  cache  is  serving  a  burst  of  cache  hits.

TicToc[38] reduces  memory  bandwidth  consumption

by caching the tag of recently-accessed DRAM to the

last level of cache. Red Cache[17] monitors data block

accesses at runtime with low-cost counters, and stores

blocks  with  frequently-reused  or  high-bandwidth  re-

quirements in the DRAM cache to improve the band-

width efficiency and performance.

Data Prefetching. Data prefetching is another key

technique for improving cache hit rates. A major ap-

proach  is  to  apply  page-granularity  prefetching[39, 40].

However,  it  results  in  a  waste  of  the  bandwidth  be-

cause  the  fetched  pages  may  contain  unused  data.
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Footprint  Cache[10] mitigates  this  issue  by  tracking

the  workload's  access  footprints[41, 42] and  prefetches

the cache lines that have a high possibility to be ac-

cessed  in  the  DRAM cache.  F-TDC[43] integrates  the

footprint  history  table  into  the  page  table  and  hides

the cache probes by TLB lookups.

Tag  Prefetching.  ATCache[19] accelerates  the

probe  operation  by  introducing  a  small  tag  cache  in

SRAM.  On  the  discovery  that  a  tag  access  has  spa-

tial locality, it prefetches tags from nearby cache sets,

and  takes  advantage  of  a  clever  on-demand  tag

prefetching  scheme  to  reduce  tag  cache  pollution.

Tsukada et  al.[44] found  that  the  address  offset  be-

tween two consecutive memory accesses is almost the

same. Based on this observation, they prefetched the

corresponding  tags  to  reduce  the  tag  access  latency

and improve performance.

Way Prediction. Accord[45] and SODA[46] use two-

way  set-associative  cached,  but  still  achieve  high

cache hit rates. Accord uses historical information to

guide the insertion and prediction of cache lines, while

SODA exploits a way-locater cache in SRAM to store

the location of the data in cache sets.

Tag Decoupled. Decoupled Fused Cache (DFC)[47]

takes advantage of the redundancy of tags in the LLC

and use a LLC tag array to store the location of data

in the DRAM cache. By fusing the tags of the DRAM

cache with tags of the LLC, the cost of tag access is

mitigated.

The  above  proposals  are  orthogonal  to  our  work

that focuses on the data mapping structure. Our tech-

niques  can  be  applied  to  these  schemes,  and  further

improve the performance of the DRAM cache. 

8    Conclusions

In  this  paper,  we  presented  P3DC,  a  partial  di-

rect-mapped  die-stacked  DRAM  cache.  The  P3DC

cache  classifies  data  blocks  into  leading  blocks  and

following  blocks,  and  places  them  with  static  map-

ping  and  dynamic  mapping  respectively  in  a  unified

set-associative  structure.  The  key  idea  is  inspired  by

the observation that different block types have differ-

ent  impacts  on  the  cache  hit  rate  and  the  cache  hit

latency.  P3DC  combines  the  advantages  of  direct-

mapped  caches  and  set-associative  caches  to  achieve

low hit latency while maintaining high cache hit rates

through partial-direct mapping. In this way, P3DC is

able to perform more efficiently in the presence of am-

biguous  application  behavior  or  variable  access  char-

acteristics.  Experimental  results  demonstrated  that,

P3DC can reduce the cache hit latency by 20.5% and

can achieve  comparable  hit  rates  with set-associative

caches.  P3DC improves  the  IPC by  12% on  average

and  up  to  66%  compared  with  the  direct-mapped

BEAR cache, and 6% on average and up to 19% com-

pared with the set-associative DEC-A8 cache. Partic-

ularly, the P3DC cache is orthogonal to prior state-of-

the-art  DRAM  cache  designs  and  can  be  applied  to

further performance improvement. 
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