

P3DC: Reducing DRAM Cache Hit Latency by Hybrid Mappings

Ye Chi1, 2, 3, 4, 5 (池　也), Ren-Tong Guo1, 2, 3, 4 (郭人通)
Xiao-Fei Liao1, 2, 3, 4, * (廖小飞), Distinguised Member, CCF
Hai-Kun Liu1, 2, 3, 4 (刘海坤), Senior Member, CCF, Member, IEEE, and Jianhui Yue6 (岳建辉)

1 National Engineering Research Center for Big Data Technology and System, Wuhan 430074, China
2 Services Computing Technology and System Laboratory, Wuhan 430074, China
3 Cluster and Grid Computing Laboratory, Wuhan 430074, China
4 School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
5 School of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China
6 Department of Computer Science, Michigan Technological University, Houghton 49931-1295, U.S.A.

E-mail: ychi@hust.edu.cn; rtguo@hust.edu.cn; xfliao@hust.edu.cn; hkliu@hust.edu.cn; jyue@mtu.edu

Received June 4, 2022; accepted September 28, 2023.

Abstract Die-stacked dynamic random access memory (DRAM) caches are increasingly advocated to bridge the perfor-

mance gap between the on-chip cache and the main memory. To fully realize their potential, it is essential to improve

DRAM cache hit rate and lower its cache hit latency. In order to take advantage of the high hit-rate of set-association and

the low hit latency of direct-mapping at the same time, we propose a partial direct-mapped die-stacked DRAM cache

called P3DC. This design is motivated by a key observation, i.e., applying a unified mapping policy to different types of

blocks cannot achieve a high cache hit rate and low hit latency simultaneously. To address this problem, P3DC classifies

data blocks into leading blocks and following blocks, and places them at static positions and dynamic positions, respective-

ly, in a unified set-associative structure. We also propose a replacement policy to balance the miss penalty and the tempo-

ral locality of different blocks. In addition, P3DC provides a policy to mitigate cache thrashing due to block type varia-

tions. Experimental results demonstrate that P3DC can reduce the cache hit latency by 20.5% while achieving a similar

cache hit rate compared with typical set-associative caches. P3DC improves the instructions per cycle (IPC) by up to 66%

(12% on average) compared with the state-of-the-art direct-mapped cache—BEAR, and by up to 19% (6% on average)

compared with the tag-data decoupled set-associative cache—DEC-A8.

Keywords die-stacked dynamic random access memory (DRAM), cache, set-associative, direct-mapped, hit latency

1 Introduction

In the post-Moore's Law era, the memory wall

problem has become a critical topic of interests for

both academic and industrial communities. 3D die-

stacked dynamic random access memory (DRAM)

such as High Bandwidth Memory (HBM)[1] and Hy-

brid Memory Cube (HMC)[2] provides high band-

width as well as high energy efficiency. It has been

widely exploited to address the memory wall problem

in high-performance servers[3, 4]. For example, the

next-generation Intel Sapphire Rapids Xeon scalable

processors offer optional on-chip HBM memory as

large as 64 GB. It can be used as the last-level cache

or the main memory to improve the system perfor-

mance[5, 6].

Although 3D die-stacked DRAM can achieve giga-

byte-scale memory capacity, it is not large enough to

replace the off-chip DRAM as the main memory.

Thus, it is often utilized as the last-level cache, name-

ly DRAM cache or near memory[7–18]. Because of the

relatively large capacity of 3D DRAM, the DRAM

Regular Paper

This work was supported jointly by the National Key Research and Development Program of China under Grant No. 2022YFB45-
00303, and the National Natural Science Foundation of China under Grant Nos. 62072198, 61825202, and 61929103.

*Corresponding Author

Chi Y, Guo RT, Liao XF et al. P3DC: Reducing DRAM cache hit latency by hybrid mappings. JOURNAL OF COM-

PUTER SCIENCE AND TECHNOLOGY 39(6): 1341−1360 Nov. 2024. DOI: 10.1007/s11390-023-2561-y

©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-023-2561-y
https://doi.org/10.1007/s11390-023-2561-y
https://doi.org/10.1007/s11390-023-2561-y
https://doi.org/10.1007/s11390-023-2561-y
https://doi.org/10.1007/s11390-023-2561-y
https://doi.org/10.1007/s11390-023-2561-y
https://doi.org/10.1007/s11390-023-2561-y

cache's tag storage overhead is very high. This is a

significant challenge to design a high-performance

DRAM cache. For instance, for a 512 MB DRAM

cache with 64B cache lines, its tags occupy about

24 MB storage. To reduce the storage overhead, pri-

or studies propose two solutions: 1) storing tags in the

DRAM cache with a small granularity of cache lines,

and 2) storing all tags in the static random access

memory (SRAM) with a large granularity of cache

lines. However, they both have limitations. The co-lo-

cation of data lines and tag lines serializes the tag ac-

cess and data access from the DRAM cache, increas-

ing the cache hit latency. The large-sized cache lines

suffer from high DRAM bandwidth consumption, high

read/write amplification, and low capacity scalability

of DRAM cache. In this paper, we mainly focus on

DRAM cache designs with small cache lines.

Hit latency and cache hit rate are the two impor-

tant performance metrics in DRAM cache designs. Al-

loy Cache[9] was proposed to merge a data line with

its tag in a tag-and-data (TAD) unit and implements

tag lookup by issuing a Compare-and-Swap (CAS)

command. In this way, the tag-data access serializa-

tion has been eliminated, reducing hit latency. How-

ever, TAD can only be applied to direct-mapping

caches, thereby reducing hit rates. LH Cache[7, 8] ar-

chitects the DRAM cache as a set-associative cache

by co-locating the tags with data blocks in the same

row, to achieve high hit rates. Upon a request, the

DRAM cache controller has to search all tag lines in a

set by issuing a CAS DRAM command before ascer-

taining the location of the requested data line. The

cumbersome tag access latency increases the data hit

latency. Some studies[19, 20] propose to cache the tags

in a small on-chip SRAM to accelerate the tag lookup

for the set-associative DRAM cache. Upon a tag-

cache hit, the data block can be fetched from the

DRAM cache without accessing the tag in the DRAM

cache. However, upon a tag cache miss, the tag

should be fetched into the tag cache before the data

block is accessed. Therefore, the TAD access serializa-

tion cannot be completely avoided from the data ac-

cess path, resulting in sub-optimal performance.

These studies organize the DRAM cache as a direct-

mapped cache or a set-associative cache exclusively,

and cannot optimize the hit latency and hit rate si-

multaneously.

The tag cache using SRAM is an effective way to

reduce the DRAM hit latency[19]. We also have some

interesting observations on the set associative cache

with a tag cache. On the tag cache miss, a batch of

tags will be fetched from the DRAM cache into the

SRAM tag cache before the requested data is ac-

cessed in the DRAM cache. The target data block in

the first access of this set is referred to the leading

block, and the remaining blocks are referred to the

following blocks. Only the leading block incurs the tag

fetching overhead, while the following blocks can ben-

efit from the fast tag lookup in SRAM.

Motivated by the above key observations, we pro-

pose P3DC, a partial direct-mapped die-stacked

DRAM cache that exploits different access overheads

of leading blocks and following blocks to achieve both

low hit latency and high cache hit rates. Specifically,

P3DC maps leading blocks to the fix position in a set

(referred to as static mapping) to reduce cache hit la-

tency, and maps following blocks to the remaining po-

sitions in a set (referred to as dynamic mapping) to

improve cache hit rates. However, P3DC still faces

two challenges. Firstly, we find that leading blocks

and following blocks have different miss penalties in

terms of latency and bandwidth. Secondly, the fre-

quent block type transitions should be handled effi-

ciently to mitigate performance degradation. To ad-

dress these challenges, we propose a new cache re-

placement policy and a high-frequent block variation

filter accordingly. Overall, the major contributions of

this paper are summarized as follows.

● We find that two different block types, i.e.,

leading and following blocks, have distinct impacts on

the hit latency and hit rate of DRAM cache mapping

policies. These findings challenge the single mapping

policy on all blocks proposed by conventional designs.

● We propose a partial direct-mapped die-stacked

DRAM cache, called P3DC, to achieve both low hit

latency and high cache hit rates simultaneously. Spec-

ifically, it applies static and dynamic mapping to

leading and following blocks, respectively. Apart from

the novel mapping scheme, we propose a cache re-

placement policy called Range-Variable CLOCK (RV-

CLOCK) to further improve the cache performance,

considering the miss penalties of data blocks with dif-

ferent block types. Furthermore, we propose a high-

frequent variation filter to handle the frequent block

type transitions.

● Through extensive evaluations, we demonstrate

that P3DC can reduce the cache hit latency by 20.5%

while achieving a comparable hit rate compared with

set-associative caches. P3DC improves the IPC by up

to 66% and 19% compared with BEAR[21] and DEC-

A8[22], respectively.

The rest of this paper is organized as follows. We

present the background in Section 2 and motivations

1342 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

in Section 3. Section 4 introduces the system design.

Experimental methodologies are given in Section 5,

followed by evaluations in Section 6. We present the

related work in Section 7 and conclude the paper in

Section 8.

2 Background

2.1 DRAM Cache Organizations

The stacked DRAM[23–27] can be organized as ei-

ther a direct-mapped cache[9, 21] or a set-associative

cache[7, 28], as shown in Fig.1. The set-associative

cache organizes each DRAM row as a set. Upon inser-

tions, data blocks can be dynamically placed to any

associated cache lines. This offers good replacement

flexibility at the expense of high lookup latency be-

cause all tags in the set must be checked in order to

locate the requested data block. To address this prob-

lem, the set-associative cache combines several tags as

one batch to reduce the tag access requests. In con-

trast, the direct-mapped cache integrates tags and da-

ta into a single entity to reduce the hit latency. Up-

on an L3 miss, tags and data can be directly located

by a static mapping function. The whole entity is

read by a single request, rather than by serialized tags

and data accesses.

Storing tags in stacked DRAM show better scala-

bility for large DRAM caches, but may introduce non-

trivial probe latency. A widely-adopted solution is to

use a portion of on-die SRAM as a tag cache[10, 21, 28].

In the set-associative cache, tags are fetched in a

batch. These tags are then cached in the on-chip

SRAM after the tag lookup, to effectively exploit spa-

cial locality. The direct-mapped cache organizes tags

and data in an interleaving manner. Upon each

DRAM cache access, the tag of the next block can be

fetched along with the currently requested data. The

prefetched adjacent tag is then cached in the SRAM

for future tag lookup.

2.2 Access Latency Breakdown

A1

B1

D1

C1

Fig.2 illustrates the access latency of the two

cache structures. The direct-mapped cache can offer

the lowest hit latency by fetching tags and data in a

single request when the DRAM cache is hit (cases

and). However, if there is a simultaneous tag

cache miss and DRAM cache miss (case), an ex-

tra cache probe is needed before the main memory is

accessed. If the tag cache misses, i.e., the data block

does not exist in the DRAM cache (case), the re-

quest will be sent to the main memory.

B2

A2 C2 D2

Unlike the direct-mapped cache, the set-associa-

tive cache would suffer from the cache probe latency

even if the request hits the DRAM cache (case).

For the other cases (cases , , and), the set-

associative cache behaves in the same way as the di-

rect-mapped cache, resulting in similar access latency.

From Fig.2, we find that the benefits of the di-

rect-mapped structure depend on whether the DRAM

cache hits or not. It provides good hit latency, but its

performance is worse in cache misses. In addition, the

tag fetching procedure introduces non-trivial latency

in the set-associative cache. If a request involves tag

fetching, the overall latency can be close to a main

memory access, even if the DRAM cache is hit.

3 Motivation

We first present several key definitions that are

used in the rest of this paper. A section is defined as a

continuous logical address region mapped to a single

cache set and hence data blocks in the same region

are mapped to the same cache set. This mapping en-

ables us to preserve the spatial locality exhibited in

D

Tag Cache

T T T T T T TT D D D D D D D

T D T D T D T D T D T D T D T D

T DTag Data

DRAM Cache

1. Fetch Tag-and-Data Entity

1. Fetch Tag Batch 2. Fetch Data

Access Unit

Direct-Mapped

Set-Associative

Fig.1. Basic organizations of a direct-mapped cache and a set-associative cache.

Ye Chi et al.: P3DC: Reducing DRAM Cache Hit Latency by Hybrid Mappings 1343

workloads. A section is called active if any of its tags

is cached in the tag cache, or is currently being

fetched. Otherwise, it is inactive. We also define two

block types. A leading block is the first accessed block

within an individual section when the section be-

comes active, and the following blocks are the remain-

ing ones accessed subsequently until the section is no

longer active. There could be multiple sections

mapped to the same set at the same time. For exam-

ple, data blocks in section A and data blocks in sec-

tion C reside in the same set, as shown in Fig.3. Al-

though this mapping seems to be worse than the con-

ventional mapping in high-level caches, our experi-

mental results show it achieves a hit rate close to the

conventional mapping in a DRAM cache due to the

poor locality. For each L3 cache miss, the tag cache

should be checked before accessing the DRAM cache.

On a tag cache miss, all tags in the target DRAM

cache set, referred to as a tag batch, are fetched to

the tag cache in SRAM. A section is active if any of

its tags is cached in the tag cache, or is currently be-

ing fetched. Otherwise, it is inactive. A leading block

changes the corresponding section from an inactive

state to an active state, and subsequent accesses are

following blocks before the section becomes inactive,

which is caused by tag cache replacement. In other

words, a leading block is the data block experiencing

tag cache miss and the subsequently-accessed blocks

in the same section are following blocks when their

tags are in the tag cache.

α β

α

α1 β β3

β6 β3 β4

β5 β3

β3

β4 β5

β5 β

α2

β3

β α

β7

β

β6

We use several simple examples to elaborate the

leading blocks and following blocks, as shown in

Fig.3. Assume that there are eight data blocks from

section and section in the same DRAM cache

set, and their tags are not in the tag cache. Accord-

ingly, these two sections are in inactive state. We as-

sume that during the last time the cache set was re-

placed from the tag cache, section has one leading

block and section has two leading blocks

and . In case 1 with the access sequence of ,

and , becomes a leading block, because it miss-

es the tag cache. After has been served, the set's

tag has been fetched to the tag cache, and the subse-

quent accesses to and hit the tag cache. They

become following blocks. Case 2 shows new leading

block, , in section because its access misses the

tag cache, denoting the existence of multiple leading

blocks for a section. In case 3, becomes a follow-

ing block because when is accessed, the whole

cache set is uploaded to the tag cache which not only

activates section , but also activates section . Case

4 presents that is also a following block even its

tag cache misses because section has been activat-

ed by .

In this section, we would ask the following four

questions that motivate the P3DC design.

Tag Cache Latency

Tag-Batch Fetch Latency Data Fetch Latency

Main Memory Latency

Direct-Mapped Cache:

Case  : Tag Cache Hit, DRAM Cache Hit

Case : Tag Cache Miss, DRAM Cache Hit

Case  : Tag Cache Hit, DRAM Cache Miss

Case : Tag Cache Miss, DRAM Cache Miss

Case  : Tag Cache Hit, DRAM Cache Hit

Case : Tag Cache Miss, DRAM Cache Hit

Case  : Tag Cache Hit, DRAM Cache Miss

Case : Tag Cache Miss, DRAM Cache Miss

Cycle

0 100 200 300 400 500

DRAM Cache Latency Main Memory Latency

(a)

Set-Associative Cache:

(b)

Tag-and-Data Fetch Latency

Fig.2. Latency breakdown. (a) Direct-mapped cache. (b) Set-
associative cache.

11 22 33

1122 33

11 2233

1122 33

Case 1

Case 2

Case 3

Case 4

First

Access

Subsequent

Access

Following

Block

Leading

Block

Block in

Section 
Block in

Section 

Inactive        

       

       

       

       

 

Fig.3. Leading and following data blocks in a set.

1344 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

● How much reduction in hit latency can we

achieve from leading blocks?

● What improvement in hit rate can we achieve

by following blocks?

● Should we consider the different miss penalties

of leading blocks and following blocks in the data re-

placement policy?

● Do leading blocks and following blocks frequent-

ly shift to each other?

In order to answer the above questions, we experi-

mentally study two state-of-the-art cache designs,

namely BEAR cache (direct-mapped cache)[21] and

DEC-A8 cache (set-associative cache)[22]. The experi-

mental methodology is detailed in Section 5.

3.1 Hit Latency Reduction from Leading

Blocks

∼

A set-associative cache offers higher hit rates, but

incurs higher hit latency. In the DRAM cache, the

large associativity necessitates the tags co-located

with the data blocks in the same row, and tags should

be fetched before data blocks. Such a serialization of

tag and data blocks is the root cause for high hit la-

tency. Our experimental results show that the serial-

ized tags and data accesses will significantly increase

the cache's hit latency by 1.7x 2.3x.

Tag cache is an effective way to reduce the hit la-

tency in the DRAM cache. Upon a tag cache miss, all

tags of the set are fetched from the DRAM cache and

then are stored in SRAM to accelerate the tag lookup

for following accesses. Due to spatial locality, most of

following accesses benefit from the quick tag lookup

in SRAM, avoiding tag fetching from the DRAM

cache.

In Fig.4, our experiments show the breakdown of

tag fetching caused by the leading blocks and the fol-

lowing blocks for 18 workloads (detailed in Subsec-

tion 5.2). We find that on average 89% tag fetches are

triggered by the leading blocks, which experience the

serializations of data and tag accesses. Therefore, re-

moving these serializations could effectively reduce

the hit latency. This observation motivates us to ap-

ply the direct mapping to the leading blocks. With-

out tag probation latency, the direct mapping can re-

move 89% tag and data serializations, reducing the

hit latency.

3.2 Hit Rate Improvement from Following

Blocks

Different from leading blocks, most following

blocks involve only data fetching since their tags are

cached in SRAM. Our experimental results show that

97% of the following block hit latency is contributed

by the data fetching. Applying static mapping to fol-

lowing blocks can hardly further reduce the hit laten-

cy. Moreover, static mapping limits the replacement

flexibility and can decrease the hit rate greatly.

Above observations motivate us to apply dynamic

mapping for following blocks to increase hit rates

while maintaining similar hit latency with static map-

ping.

The proportion of following blocks affects the hit

rate improvement in dynamic mapping. In a corner

case with no following blocks, the DRAM cache de-

generates into a direct-mapped cache with a low hit

rate. In contrast, if the proportion of following blocks

is 100%, the DRAM cache becomes a set-associative

cache with high hit latency. In practice, this propor-

tion is determined by workload behaviors. Our experi-

ments with 18 typical workloads show that the aver-

age proportion of following blocks is 88%, which is

large enough to approximate the set-associative cache.

3.3 Block Miss Penalty

Fig.5 shows the miss penalty of a leading block

and a following block. Fig.5(a) compares the DRAM

cache hit with the DRAM cache miss for the leading

block. Since the leading block is statically mapped to

the DRAM cache, the DRAM cache controller direct-

ly fetches the requested leading block from the

DRAM cache, requiring only one DRAM cache access.

After reading the leading block from the DRAM

cache, the cache controller detects the cache miss, and

fetches the tag batch from the DRAM cache and the

requested data block from off-chip DRAM simultane-

ously, as shown in Fig.5(b).

Fig.5 shows that the miss penalty of the leading

block is attributed to a data block access from the off-

chip DRAM in terms of latency and a tag batch

transfer over the DRAM cache in terms of bandwidth.

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1
0

R
1
1

R
1
2

R
1
3

R
1
4

R
1
5

R
1
6

R
1
7

R
1
8

A
V

G

100

80

60

40

20

0

R
a
ti
o
 o

f
T
a
g
 F

e
tc

h
e
s

(%
) Following Block Leading Block

Fig.4. Distributions of tag fetches.

Ye Chi et al.: P3DC: Reducing DRAM Cache Hit Latency by Hybrid Mappings 1345

Fig.5(a) shows the miss penalty of the following

block, which is the difference in latency between the

DRAM cache and the off-chip DRAM. For the follow-

ing block, the cache controller can quickly determine

the cache miss/hit with the help of the tag batch in

SRAM. Upon a DRAM cache hit, the requested block

is fetched from the DRAM cache. Otherwise, one off-

chip DRAM access is involved. Therefore, the leading

block has larger miss penalties than the following

block in terms of both latency and bandwidth con-

sumption.

Table 1 shows the average latency and band-

width consumption of 28 workloads for different cases.

It demonstrates that the leading blocks incur larger

miss penalty than the following blocks in terms of la-

tency and bandwidth. Upon a leading block miss, the

cache controller should first access the DRAM cache

to request both tags and data, and then the data is

fetched from the main memory. Compared with the

case of the leading block hit, the leading block miss

incurs extra latency of 273 cycles and occupies addi-

tional memory bandwidth of 64 bytes. For following

blocks, their miss penalty is much lower because block

locations can be given by the tag cache. Upon a

DRAM cache miss, the following block is read direct-

ly from the main memory without accessing the

DRAM cache, and the latency penalty is only 112 cy-

cles. Furthermore, the following block miss uses 64-

byte memory bandwidth, which is the same as the hit

case. The different miss penalty of leading and follow-

ing blocks motivates us to minimize leading block

misses in our data replacement policy.

3.4 Block Type Stability

1/M M

The block type stability is important for our cache

mapping design. Some leading blocks and following

blocks may switch roles when a section becomes ac-

tive in different periods. For example, assuming a fol-

lowing block is cached in the DRAM cache via dy-

namic mapping, when the corresponding section is ac-

tivated again due to the following accesses, this block

may become a leading block and static mapping

should be applied. Because the mapping switches, we

have only (is the set associativity) probabili-

ty to locate the right position of this block.

We measure the percentage of blocks that their

types dynamically switch for 18 workloads and show

the sorted results in Fig.6. The average percentage of

block type switches is less than 10%, and only two

workloads (e.g., R7: vpr) have more than 30% type

switches. These results show that block types are al-

most stable, implying that it is feasible for most

workloads to apply different mapping schemes to

leading and following blocks, respectively. However,

we still face the challenge of minimizing the impact of

block type switching for some workloads, such as R7

and R8.

Data

Tag-Batch

Data Data

DRAM Cache Hit:

DRAM Cache Miss:

Time

Time

Miss Penalty

Data

Data

DRAM Cache Hit:

DRAM Cache Miss:

Time

Time

Miss Penalty

(a) (b)

3DDRAM Off-Chip DRAM

Fig.5. Miss penalty comparison of a leading block and a following block. (a) Accessing a leading block. (b) Accessing a following
block.

Table 1. Miss Penalty of Leading Blocks and Following
Blocks

Type Parameter Latency (Cycle) Bandwidth (Byte)

Leading Hit 185 Cache: 128 (tag+data)

blocks Miss 458 Cache: 128 (tag+data)

Memory: 64 (data)

Penalty 273 Cache: 64 (data)

Following Hit 147 Cache: 64 (data)

blocks Miss 259 Memory: 64 (data)

Penalty 112 –

1346 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

4 P3DC Design

This section describes the design of P3DC. We

first present the overview of P3DC in Subsection 4.1,

and then describe the block mapping policy in Subsec-

tion 4.2. The proposed DRAM cache replacement al-

gorithm and the scheme of handling frequent block

type switches are detailed in Subsection 4.3 and Sub-

section 4.4, respectively.

4.1 Overview

Fig.7 shows the architecture of P3DC. Each core

is configured with a MAP-I predictor to estimate

whether the requested data is hit in the DRAM cache

or not[9]. If a cache miss is predicted, the DRAM

cache and the main memory are accessed simultane-

ously. An SRAM Tag-cache is used to store a batch

of associated tags, and thus can further reduce memo-

ry access latency. Like BEAR[21], P3DC can also by-

pass the DRAM cache to directly fetch data with a

low reuse probability to CPUs, and thus improves the

DRAM cache utilization and reduces bandwidth con-

sumption.

As discussed in Section 3, using different map-

ping schemes for leading blocks and following blocks

could improve the hit latency and hit rates simultane-

ously in the context of a tag cache. This is the key

idea of P3DC. The type of the requested data blocks

determines how P3DC serves the request. For a lead-

ing block, its direct mapping enables the cache con-

troller to fetch the data from a specific position in the

DRAM cache set without consulting the tag, and the

related tag batch is also transferred to the tag cache

in SRAM. In this way, the cache controller can de-

tect the DRAM cache miss for the leading block, af-

ter checking the tag batch. In order to concurrently

transfer both the leading block and the tag batch, the

dataset and the corresponding tags are stored in dif-

ferent banks, as shown in Fig.8. For the following

block, the requested data needs to consulting its tag

to determine the position in the set, since the dynam-

ic mapping is applied to the following block. The fol-

lowing block is most likely to hit the tag cache and

can be quickly accessed from the DRAM cache.

H C

Fig.8(a) shows the organization of a tag row. A

tag batch contains the tags for the data blocks stored

in the corresponding cache set, which is similar to the

tag batching mechanism in previous work[7]. Four ex-

tra bits are introduced to a tag: a reference bit (A), a

priority bit (), and a two-bit filter (). The refer-

ence bit represents the recency of the block. The pri-

ority bit denotes the block's caching priority and also

acts as the flag of block types (1 and 0 denote the

leading and following blocks, respectively). The filter

bits record the transition of block types, as discussed

in Subsection 4.4.

Fig.8(b) illustrates the organization of the data

row. In conventional designs, the direct-mapped cache

and the set-associative cache are commonly viewed as

two exclusive structures. Generally, the cache associa-

tivity and the mapping policy are closely coupled. If

the cache associativity is 1, the mapping policy degen-

erates to a static direct-mapping scheme. On the con-

trary, if the cache associativity is greater than 1, the

mapping policy becomes a dynamic set-associative

mapping. In order to support both static mapping

and dynamic mapping in a unified structure, we de-

couple the set associativity from the data mapping

policy. Basically, P3DC organizes the DRAM cache

similar to set-associative caches. Each DRAM row has

several sets and each set contains 16 data lines. Thus,

Following-to-Leading Type Switch

50

40

30

20

10

0

Leading-to-Following Type Switch

R
a
ti
o
 o

f
B

lo
ck

 T
y
p
e

S
w

it
ch

e
s

(%
)

R
7

R
8

R
1
0

R
1
1

R
1
7

R
1

R
1
8

R
4

R
1
4

R
9

R
1
2

R
3

R
2

R
1
5

R
1
3

R
5

R
1
6

R
6

A
V

G

Fig.6. Percentage of block type switches.

SRAM Tag-Cache

Off-Chip Main Memory

Core

MAP-I Predictor

On-Chip DRAM Cache

Tag Rows Data Rows

Main Memory

Controller
LLC Bypass Module

Main Memory
Controller

LLC Bypass Module

Fig.7. Architecture of P3DC.

Ye Chi et al.: P3DC: Reducing DRAM Cache Hit Latency by Hybrid Mappings 1347

P3DC actually adopts an organization of a 16-way

set-associative cache. Within each cache set, data

blocks can be mapped via either static or dynamic

mapping, depending on their block types, as shown in

Fig.8. Specifically, following blocks are placed in the

set according to the replacement algorithm, while

leading blocks' positions are determined by static

mapping, which is the predetermined hash function of

the block address.

Fig.8(c) illustrates the layout of the P3DC cache.

The DRAM rows are divided into tag rows and data

rows. Tags and data are mapped to the rows of differ-

ent banks to improve the bank-level parallelism.

4.2 Mapping Policy

We apply static address mapping and dynamic

address mapping to leading blocks and following

blocks to determine their positions in the cache set,

respectively. The tag of each data block has a priori-

ty bit to indicate the block type. For a leading block,

the address of the request block is hashed by the pre-

determined function StaticMapping() and its outcome

is the position for this leading block. Once the posi-

tion of a leading block is determined, the memory

controller directly retrieves the data block from the

DRAM cache. It is possible that there are multiple

leading blocks in one cache set since the position de-

pends on the request block address. In that case, posi-

tion conflicts caused by the hash function could lead

to cache evictions. For a following block, its position

in the set can be determined by probing the tags

stored in the tag cache in the case of a tag cache hit.

Otherwise, the cache replacement algorithm deter-

mines the position where the following blocks will be

placed in the cache set. As shown in Algorithm 1, we

use GetPosition() to denote the position determined

by the cache replacement policy.

When the data type is transformed from a follow-

ing block to a leading block, it is necessary to update

Tag 0 Tag 1 Tag 2 ... Tag  Address Tag    State

Tag Row

Tag-Batch

Tag Tag:

(a)

(b)

(c)

Data Row

Leading Block Following Block

Static Mapping Dynamic Mapping

Set 0 Set 1

Cache Layout

Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7Bank 0

Tag Row 1 Tag Row 3 Tag Row 0 Tag Row 2

Data Rows 0 Data Rows 1

Data Rows 2 Data Rows 3

DRAM Cache

SRAM Tag Cache

Fig.8. Organization of the P3DC cache. (a) Organization of a tag row. (b) Organization of a data row. (c) DRAM cache layout.

1348 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

the tag bits of this data block and migrate it to the

position indicated by static mapping. Algorithm 1

shows how P3DC handles data type transitions. For

the transition to the following one, P3DC resets its

priority bit (lines 4 and 5). For the transition to the

leading one, P3DC tries to migrate it to the statical-

ly mapped position (lines 6–17). If the data block's

current position corresponds to the given static map-

ping (lines 7 and 8), no migration is needed, and

P3DC sets its priority bit to 1. Otherwise, the map-

ping is determined in the following two situations. If

the static-mapped position is of a high priority, and is

recently referenced, P3DC just resets its reference bit

(lines 10 and 11), without data migration. In other

cases, P3DC migrates the data to its static-mapped

position, with an expectation that the data will be

continually accessed as a leading block in the near fu-

ture.

Algorithm 1. Mapping Policy

Input: block_address, type
←1 position GetPosition(block_address)

←2 static_position StaticMapping(block_address)
←3 last_type GetType(block_address)
= =4 if last_type Leading and type Following then

←5 　　cache[position].priority_bit 0
6 end

= =7 if last_type Following and type Leading then

=8 　　if position static_position then

←9 　　　　cache[position].priority_bit 1

10 　　else

=11 　　　　if cache[static_position].type Leading and

=12 　　　　cache[static_position].reference_bit 1 then

←13 　　　　　　cache[static_position].reference_bit 0

14 　　　　else

15 　　　　　　if IsDirty(cache[static_position]) then

16 　　　　　　　　WriteBack(cache[static_position])

17 　　　　　　end

←18 　　　　　　cache[static_position] cache[position]

19 　　　　　　Free(cache[position])

←　　　　　　　 cache[static_position].priority_bit 1

21 　　　　end

22 　　end
23 end

4.3 Replacement Policy

As discussed in Section 3, leading blocks incur

more miss penalties than following blocks in terms of

latency and bandwidth. The cache replacement algo-

rithm can improve DRAM cache performance by ex-

ploiting this observation. The replacement algorithm

assigns the high caching priority to leading blocks and

the low priority to following blocks. To this end, the

priority bit for each data block is introduced. The pri-

ority is set to be 1 and 0 for the leading blocks and

the following blocks, respectively. In this way, the re-

placement algorithm attempts to keep leading blocks

in the cache longer to amortize its miss penalties.

However, the leading blocks can gradually occupy

more cache space than the following blocks due to the

high priority. For example, there are three leading

blocks and two following blocks in the set, as shown

in Fig.9. This intensifies the cache space contention

with the following blocks. On the other hand, the

cache space occupied by the cold leading blocks leads

to lower cache utilization without considering the

cache temporal locality.

To balance miss penalties and the cache temporal

locality, we propose the Range-Variable CLOCK

(RV-CLOCK) algorithm, based on the low overhead

CLOCK algorithm[29–32]. The CLOCK algorithm uses

a reference bit to indicate the recency of a data block.

If the reference bits of all the following blocks are set

in a cache set, these recently accessed following blocks

are chosen as victims for the upcoming following

blocks since their priorities are lower than those of

the leading blocks. It usually leads to cache thrashing

for the following blocks. In order to address this issue,

we try to evict a cold leading block to increase the

cache space of following blocks if all the following

blocks' recency bits are set. Specifically, we run the

CLOCK algorithm for all data blocks in a cache set

to find victims, without excluding leading blocks, in

case that following blocks have high temporal locali-

ties.

As shown in Fig.9(b), the following blocks' refer-

ence bits can be used to choose victims because it in-

dicates which blocks are involved with the CLOCK

algorithm. If all the following blocks' recency bits are

set, the rightmost AND gate outputs the logic 1 and

all data blocks in the set are victim candidates, as

shown in Fig.9(b). Otherwise, the rightmost AND

gate, with the output of the logic 0, excludes leading

blocks to be victim candidates, and only following

blocks can be evicted.

4.4 Managing Block Type Transformation

The mapping policy works well for the data with

stable block types, as discussed in Subsection 3.4.

However, there still exist some workloads in which

the type of data blocks changes frequently. Such tran-

sitions lead to a larger number of data block migra-

Ye Chi et al.: P3DC: Reducing DRAM Cache Hit Latency by Hybrid Mappings 1349

tions, degrading cache performance. Furthermore, the

mapping policy mistakenly downgrades the blocks'

priority and prematurely evicts blocks. For example,

if an unstable block switches from a leading block to

a following block, the mapping policy resets its priori-

ty bit, increasing the eviction probability of the block.

At the next active period of the section, it is highly

likely that this block will switch back to a leading

block. In this example, the mapping policy untimely

evicts this leading block, suffering from the costly

miss penalty.

Lstable

→ → →
→ Lstable

Lstable

Lstable

Lstable ⩽ 2

Lstable > 2

Lstable ⩽ 2

To address the issue, we further study block type

stability. For a single block, represents the

number of occurrences of the consecutive leading or

following type. For example, consider a type se-

quence of {leading leading following follow-

ing leading}. Their are 2, 2, 1, respectively.

The larger the value of is, the more stable the

block maintains the same type. Fig.10 shows the dis-

tributions of whose values are no greater than

10. Note that we should only handle workloads whose

proportion of type switches is larger than 10% from

Fig.10, and other workloads with few type switches

can be handled by the default strategy. We observe

that about 88% of the type variations occur at

. This implies that these blocks cannot keep

their types stable and tend to continuously change

their types, and thus there is little consistency in

types. Since the percentage of type variations at

 is low, we should focus on type variations

at .

Motivated by the above observation, we propose a

→
Lstable ⩽ 2

→

→

→

priority reservation mechanism with a frequent type

transition filter to handle unstable blocks. As illus-

trated in Fig.11, the key idea is to track the blocks

whose types frequently change, and set them as lead-

ing blocks to avoid potential miss penalties on their

following leading transitions. As discussed above, we

mainly focus on the case with . Specifically,

we use a two-bit counter to filter these blocks. If

there is a following leading transition, the block's

counter is increased by 2. The counter is decreased by

1 for the following following transition. When the

counter becomes 0, the two-bit counter remains “00”
state for following following transitions. Upon a

type transition, P3DC identifies the block as highly

unstable and treats it as a leading block if its count is

not ``00''. Otherwise, this block is deemed as a follow-

ing block. Note that a leading block always keeps its

counter's state. This policy eliminates short, isolated

Leading Leading Following ALeading Leading AFollowing Following

Hash

Victim

(a)

(b)

Leading Leading Following ALeading Leading AFollowing Following

Reference Bit

Clock

&

& & &

Victim

Address of Leading Block

Fig.9. Victim selection policy. (a) Leading blocks occupy more space than following ones. (b) Victim selection upon following block
insertion.

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8
R7 R8 R10

R11 R17 AVG

D
is

t
r
ib

u
t
io

n

o
f


s
t
a
b
le

stable

Lstable

Fig.10. Distributions of block type stability. The points repre-
sent the ratios of the stable subsequences with different .
Each workload's result is collected from several representative
execution intervals, with each interval containing 5 billion in-
structions.

1350 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

type transitions.

4.5 Overhead

n

n

Our design leads to extra hardware resources for

1) hash function, 2) victim selection, and 3) data type

variation threshold. The hash function (GetPosition()

in Algorithm 1) involves a simple arithmetic opera-

tion to calculate the position for the leading block,

and its hardware implementation requires several

AND gates, XOR gates, OR gates, and a shift regis-

ter. To support the victim selection policy (see Fig.9),

a reference bit is added for each cache line. Each vic-

tim selection logic requires AND gates, a hand reg-

ister, and a simple CLOCK block, where is the as-

sociativity of a cache and it is 16 in our design.

×

The hand register indicates the position of the

hand in the CLOCK algorithm, requiring four bits.

The CLOCK block includes a 4:16 decoder to indi-

cate the position of the hand, 16 bits mask to specify

which ways of cache lines are involved in the victim

selection, and FSM to determine the victim. Note

that the victim selection logic is only for a bank,

rather than a cache set. Typically, there are eight

banks in the DRAM cache. To specify the data block

type for each way, each cache line needs one bit,

which is the priority bit in our design. In addition, to

avoid frequent data block type variations, a cache line

needs two bits. Thus, each cache line requires three

extra bits, which is a part of the tag of a data block.

Since a tag has 21 bits (see ATcache[19]), the storage

overhead is 3/(size_of_tag + size_of_cacheline) =

3/(21+64 8) = 0.5% in the DRAM cache. Therefore,

our design introduces negligible area overhead. Opera-

tions on these introduced parts are performed inside

the DRAM cache controller and do not incur expen-

sive data movements. Thus, the energy overhead is

negligible.

5 Experimental Methodology

We evaluate the performance of P3DC using

Gem5[33], integrated with detailed models of 3D-

stacked DRAM and off-chip DRAM[34]. The architec-

tural parameters are summarized in Table 2. We sim-

ulate a processor with eight out-of-order cores, sharing

16 MB L2 cache. The simulated DRAM cache is 1 GB

and has the same latency as the off-chip DRAM. How-

ever, the bandwidth of the DRAM cache is 8 times

higher than that of the off-chip DRAM.

Table 2. Architectural Parameters

Hardware Detailed Parameter

Processor Out-of-order, 3.2 GHz, 8 cores

L1 I/D cache 32 KB I/D-cache, private, 4-way, 2-cycles

L2 cache 16 MB, Shared, 8-way, 20-cycle, non-inclusive

Tag cache 32 K entries, 8-way, 9-cycle

MAP-I
predictor

256 entries, 1-cycle

DRAM cache 1 GB, 1.6 GHz (DDR 3.2 GHz), non-
inclusive,

4 channels, 128 bits per channel,

16 banks per rank, 2 KB row buffer,

tCAS-tRCD-tRP-tRAS 36-36-36-144 cycles

Main memory 16 GB, 800 MHz (DDR 1.6 GHz),

2 channels, 64 bits per channel,

8 banks per rank, 2 KB row buffer,

tCAS-tRCD-tRP-tRAS 36-36-36-144 cycles

5.1 Cache Organizations

We compare P3DC with two state-of-the-art

DRAM cache designs: the BEAR cache[21] and the tag

data decoupled DEC-A8 cache[22]. The parameters for

these three designs are shown in Table 3.

BEAR Cache[21]. We choose BEAR as the base-

line of the direct-mapped DRAM cache. BEAR uses a

bandwidth-aware bypassing (BAB) scheme to im-

prove the bandwidth efficiency of filling missing en-

tries. Tags and data are placed in DRAM rows in an

High Priority

Low Priority

High Priority

Low Priority

Time

Time

Section's Active Phase

Default

 Policy:

Filtered

Policy:

Filtering out High Frequency Type Variations

Fig.11. Demonstration of priority reservation mechanism.

Ye Chi et al.: P3DC: Reducing DRAM Cache Hit Latency by Hybrid Mappings 1351

interleaving manner. A read request fetches data, as

well as the corresponding tag and the next neighbor-

ing tag with one additional burst.

DEC-A8 Cache[22]. DEC-A8 is an 8-way set-asso-

ciative DRAM cache. It decouples tags and data, and

stores them in two regions of the DRAM cache. It

maps spatially-adjacent cache blocks to the same

DRAM row to fully exploit the spatial locality. In ad-

dition, DEC-A8 employs a DRAM absence table to

implement the cache bypassing mechanism. DEC-A8

concurrently accesses the tag batch and data to re-

duce the access latency of the DRAM cache in the

case of tag cache misses.

We note that although both P3DC and DEC-A8

place tags and data in different DRAM cache regions

(or banks), their access policies are different. Specifi-

cally, DEC-A8 reads tags and data concurrently in

the DRAM cache, regardless of data block types. This

access pattern partially decouples the sequential ac-

cesses to tags and data by activating data rows in ad-

vance, but the remaining data still requires a success-

ful tag comparison before the whole data is complete-

ly fetched. As a result, DEC-A8 has higher access la-

tency than BEAR. In contrast, P3DC uses a static

mapping policy for leading blocks, and accesses tags

and data simultaneously. It shows low access latency

similar to BEAR, at the expense of higher bandwidth

consumption. For following blocks, the access policy

and latency of P3DC is the same as those of DEC-A8.

The above three approaches use the same size of

SRAM tag caches. Besides, the DRAM cache pres-

ence (DCP) bit[21] is implemented in all designs. The

DCP tracks DRAM cache's present state in L2 and

reduces the cache bandwidth consumption.

5.2 Workloads

We evaluate the three designs with 18 memory in-

tensive benchmarks from the SPEC CPU2000 and the

SPEC CPU2006 benchmark suites①. The bench-

marks are classified based on two metrics: spatial lo-

cality and cache contention. The spatial locality is

Nleading/Ntotal Nleading Ntotalmeasured as , where and are

the access number of leading blocks and the total ac-

cess number respectively. The cache contention is

evaluated as the hit rate of the DRAM cache.

These benchmarks can be classified into four cate-

gories: contention-dominated (CD), locality-dominat-

ed (LD), both-friendly (BF), and non-beneficial (NB).

The CD benchmarks have high cache demands with

good spatial locality. The set-associative cache is

friendly to these benchmarks since it can improve the

cache space utilization and does not suffer greatly

from tag fetching. The direct-mapped cache is suit-

able for LD benchmarks due to the shorter hit laten-

cy. BF benchmarks have much more cache demands

and good spatial locality. Traditional cache organiza-

tions can perform well on these benchmarks. NB

benchmarks do not work well due to their poor spa-

cial locality and high miss rates.

Table 4 shows 18 workloads in a rate mode (four

categories, called Rate-CD, Rate-LD, Rate-BF, Rate-

NB in the following results analysis), which means all

cores execute the same benchmark. We also evaluate

10 mixed workloads including intra-category and in-

ter-category combinations, as shown in Table 5. In

our experiments, we focus on CD workloads and LD

workloads, to highlight the impact of the hit rate im-

provement and hit latency reduction. For each work-

load, the simulation runs for one billion instructions

on each core after fast-forwarding the first ten billion

instructions.

Table 3. System Configurations

Design Mapping Policy Associativity Replacement Tag Prefetch

BEAR[21] Static 1 BAB Neighboring tag

DEC-A8[22] Dynamic 8 CLOCK Tag batch

P3DC Static+dynamic 16 RV-CLOCK Tag batch

Table 4. Workloads form SPEC CU2000 and SPEC
CPU2006

Category Rate Workload with Tickers

Rate-CD × × ×R1: wupwise 8, R2: lucas 8, R3: gap 8,

× × ×R4: apsi 8, R5: cactusADM 8, R6: lbm 8

Rate-LD × × ×R7: vpr 8, R8: bzip2 8, R9: soplex 8,

× × ×R10: omnetpp 8, R11: astar 8, R12: xalan 8

Rate-BF × × ×R13: equake 8, R14: mgrid 8, R15: gcc 8,

×R16: libquantum 8

Rate-NB × ×R17: GemsFDTD 8, R18: milc 8

1352 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

①PEC CPU2000 and SPEC CPU2006 are two versions of industry-standardized CPU performance benchmarks which are used
to evaluate both integer and floating-point computing performance of general-purpose CPUs. They are available at:
https://www.spec.org/cpu2000/ and https://www.spec.org/cpu2006/, respectively.

6 Experimental Results

6.1 Performance

Fig.12 shows the instructions per cycle (IPC) of

three designs, all normalized to BEAR, a direct-

mapped cache. For Rate-CD workloads, P3DC out-

performs BEAR by 38% on average and up to 66%.

The performance of P3DC primarily stems from the

hit rate improvement due to the dynamic mapping of

its following blocks. The Rate-LD workloads have

poor spatial locality, which leads to high miss rates

for the tag cache. For these workloads, DEC-A8

shows the worst performance because it causes higher

access latency for leading blocks. By applying static

mapping to leading blocks, P3DC outperforms DEC-

A8 by 8% on average and up to 16%. The Rate-BF

workloads have both small working sets and high spa-

tial locality, which is sensitive to different designs.

Thus, P3DC outperforms BEAR and DEC-A8 by 6%

and 9% on average, respectively. Since the Rate-NB

workloads have low temporal locality and large work-

ing sets, none of designs perform well on these work-

loads. For mixed workloads, P3DC and DEC-A8 gen-

erally show higher performance than BEAR except for

Mix3, Mix8 and Mix 10. Overall, P3DC outperforms

BEAR and DEC-A8 by 12% and 6% on average, re-

spectively.

6.2 DRAM Cache Hit Rate

Fig.13 shows the DRAM cache hit rates of all sys-

tems. For Rate-CD workloads, BEAR achieves rela-

tively low hit rates because its static data mapping

Table 5. Mixed Workloads with Tickers

Category Mixed Workload with Tickers

CD M1: wupwise, luca, gap, apsi, cactusADM, lbm,
wupwise, lbm

LD M2: vpr, bzip2, soplex, omnetpp, astar, xalan, vpr,
xalan

BF ×M3: {equake, mgrid, gcc, libquantum} 2

NB ×M4:{milc, GemsFDTD} 4

CD+LD M5: wupwise, gap, apsi, cactusADM, vpr, bzip2,
soplex, omnetpp

CD+BF M6: gap, apsi, cactusADM, lbm, equake, mgrid,
gcc, libquantum

CD+NB
×

M7: lucas, apsi, cactusADM, lbm, {milc,
GemsFDTD} 2

LD+BF M8: soplex, omnetpp, astar, xalan, equake, mgrid,
gcc, libquantum

LD+NB
×

M9: vpr, bzip2, astar, xalan,
{milc, GemsFDTD} 2

BF+NB
×

M10: equake, mgrid, gcc, libquantum,
{milc, GemsFDTD} 2

0.6

0.8

1.0

1.2

1.4

1.6

1.8

P3DCBEAR DEC-A8

N
o
r
m

a
li
z
e
d

I
P
C

Rate-CD Rate-LD Rate-BF Rate-NB Mixed All

R
1

R
2

R
3

R
4

R
5

R
6

A
V

G

R
7

R
8

R
9

R
1
0

R
1
1

R
1
2

A
V

G

R
1
7

R
1
8

A
V

G

R
1
3

R
1
4

R
1
5

R
1
6

A
V

G

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
1
0

A
V

G

A
V

G

Fig.12. Normalized IPC. All results are normalized to BEAR.

0.6

0.8

1.0

0.0

0.2

0.4

P3DCBEAR DEC-A8

Rate-CD Rate-LD Rate-BF Rate-NB Mixed All

R
1

R
2

R
3

R
4

R
5

R
6

A
V

G

R
7

R
8

R
9

R
1
0

R
1
1

R
1
2

A
V

G

R
1
7

R
1
8

A
V

G

R
1
3

R
1
4

R
1
5

R
1
6

A
V

G

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
1
0

A
V

G

A
V

G

C
a
c
h
e

H

it

R

a
t
e

Fig.13. Hit rates of the DRAM cache in three designs.

Ye Chi et al.: P3DC: Reducing DRAM Cache Hit Latency by Hybrid Mappings 1353

limits the flexibility of block replacement. Compared

with BEAR, P3DC increases the average hit rate by

32% to 63%. We note that the average cache hit rate

for all workloads in P3DC is only 3% less than that of

DEC-A8. This implies applying dynamic mapping for

following blocks can offer good flexibility for block re-

placement, and the leading blocks can be mapped

statically without sacrificing hit rates. In addition,

P3DC adopts a static mapping policy with lower ac-

cess latency for leading blocks, and thus improves the

IPC by 1.7% compared with DEC-A8, as shown in

Fig.12.

All the three designs achieve high hit rates for

Rate-LD workloads, which have small working sets to

fit in the DRAM cache. However, these workloads

have poor spatial locality, leading to large miss rates

in the tag cache on average, and introducing a large

ratio of leading blocks. The performance of the cache

system is dominated by the hit latency of the DRAM

cache. For DEC-A8, all requests are served sequen-

tially in a data-after-tag manner. In contrast, P3DC

directly accesses leading blocks in their statically-

mapped positions, and meanwhile fetches the corre-

sponding tags concurrently. On average, 69% data re-

quests are served by concurrent tags and data fetch-

ing in P3DC, which is very close to that of BEAR.

The working set of Rate-BF workloads can also fit

in the DRAM cache, while offering high spatial locali-

ty. The tag batching mechanisms in P3DC and DEC-

A8 achieve higher hit rates of the tag cache. But this

does not imply higher performance for the set-associa-

tive cache DEC-A8, because the direct-mapped cache

BEAR offers the same latency in the case of a DRAM

cache hit. On the other hand, a small portion of re-

quests still need to access the tags in the DRAM

cache. These requests slightly degrade the perfor-

mance of DEC-A8 by about 4%.

Due to the large working set and the poor tempo-

ral locality, Rate-NB workloads have low hit rates of

the DRAM cache and are insensitive to data map-

ping policies. Therefore, all the three designs have

similar request distributions and achieve a similar

IPC for these workloads, as shown in Fig.12.

The mixed workloads M1, M5 and M6 provide op-

timization opportunities in both hit rate improve-

ment and hit latency reduction. For these workloads,

P3DC outperforms BEAR and DEC-A8 by 16% and

4% on average, respectively. Since the workloads M3

and M8 have extremely high hit rates in the DRAM

cache (over 99%), P3DC and BEAR achieve similar

performance, but higher performance than DEC-A8.

6.3 Impact of Tag Fetching Modes on Hit

Latency

For LD workloads (R7–R12, M2) with poor spa-

tial locality, the performance of the cache system is

sensitive to the access latency of leading blocks.

BEAR and DEC-A8 only use a single data mapping

policy (static or dynamic), where neither leading nor

following blocks are taken into account. In contrast,

P3DC applies static mapping to leading blocks and

dynamic mapping to following blocks. All three de-

signs can concurrently fetch tags and data. To serve a

leading block, P3DC issues two parallel DRAM cache

requests for a tag batch and a data block, respective-

ly. To co-locate a tag data pair, BEAR issues a re-

quest to fetch a tag-and-data entity and this fetching

incurs an additional burst compared with fetching a

data block. Although DEC-A8 can also issue two

DRAM cache access requests concurrently, it has a

higher access latency because the process of reading

tags and data cannot be coordinated fairly, as dis-

cussed in Subsection 5.1.

Fig.14 shows hit latencies of three designs, all nor-

malized to BEAR which shows the lowest hit latency.

The cache hit latency of DEC-A8 is 1.41x on average

and up to 1.55x higher than that of BEAR. Due to

the queuing delay of P3DC, not all the tag and data

requests can be done at the same time exactly. As a

result, the hit latency of P3DC is 1.17x as high as

that of BEAR on average. For LD workloads, the ac-

cess latency of leading blocks directly affects the over-

all system performance. As shown in Fig.12, BEAR

achieves an 11% higher IPC (on average) than DEC-

A8, while P3DC can lower this performance gap to

3% with our sophisticated data mapping policy.
High hit rates benefit system performance in two

ways. Firstly, requests hiting the DRAM cache can

P3DCBEAR DEC-A8
2.0

1.5

1.0

0.5

0.0

N
o
rm

a
li
z
e
d
 C

a
c
h
e

H
it
 L

a
te

n
c
y

R7 R8 R9 R10 R11 R12 M2 AVG

Fig.14. Normalized cache hit latency of locality-dominated
workloads.

1354 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

benefit from the high bandwidth of the die-stacking

DRAM. Secondly, high hit rates can help to reduce

the access latency of off-chip DRAM. Due to the fil-

tering effect of the DRAM cache, a large portion of

off-chip DRAM accesses are eliminated, resulting in

relatively low queuing delay in off-chip DRAM.

6.4 Impact of Hit Rate Improvement on

Queuing Latency of Off-Chip DRAM

Fig.15 compares BEAR and P3DC in terms of off-

chip DRAM queuing latency for CD workloads. The

portions labeled with left slashes in the left bars and

right bars are the queuing latencies of the BEAR

cache and the P3DC cache, respectively. Fig.15 also

shows the hit rates with red lines. We can find that a

low hit rate of the DRAM cache makes CD work-

loads suffer from a high queuing latency. In the worst

case, i.e., R3, the queuing latency is up to 58% of the

overall off-chip DRAM access latency. By improving

the hit rate of the DRAM cache, P3DC reduces the

queuing latency by 49% on average and up to 78%

compared with BEAR.

6.5 Bandwidth Consumption

Fig.16 shows the DRAM cache bandwidth con-

sumption of the three designs, including tag read, tag

write-back, data read hit, data read miss, data fill,

and data write-back. Data read miss is the case that

the data is fetched concurrently with the tag, but

turns out to be a DRAM cache miss. Among the

three designs, BEAR shows the best bandwidth effi-

ciency. P3DC and DEC-A8 consume more band-

width than BEAR in tag read and tag write-back.

Tag read is the sum of on-demand tag fetching

and tag prefetching. P3DC and DEC-A8 adopt the

tag batching mechanism that fetches the whole set of

tags in a single request. BEAR only fetches two tags

at the same time: the requested tag along with one

neighboring tag. In general, the tag batching helps to

improve the hit rate of the tag cache. However, for

workloads with poor spatial locality, this mechanism

wastes bandwidth. For example, for the Rate-LD

workload group, the bandwidth consumed by the tag

read in P3DC and DEC-A8 is 7x and 8x larger than

that in BEAR. DEC-A8 does not consume band-

R1

C
y
c
le

R2 R3 R4 R5 R6 M1 AVG

500

400

300

200

100

0

1.0

0.8

0.6

0.4

0.2

0.0

D
R

A
M

 C
a
c
h
e
 H

it
 R

a
te

Queuing Latency

Transfer Latency
Activation Latency

Hit Rate

Fig.15. Impact of DRAM cache hit rates on off-chip DRAM queuing delay.

Rate-CD

2.25

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

Rate-LD Rate-BF Rate-NB Mixed All

R
1

R
2

R
3

R
4

R
5

R
6

A
V

G

R
7

R
8

R
9

R
1
0

R
1
1

R
1
2

A
V

G

R
1
7

R
1
8

A
V

G

R
1
3

R
1
4

R
1
5

R
1
6

A
V

G

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
1
0

A
V

G

A
V

G

N
o
rm

a
li
z
e
d
 B

a
n
d
w

id
th

 C
o
n
su

m
p
ti
o
n Tag Read Data Write-BackData FillData Read MissData Read HitTag Write-Back

Fig.16. Normalized bandwidth consumption. From left to right, the three bars in each group are the results of BEAR, DEC-A8, and
P3DC, respectively.

Ye Chi et al.: P3DC: Reducing DRAM Cache Hit Latency by Hybrid Mappings 1355

width upon data read misses because it only reads da-

ta if the corresponding tag is matched successfully. In

contrast, BEAR fetches both tags and data concur-

rently, which may incur data read misses if the tag is

not matched. A similar situation may occur when

P3DC accesses leading blocks.

All the three designs adopt a DRAM bypassing

scheme to reduce the bandwidth consumption on miss

fills. They do not fill the missed data block to the

DRAM cache after speculating the missed data block

with low reuse probability. Filling all the missed data

to the DRAM cache can improve hit rates in the case

of good temporal locality. However, it may consumes

more bandwidth in the case of poor temporal locality.

On average, as shown in the rightmost group, P3DC

consumes 1.36x more bandwidth than BEAR. The re-

sults imply that there is still large room for improv-

ing P3DC's performance towards better bandwidth

utilization in the future.

6.6 High Frequency Type Variation Filter

Lstable

Lstable Lstable Lstable

Lstable > 3

P3DC relies on the high-frequent type variation

filter to track unstable data blocks. Fig.17 shows the

percentage of the identified cases with different .

We can find that the filter has high resistance against

short . The filtering rate of =1 and =

2 are 92% and 95%, respectively. Meanwhile, it pass-

es through all segments with .

1 2 3 4 5 6 7 8 9 10

R1 R10
R2 R11
R3 R12
R4 R13
R5 R14
R6 R15
R7 R16
R8 R17
R9 R18

AVG

stable

1.0

0.8

0.6

0.4

0.2

0.0

S
u
c
c
e
ss

 R
a
te

 o
f
H

ig
h
 F

re
q
u
e
n
c
y

T
y
p
e
 V

a
ri
a
ti
o
n
 F

il
te

r

Fig.17. Success rate of the high frequency type variation filter.

7 Related Work

7.1 Set-Associative and Direct-Mapped

Caches

Set-Associative Caches. Loh-Hill et al.[7, 8] pro-

posed to organize each DRAM row (2 KB) as a 29-

way set-associative cache, with good replacement flex-

ibility. Since the tag and data are stored in the same

row, the data is streamed out right after the tag read,

getting the benefits of row-buffer hit. Bi-Modal

Cache[28] and Unison Cache[35] try to take advantage

of large-sized cache lines to exploit the spatial locali-

ty, and exploit the set-associative structure to miti-

gate cache conflicts.

Direct-Mapped Caches. Alloy Cache[9] breaks the

data-after-tag serialization by co-locating a data block

and its tag in the direct-mapped DRAM cache. It is-

sues a command to fetch a data block and its tag to-

gether at the expense of one additional burst.

CAMEO[36] further improves Alloy Cache by remov-

ing the data copy between the 3D DRAM cache and

the off-chip memory.

Some studies[7–9, 28, 35, 36] proposed different opti-

mizations on the set-associative DRAM cache or the

direct-mapped DRAM cache. In this paper, we reveal

that different data blocks have a significant impact on

cache hit latency, and then propose a partial direct-

mapped cache design to achieve both the high hit

rates of the set-associative structure, and the low hit

latency of the direct-mapped structure.

7.2 Other Cache Optimization Technologies

Bandwidth Optimization. Based on the direct-

mapped structure, BEAR[21] focuses on reducing

bandwidth consumption. It puts forward several

methods such as the bandwidth-aware bypassing for

miss fills, DRAM cache presence bit for write back

probe, and neighboring tag cache for miss probe.

Moreover, Mostly-Clean Cache[37] balances the band-

width of the DRAM cache and the off-chip DRAM by

fully utilizing the off-chip bandwidth when the

DRAM cache is serving a burst of cache hits.

TicToc[38] reduces memory bandwidth consumption

by caching the tag of recently-accessed DRAM to the

last level of cache. Red Cache[17] monitors data block

accesses at runtime with low-cost counters, and stores

blocks with frequently-reused or high-bandwidth re-

quirements in the DRAM cache to improve the band-

width efficiency and performance.

Data Prefetching. Data prefetching is another key

technique for improving cache hit rates. A major ap-

proach is to apply page-granularity prefetching[39, 40].

However, it results in a waste of the bandwidth be-

cause the fetched pages may contain unused data.

1356 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

Footprint Cache[10] mitigates this issue by tracking

the workload's access footprints[41, 42] and prefetches

the cache lines that have a high possibility to be ac-

cessed in the DRAM cache. F-TDC[43] integrates the

footprint history table into the page table and hides

the cache probes by TLB lookups.

Tag Prefetching. ATCache[19] accelerates the

probe operation by introducing a small tag cache in

SRAM. On the discovery that a tag access has spa-

tial locality, it prefetches tags from nearby cache sets,

and takes advantage of a clever on-demand tag

prefetching scheme to reduce tag cache pollution.

Tsukada et al.[44] found that the address offset be-

tween two consecutive memory accesses is almost the

same. Based on this observation, they prefetched the

corresponding tags to reduce the tag access latency

and improve performance.

Way Prediction. Accord[45] and SODA[46] use two-

way set-associative cached, but still achieve high

cache hit rates. Accord uses historical information to

guide the insertion and prediction of cache lines, while

SODA exploits a way-locater cache in SRAM to store

the location of the data in cache sets.

Tag Decoupled. Decoupled Fused Cache (DFC)[47]

takes advantage of the redundancy of tags in the LLC

and use a LLC tag array to store the location of data

in the DRAM cache. By fusing the tags of the DRAM

cache with tags of the LLC, the cost of tag access is

mitigated.

The above proposals are orthogonal to our work

that focuses on the data mapping structure. Our tech-

niques can be applied to these schemes, and further

improve the performance of the DRAM cache.

8 Conclusions

In this paper, we presented P3DC, a partial di-

rect-mapped die-stacked DRAM cache. The P3DC

cache classifies data blocks into leading blocks and

following blocks, and places them with static map-

ping and dynamic mapping respectively in a unified

set-associative structure. The key idea is inspired by

the observation that different block types have differ-

ent impacts on the cache hit rate and the cache hit

latency. P3DC combines the advantages of direct-

mapped caches and set-associative caches to achieve

low hit latency while maintaining high cache hit rates

through partial-direct mapping. In this way, P3DC is

able to perform more efficiently in the presence of am-

biguous application behavior or variable access char-

acteristics. Experimental results demonstrated that,

P3DC can reduce the cache hit latency by 20.5% and

can achieve comparable hit rates with set-associative

caches. P3DC improves the IPC by 12% on average

and up to 66% compared with the direct-mapped

BEAR cache, and 6% on average and up to 19% com-

pared with the set-associative DEC-A8 cache. Partic-

ularly, the P3DC cache is orthogonal to prior state-of-

the-art DRAM cache designs and can be applied to

further performance improvement.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Jun H, Cho J, Lee K, Son H Y, Kim K, Jin H, Kim K.

HBM (high bandwidth memory) DRAM technology and

architecture. In Proc. the 2017 IEEE International Memo-

ry Workshop (IMW), May 2017, pp.1–4. DOI: 10.1109/

IMW.2017.7939084.

[1]

 Hadidi R, Asgari B, Mudassar B A, Mukhopadhyay S,

Yalamanchili S, Kim H. Demystifying the characteristics

of 3D-stacked memories: A case study for hybrid memory

cube. In Proc. the 2017 IEEE International Symposium

on Workload Characterization (IISWC), Oct. 2017,

pp.66–75. DOI: 10.1109/IISWC.2017.8167757.

[2]

 Shahab A, Zhu M, Margaritov A, Grot B. Farewell my

shared LLC! A case for private die-stacked DRAM caches

for servers. In Proc. the 51st Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO), Oct.

2018, pp.559–572. DOI: 10.1109/MICRO.2018.00052.

[3]

 Volos S, Jevdjic D, Falsafi B, Grot B. Fat caches for

scale-out servers. IEEE Micro, 2017, 37(2): 90–103. DOI:

10.1109/MM.2017.32.

[4]

 Nassif N, Munch A O, Molnar C L, Pasdast G, Lyer S V,

Yang Z, Mendoza O, Huddart M, Venkataraman S, Kan-

dula S, Marom R, Kern A M, Bowhill B, Mulvihill D R,

Nimmagadda S, Kalidindi V, Krause J, Haq M M, Shar-

ma R, Duda K. Sapphire rapids: The next-generation in-

tel Xeon scalable processor. In Proc. the 17th IEEE Inter-

national Solid-State Circuits Conference (ISSCC), Feb.

2022, pp.44–46. DOI: 10.1109/ISSCC42614.2022.9731107.

[5]

 Zahran M. The future of high-performance computing. In

Proc. the 17th International Computer Engineering Con-

ference (ICENCO), Dec. 2021, pp.129–134. DOI: 10.1109/

ICENCO49852.2021.9698918.

[6]

 Loh G H, Hill M D. Efficiently enabling conventional

block sizes for very large die-stacked DRAM caches. In

Proc. the 44th Annual IEEE/ACM International Sympo-

sium on Microarchitecture, Dec. 2011, pp.454–464. DOI:

10.1145/2155620.2155673.

[7]

Ye Chi et al.: P3DC: Reducing DRAM Cache Hit Latency by Hybrid Mappings 1357

https://doi.org/10.1109/IMW.2017.7939084
https://doi.org/10.1109/IMW.2017.7939084
https://doi.org/10.1109/IISWC.2017.8167757
https://doi.org/10.1109/MICRO.2018.00052
https://doi.org/10.1109/MM.2017.32
https://doi.org/10.1109/ISSCC42614.2022.9731107
https://doi.org/10.1109/ICENCO49852.2021.9698918
https://doi.org/10.1109/ICENCO49852.2021.9698918
https://doi.org/10.1145/2155620.2155673

 Loh G, Hill M D. Supporting very large DRAM caches

with compound-access scheduling and MissMap. IEEE

Micro, 2012, 32(3): 70–78. DOI: 10.1109/MM.2012.25.

[8]

 Qureshi M K, Loh G H. Fundamental latency trade-off in

architecting dram caches: Outperforming impractical

SRAM-tags with a simple and practical design. In Proc.

the 45th Annual IEEE/ACM International Symposium on

Microarchitecture, Dec. 2012, pp.235–246. DOI: 10.1109/

MICRO.2012.30.

[9]

 Jevdjic D, Volos S, Falsafi B. Die-stacked DRAM caches

for servers: Hit ratio, latency, or bandwidth? Have it all

with footprint cache. ACM SIGARCH Computer Archi-

tecture News, 2013, 41(3): 404–415. DOI: 10.1145/2508148.

2485957.

[10]

 Shin D, Jang H, Oh K, Lee J W. An energy-efficient

dram cache architecture for mobile platforms with PCM-

based main memory. ACM Trans. Embedded Computing

Systems (TECS), 2022, 21(1): 1–22. DOI: 10.1145/

3451995.

[11]

 Zhang Q, Sui X, Hou R, Zhang L. Line-coalescing DRAM

cache. Sustainable Computing: Informatics and Systems,

2021, 29: 100449. DOI: 10.1016/j.suscom.2020.100449.

[12]

 Zhou F, Wu S, Yue J, Jin H, Shen J. Object Fingerprint

Cache for Heterogeneous Memory System. IEEE Transac-

tions on Computers, 2023, 72(9): 2496–2507. DOI: 10.

1109/TC.2023.3251852.

[13]

 Chi Y, Yue J, Liao X, Liu H, Jin H. A hybrid memory ar-

chitecture supporting fine-grained data migration. Fron-

tiers of Computer Science, 2024, 18(2): 182103. DOI: 10.

1007/s11704-023-2675-y.

[14]

 Hameed F, Bauer L, Henkel J. Architecting on-chip

DRAM cache for simultaneous miss rate and latency re-

duction. IEEE Trans. Computer-Aided Design of Inte-

grated Circuits and Systems, 2016, 35(4): 651–664. DOI:

10.1109/TCAD.2015.2488488.

[15]

 Hameed F, Bauer L, Henkel J. Simultaneously optimizing

DRAM cache hit latency and miss rate via novel set map-

ping policies. In Proc. the 16th International Conference

on Compilers, Architecture and Synthesis for Embedded

Systems (CASES), Sept. 29–Oct. 4, 2013. DOI: 10.1109/

CASES.2013.6662515.

[16]

 Behnam P, Bojnordi M N. Adaptively reduced DRAM

caching for energy-efficient high bandwidth memory.

IEEE Trans. Computers, 2022, 71(10): 2675–2686. DOI:

10.1109/TC.2022.3140897.

[17]

 Kumar S, Zhao H, Shriraman A, Matthews E, Dwarkadas

S, Shannon L. Amoeba-cache: Adaptive blocks for elimi-

nating waste in the memory hierarchy. In Proc. the 45th

Annual IEEE/ACM International Symposium on Mi-

croarchitecture (MICRO), Dec. 2012, pp.376–388. DOI:

10.1109/MICRO.2012.42.

[18]

 Huang C C, Nagarajan V. ATCache: Reducing DRAM

cache latency via a small SRAM tag cache. In Proc. the

[19]

23rd International Conference on Parallel Architectures

and Compilation (PACT), Aug. 2014, pp.51–60. DOI: 10.

1145/2628071.2628089.

 Hameed F, Bauer L, Henkel J. Reducing latency in an

SRAM/DRAM cache hierarchy via a novel tag-cache ar-

chitecture. In Proc. the 51st Annual Design Automation

Conference (DAC), Jun. 2014. DOI: 10.1145/2593069.

2593197.

[20]

 Chou C, Jaleel A, Qureshi M K. BEAR: Techniques for

mitigating bandwidth bloat in gigascale DRAM caches.

ACM SIGARCH Computer Architecture News, 2015,

43(3S): 198–210. DOI: 10.1145/2872887.2750387.

[21]

 Hameed F, Khan A A, Castrillon J. Improving the perfor-

mance of block-based DRAM caches via tag-data decou-

pling. IEEE Trans. Computers, 2021, 70(11): 1914–1927.

DOI: 10.1109/TC.2020.3029615.

[22]

 Kawano M, Wang X Y, Ren Q, Loh W L, Rao B C, Chui

K J. One-step TSV process development for 4-layer wafer

stacked DRAM. In Proc. the 71st IEEE Electronic Com-

ponents and Technology Conference (ECTC), Jun. 1–Jul.

4, 2021, pp.673–679. DOI: 10.1109/ECTC32696.2021.

00117.

[23]

 Jiang X, Zuo F, Wang S, Zhou X, Wang Y, Liu Q, Ren

Q, Liu M. A 1596-GB/s 48-Gb stacked embedded DRAM

384-core SoC with hybrid bonding integration. IEEE Sol-

id-State Circuits Letters, 2022, 5: 110–113. DOI: 10.1109/

LSSC.2022.3171862.

[24]

 Bose B, Thakkar I. Characterization and mitigation of

electromigration effects in TSV-based power delivery net-

work enabled 3D-stacked DRAMs. In Proc. the 31st

Great Lakes Symposium on VLSI, Jun. 2021, pp.101–107.

DOI: 10.1145/3453688.3461503.

[25]

 Agarwalla B, Das S, Sahu N. Process variation aware

DRAM-Cache resizing. Journal of Systems Architecture,

2022, 123: 102364. DOI: 10.1016/j.sysarc.2021.102364.

[26]

 Cheng W, Cai R, Zeng L, Feng D, Brinkmann A, Wang

Y. IMCI: An efficient fingerprint retrieval approach based

on 3D stacked memory. Science China Information Sci-

ences, 2020, 63: 179101. DOI: 10.1007/s11432-019-2672-5.

[27]

 Gulur N, Mehendale M, Manikantan R, Govindarajan R.

Bi-modal DRAM cache: Improving hit rate, hit latency

and bandwidth. In Proc. the 47th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture (MICRO),

Dec. 2014, pp.38–50. DOI: 10.1109/MICRO.2014.36.

[28]

 Jiang S, Chen F, Zhang X. CLOCK-Pro: An effective im-

provement of the CLOCK replacement. In Proc. the 2005

Annual Conference on USENIX Annual Technical Confer-

ence, Apr. 2005.

[29]

 Janapsatya A, Ignjatović A, Peddersen J, Parameswaran

S. Dueling CLOCK: Adaptive cache replacement policy

based on the CLOCK algorithm. In Proc. the 2010 De-

sign, Automation & Test in Europe Conference & Exhibi-

tion (DATE 2010), Mar. 2010, pp.920–925. DOI: 10.1109/

[30]

1358 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

https://doi.org/10.1109/MM.2012.25
https://doi.org/10.1109/MICRO.2012.30
https://doi.org/10.1109/MICRO.2012.30
https://doi.org/10.1145/2508148.2485957
https://doi.org/10.1145/2508148.2485957
https://doi.org/10.1145/3451995
https://doi.org/10.1145/3451995
https://doi.org/10.1016/j.suscom.2020.100449
https://doi.org/10.1109/TC.2023.3251852
https://doi.org/10.1109/TC.2023.3251852
https://doi.org/10.1007/s11704-023-2675-y
https://doi.org/10.1007/s11704-023-2675-y
https://doi.org/10.1007/s11704-023-2675-y
https://doi.org/10.1007/s11704-023-2675-y
https://doi.org/10.1007/s11704-023-2675-y
https://doi.org/10.1007/s11704-023-2675-y
https://doi.org/10.1007/s11704-023-2675-y
https://doi.org/10.1007/s11704-023-2675-y
https://doi.org/10.1109/TCAD.2015.2488488
https://doi.org/10.1109/CASES.2013.6662515
https://doi.org/10.1109/CASES.2013.6662515
https://doi.org/10.1109/TC.2022.3140897
https://doi.org/10.1109/MICRO.2012.42
https://doi.org/10.1145/2628071.2628089
https://doi.org/10.1145/2628071.2628089
https://doi.org/10.1145/2593069.2593197
https://doi.org/10.1145/2593069.2593197
https://doi.org/10.1145/2872887.2750387
https://doi.org/10.1109/TC.2020.3029615
https://doi.org/10.1109/ECTC32696.2021.00117
https://doi.org/10.1109/ECTC32696.2021.00117
https://doi.org/10.1109/LSSC.2022.3171862
https://doi.org/10.1109/LSSC.2022.3171862
https://doi.org/10.1145/3453688.3461503
https://doi.org/10.1016/j.sysarc.2021.102364
https://doi.org/10.1007/s11432-019-2672-5
https://doi.org/10.1007/s11432-019-2672-5
https://doi.org/10.1007/s11432-019-2672-5
https://doi.org/10.1007/s11432-019-2672-5
https://doi.org/10.1007/s11432-019-2672-5
https://doi.org/10.1007/s11432-019-2672-5
https://doi.org/10.1007/s11432-019-2672-5
https://doi.org/10.1109/MICRO.2014.36
https://doi.org/10.1109/DATE.2010.5456920

DATE.2010.5456920.

 Bansal S, Modha D S. CAR: Clock with adaptive replace-

ment. In Proc. the 3rd USENIX Conference on File and

Storage Technologies (FAST), Mar. 2004, pp.187–200.

[31]

 Li C. CLOCK-pro+: Improving CLOCK-pro cache re-

placement with utility-driven adaptation. In Proc. the

12th ACM International Conference on Systems and Stor-

age (SYSTOR), May 2019, pp.1–7. DOI: 10.1145/

3319647.3325838.

[32]

 Binkert N, Beckmann B, Black G, Reinhardt S K, Saidi

A, Basu A, Hestness J, Hower D R, Krishna T, Sardashti

S, Sen R, Sewell K, Shoaib M, Vaish N, Hill M D, Wood

D A. The gem5 simulator. ACM SIGARCH Computer

Architecture News, 2011, 39(2): 1–7. DOI: 10.1145/2024716.

2024718.

[33]

 Poremba M, Xie Y. NVMain: An architectural-level main

memory simulator for emerging non-volatile memories. In

Proc. the 2012 IEEE Computer Society Annual Sympo-

sium on VLSI (ISVLSI), Aug. 2012, pp.392–397. DOI: 10.

1109/ISVLSI.2012.82.

[34]

 Jevdjic D, Loh G H, Kaynak C, Falsafi B. Unison cache:

A scalable and effective die-stacked DRAM cache. In

Proc. the 47th Annual IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO), Dec. 2014,

pp.25–37. DOI: 10.1109/MICRO.2014.51.

[35]

 Chou C C, Jaleel A, Qureshi M K. CAMEO: A two-level

memory organization with capacity of main memory and

flexibility of hardware-managed cache. In Proc. the 47th

Annual IEEE/ACM International Symposium on Mi-

croarchitecture (MICRO), Dec. 2014, pp.1–12. DOI: 10.

1109/MICRO.2014.63.

[36]

 Sim J, Loh G H, Kim H, OConnor M, Thottethodi M. A

mostly-clean DRAM cache for effective hit speculation

and self-balancing dispatch. In Proc. the 45th Annual

IEEE/ACM International Symposium on Microarchitec-

ture (MICRO), Dec. 2012, pp.247–257. DOI: 10.1109/MI-

CRO.2012.31.

[37]

 Young V, Chishti Z A, Qureshi M K. TicToc: Enabling

bandwidth-efficient DRAM caching for both hits and

misses in hybrid memory systems. In Proc. the 37th IEEE

International Conference on Computer Design (ICCD),

Nov. 2019, pp.341–349. DOI: 10.1109/ICCD46524.2019.

00055.

[38]

 Zhang M, Kim J G, Yoon S K, Kim S D. Dynamic recog-

nition prefetch engine for DRAM-PCM hybrid main

memory. The Journal of Supercomputing, 2022, 78(2):

1885–1902. DOI: 10.1007/s11227-021-03948-5.

[39]

 Choi S G, Kim J G, Kim S D. Adaptive granularity based

last-level cache prefetching method with eDRAM prefetch

buffer for graph processing applications. Applied Sciences,

2021, 11(3): 991. DOI: 10.3390/app11030991.

[40]

 Kilic O O, Tallent N R, Friese R D. Rapid memory foot-

print access diagnostics. In Proc. the 2020 IEEE Interna-

tional Symposium on Performance Analysis of Systems

and Software (ISPASS), Aug. 2020, pp.273–284. DOI: 10.

[41]

1109/ISPASS48437.2020.00047.

 Oh Y S, Chung E Y. Energy-efficient shared cache using

way prediction based on way access dominance detection.

IEEE Access, 2021, 9: 155048–155057. DOI: 10.1109/AC-

CESS.2021.3126739.

[42]

 Jang H, Lee Y, Kim J, Kim Y, Kim J, Jeong J, Lee J W.

Efficient footprint caching for Tagless DRAM Caches. In

Proc. the 2016 IEEE International Symposium on High

Performance Computer Architecture (HPCA), Mar. 2016,

pp.237–248. DOI: 10.1109/HPCA.2016.7446068.

[43]

 Tsukada S, Takayashiki H, Sato M, Komatsu K, Kobayashi

H. A metadata prefetching mechanism for hybrid memory

architectures. IEICE Trans. Electronics, 2022, E105.C(6):

232–243. DOI: 10.1587/transele.2021LHP0004.

[44]

 Young V, Chou C, Jaleel A, Qureshi M. ACCORD: En-

abling associativity for gigascale DRAM caches by coordi-

nating way-install and way-prediction. In Proc. the 45th

ACM/IEEE Annual International Symposium on Com-

puter Architecture (ISCA), Jun. 2018, pp.328–339. DOI:

10.1109/ISCA.2018.00036.

[45]

 Chen P, Yue J, Liao X, Jin H. Trade-off between hit rate

and hit latency for optimizing DRAM cache. IEEE Trans.

Emerging Topics in Computing, 2021, 9(1): 55–64. DOI:

10.1109/TETC.2018.2800721.

[46]

 Vasilakis E, Papaefstathiou V, Trancoso P, Sourdis I. De-

coupled fused cache: Fusing a decoupled LLC with a

DRAM cache. ACM Trans. Architecture and Code Opti-

mization (TACO), 2018, 15(4): 65. DOI: 10.1145/3293447.

[47]

Ye Chi received his Ph.D. degree in

computer science and technology from

Huazhong University of Science and

Technology (HUST), Wuhan, in 2023.

He is now working at the School of

Big Data and Internet, Shenzhen

Technology University (SZTU), Shen-

zhen. His search interests are in the areas of computer

architecture, die-stacked DRAM, in-memory computing,

hybrid memory system architecture and memory pool-

ing.

Ren-Tong Guo received his B.E.

degree in software engineering from

Xi'an University of Science and Tech-

nology, Xi'an, in 2011, and his Ph.D.

degree in computer science and engi-

neering from Huazhong University of

Science and Technology (HUST),

Wuhan, in 2017. His research interests are in the areas

of caching systems and distributed systems.

Ye Chi et al.: P3DC: Reducing DRAM Cache Hit Latency by Hybrid Mappings 1359

https://doi.org/10.1109/DATE.2010.5456920
https://doi.org/10.1145/3319647.3325838
https://doi.org/10.1145/3319647.3325838
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/ISVLSI.2012.82
https://doi.org/10.1109/ISVLSI.2012.82
https://doi.org/10.1109/MICRO.2014.51
https://doi.org/10.1109/MICRO.2014.63
https://doi.org/10.1109/MICRO.2014.63
https://doi.org/10.1109/MICRO.2012.31
https://doi.org/10.1109/MICRO.2012.31
https://doi.org/10.1109/MICRO.2012.31
https://doi.org/10.1109/ICCD46524.2019.00055
https://doi.org/10.1109/ICCD46524.2019.00055
https://doi.org/10.1007/s11227-021-03948-5
https://doi.org/10.1007/s11227-021-03948-5
https://doi.org/10.1007/s11227-021-03948-5
https://doi.org/10.1007/s11227-021-03948-5
https://doi.org/10.1007/s11227-021-03948-5
https://doi.org/10.1007/s11227-021-03948-5
https://doi.org/10.1007/s11227-021-03948-5
https://doi.org/10.3390/app11030991
https://doi.org/10.1109/ISPASS48437.2020.00047
https://doi.org/10.1109/ISPASS48437.2020.00047
https://doi.org/10.1109/ACCESS.2021.3126739
https://doi.org/10.1109/ACCESS.2021.3126739
https://doi.org/10.1109/ACCESS.2021.3126739
https://doi.org/10.1109/HPCA.2016.7446068
https://doi.org/10.1587/transele.2021LHP0004
https://doi.org/10.1109/ISCA.2018.00036
https://doi.org/10.1109/TETC.2018.2800721
https://doi.org/10.1145/3293447

Xiao-Fei Liao is a professor in the

School of Computer Science and Tech-

nology at Huazhong University of Sci-

ence and Technology (HUST),

Wuhan. He received his Ph.D. degree

in computer science and engineering

from HUST, Wuhan, in 2005. His re-

search interests are in the areas of system software, P2P

system, cluster computing, and streaming services.

Hai-Kun Liu received his Ph.D. de-

gree in computer science and technolo-

gy from Huazhong University of Sci-

ence and Technology (HUST),

Wuhan, in 2012. He is a professor at

the School of Computer Science and

Technology, HUST, Wuhan. His cur-

rent research interests include in-memory computing,

virtualization technologies, cloud computing, and dis-

tributed systems.

Jianhui Yue received his Ph.D. de-

gree from the University of Maine,

Orono, in 2012. He is an assistant pro-

fessor of the Computer Science De-

partment, Michigan Technological

University, Michigan. His research in-

terests include computer architecture

and systems.

1360 J. Comput. Sci. & Technol., Nov. 2024, Vol.39, No.6

	1 Introduction
	2 Background
	2.1 DRAM Cache Organizations
	2.2 Access Latency Breakdown

	3 Motivation
	3.1 Hit Latency Reduction from Leading Blocks
	3.2 Hit Rate Improvement from Following Blocks
	3.3 Block Miss Penalty
	3.4 Block Type Stability

	4 P3DC Design
	4.1 Overview
	4.2 Mapping Policy
	4.3 Replacement Policy
	4.4 Managing Block Type Transformation
	4.5 Overhead

	5 Experimental Methodology
	5.1 Cache Organizations
	5.2 Workloads

	6 Experimental Results
	6.1 Performance
	6.2 DRAM Cache Hit Rate
	6.3 Impact of Tag Fetching Modes on Hit Latency
	6.4 Impact of Hit Rate Improvement on Queuing Latency of Off-Chip DRAM
	6.5 Bandwidth Consumption
	6.6 High Frequency Type Variation Filter

	7 Related Work
	7.1 Set-Associative and Direct-Mapped Caches
	7.2 Other Cache Optimization Technologies

	8 Conclusions
	Conflict of Interest
	References

