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Abstract    Compared with convolutional neural network (CNN), Transformer can obtain global receptive field features

more effectively and has recently achieved great success in natural language processing and computer vision. Due to the

particularity of steganography, however, almost all existing steganalytic networks just employ CNN with local receptive

fields to detect embedding artifacts. In this paper, we propose a novel convolutional Transformer network for color image

steganalysis. Specifically, we firstly obtain various image residuals for each color channel of an input image in the pre-pro-

cessing module. To capture more comprehensive steganalytic features, the truncated residuals after channel concatenation

will pass through a feature extraction module composed of a CNN group and a Transformer group. The CNN group aims

to extract local receptive fields features, while the Transformer group with multi-head self-attention as the key tries to ex-

tract global steganalytic features. Finally, we employ a global covariance pooling (GCP) and two fully-connected (FC) lay-

ers with dropout for classification. Extensive comparative experiments demonstrate that the proposed method can signifi-

cantly improve the detection performances in color image steganalysis and achieve state-of-the-art results. Although the

proposed method is originally designed for color images, it can also obtain competitive results for grayscale images com-

pared with the current best detector. In addition, we provide numerous ablation studies to verify the rationality of the

proposed network architecture.
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1    Introduction

Image  steganography aims to  embed secret  infor-

mation  into  digital  cover  images  in  an  imperceptible

manner. On the contrary, steganalysis tries to detect

those stego images with hidden messages according to

the  embedding  artifacts  left  by  steganography.  Like

the cat-and-mouse game, steganography and steganal-

ysis  mutually  promote  each  other.  Since  most  mod-

ern  steganography  methods  (e.g.,  [1–3])  are  mainly

based on image contents that are difficulty to model,

image steganalysis faces great challenges.

Image  steganalysis  methods  include  two  cate-

gories,  namely,  traditional  methods  based  on  hand-

crafted  features[4–7] and  modern  methods  based  on

deep  learning.  Taking  traditional  methods  for  in-

stance, Fridrich and Kodovsky[4] proposed a rich mod-

el method called SRM to construct image noise com-
 
 

Regular Paper

The  work  was  supported  in  part  by  the  National  Natural  Science  Foundation  of  China  under  Grant  Nos.  61972430  and
U19B2022.

*Corresponding Author

Wei KK, Luo WQ, Tan SQ et al. CTNet: A convolutional Transformer network for color image steganalysis. JOURNAL

OF COMPUTER SCIENCE AND TECHNOLOGY, 40(2): 413−427, Mar. 2025. DOI: 10.1007/s11390-023-3006-3, CSTR:

32374.14.s11390-023-3006-3

©Institute of Computing Technology, Chinese Academy of Sciences 2025

https://doi.org/10.1007/s11390-023-3006-3
https://doi.org/10.1007/s11390-023-3006-3
https://doi.org/10.1007/s11390-023-3006-3
https://doi.org/10.1007/s11390-023-3006-3
https://doi.org/10.1007/s11390-023-3006-3
https://doi.org/10.1007/s11390-023-3006-3
https://doi.org/10.1007/s11390-023-3006-3
https://cstr.cn/32374.14.s11390-023-3006-3
https://cstr.cn/32374.14.s11390-023-3006-3
https://cstr.cn/32374.14.s11390-023-3006-3
https://cstr.cn/32374.14.s11390-023-3006-3
https://cstr.cn/32374.14.s11390-023-3006-3
https://cstr.cn/32374.14.s11390-023-3006-3
https://cstr.cn/32374.14.s11390-023-3006-3


ponents  by  considering  many  qualitatively  different

relationships  between  pixels.  Denemark et  al.[5] pro-

posed a method called maxSRM based on SRM that

utilizes  the  approximate  knowledge  of  the  selection

channel.  Tang et al.[6] proposed an adaptive stegana-

lytic method based on embedding probabilities of pix-

els. In the past few years, many modern convolution-

al neural network (CNN) based steganalytic methods

(e.g.,  [8–13]) have better performance than tradition-

al  methods  in  terms  of  detection  accuracy.  For  in-

stance, Ye et al.[8] presented a CNN-based framework

called  YeNet  that  well  optimizes  key  steps  in  ste-

ganalysis,  and  this  method  achieved  superior  perfor-

mance  compared  with  SRM[4] and  maxSRM[5].

Boroumand et al.[9] proposed a deep residual network

called  SRNet  for  steganalysis,  which  provides  better

detection  results  for  both  spatial  and  JPEG  image

steganography. Deng et al.[10] presented a fast and ef-

fective  model  by  designing  four  CNN groups  and in-

troducing  global  covariance  pooling.  Zhang et  al.[11]

proposed an efficient framework called ZhuNet based

on  depth-wise  separable  convolutions  and  multi-level

pooling.

The  above  mentioned  methods  are  designed  for

grayscale  images,  and  they  cannot  effectively  extend

to  detect  those  color  steganographic  methods[14–17]

emerged in recent years. Until now, there are several

traditional  steganalytic  methods  (e.g.,  [18–21])  that

have  been  presented  for  color  images.  For  instance,

Goljan et  al.[18] presented an extension of  the SRM[4]

called  CRMQ1  for  steganalysis  of  color  images,  and

the  proposed color  rich  model  features  are  extremely

powerful  for  detecting  color  images  steganography.

Abdulrahman et al.[19] proposed a steganalysis method

based on the RGB channel feature correlation and an

ensemble  classifier,  which  achieved  better  perfor-

mance  compared  with  CRMQ1[18].  Recently,  several

CNN-based steganalyzers have been proposed for col-

or images, and have achieved better performance than

traditional  methods.  For  instance,  Zeng et  al.[22] pre-

sented  a  wide-and-shallow  steganalysis  model  called

WISERNet,  which  achieved  better  detection  accura-

cy  compared  with  some  traditional  methods.  Butora

et al.[23] investigated the performance of a pretraining

CNN  on  ImageNet  when  it  is  applied  to  image  ste-

ganalysis.  Although  the  pre-trained  EfficientNet  can

achieve satisfactory results for JPEG images, it is not

so effective as SRNet in detecting spatial domain im-

ages.  Wei et  al.[24] presented  a  steganalytic  network

called  UCNet  based  on  color  channel  representation,

which achieves the current best results in the spatial

domain.

±1

Different  from  CNN,  Transformer[25] employs  the

multi-head self-attention (MHSA) mechanism to cap-

ture  global  perception  field  information  effectively.

Many  recent  literatures  show  that  Transformer  out-

performs  CNN  on  natural  language  processing  (e.g.,

[26])  and  computer  vision  (e.g.,  ViT[27] and  swin

Transformer[28]).  Unlike  typical  classification  tasks  in

computer  vision,  the  two  categories  (i.e.,  cover  and

stego)  to  be  detected in  steganalysis  are  visually  im-

perceptible  since  recent  steganography  modifications

are  content  adaptive  and  are  relatively  minor  (i.e.,

).  Most  steganalytic  methods  (e.g.,  SRM-based

methods)  usually  extract  statistical  artifacts  of  local

regions  within  an  image.  To  the  best  of  our  knowl-

edge,  only  little  steganalytic  work[29] using  Trans-

former  has  been proposed until  now.  In  [29],  the  de-

signed  method  directly  combines  two  existing  net-

work  architectures,  that  is,  ResNet[30] and  vision

Transformer (ViT)[27],  and achieves  similar  results  to

SRNet for grayscale image steganalysis.

Many existing steganalytic methods focus primari-

ly on grayscale images, thereby limiting their applica-

bility given the proliferation of color images, especial-

ly  in  the  realm of  social  media.  In  addition,  existing

color image steganalytic methods often rely on CNN-

based  structures.  While  these  methods  are  generally

effective,  they  tend not  to  fully  exploit  the  potential

of  steganalytic  features  that  could  enhance  detection

performance.  This  underutilization  underscores  the

need  for  a  steganalyzer  capable  of  extracting  more

comprehensive steganalytic features for color images.

In this paper, we propose a novel steganalytic net-

work  called  CTNet  for  color  image  steganalysis.  We

carefully  design  the  three  modules  (i.e.,  pre-process-

ing,  feature  extraction,  and  classification)  in  CTNet,

and provide extensive experiments to demonstrate the

superiority of the proposed method. The major contri-

butions of this paper are as follows.

● We develop a unique two-tiered feature extrac-

tion  module  composed  of  a  CNN group,  designed  to

effectively capture local  steganalytic  features,  and an

efficient  Transformer  group,  aiming  at  extracting

global  steganalytic  features.  This  combination  allows

us to harness the strengths of both CNN and Trans-

former in feature extraction.

● In the classification module, we deviate from the

conventional  usage  of  global  average  pooling  (GAP)

and  adopted  global  covariance  pooling  (GCP).  The
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proposed method has proven more efficient in enhanc-

ing  the  classification  capability  of  the  extracted  ste-

ganalytic  features.  Furthermore,  we  incorporate  two

fully-connected  (FC)  layers  with  dropout  to  improve

the robustness of the proposed model.

● We  provide  extensive  comparative  results  to

show that the proposed method can achieve the state-

of-the-art results for color image steganalysis, and al-

so achieve competitive results for grayscale images si-

multaneously. Furthermore, we give ablation and ad-

ditional  experiments  to verify  the rationality and ro-

bustness of the proposed method.

The rest of the paper is organized as follows. Sec-

tion 2 describes  the  proposed  method  in  detail. Sec-

tion 3 presents  some  comparative  experimental  re-

sults  and  ablation  studies,  etc.  Finally,  the  conclu-

sions and future work are given in Section 4.
 

2    Proposed Method

As illustrated in Fig.1, the network architecture of

the proposed method includes three modules, that is,

pre-processing,  feature  extraction,  and  classification,

which will be described in the three following subsec-

tions.  Besides,  we  will  give  a  brief  summary  of  the

similarities  and  differences  between  the  proposed

method and some related ones.
 

2.1    Pre-Processing Module

The pre-processing module aims to reduce the in-

fluence  of  the  image  content  features  on  the  detec-

tion  of  steganographic  modifications  signals.  To  this

end,  this  module  includes  three  steps,  i.e.,  channel

separation, high-pass filters and truncated linear unit

operation, and channel feature map concatenation. 

2.1.1    Channel Separation

C ×
C1 C2 C3

Let  be a color input image of size M  N, and

let , , and  be the pixel maps① in the red (R),

green  (G),  and  blue  (B)  channels  of C,  respectively.

Note  that  color  image  steganography  would  modify

the  three  color  channels  simultaneously  during  mes-

sage embedding. Thus, some inherent statistical char-

acteristics among color channels within a cover image

would be changed inevitably. To capture this change

more  effectively,  we first  separate  the  RGB channels

of the input color image, and then perform the subse-

quent analysis on each color channel separately. 

2.1.2    High-Pass  Filters  and  Truncated  Linear

Unit Operation

In  general,  the  steganographic  modifications  are

relatively  weaker  than  image  contents.  Therefore,
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Fig.1.  Framework of the proposed CTNet for steganalysis. For each convolutional layer, “Conv  ” denotes the layer with
the filter size  for  input channels and  output channels.

Kang-Kang Wei et al.: CTNet: A Convolutional Transformer Network for Color Image Steganalysis 415

C C1 C2 C3

C1 C2 C3

 

①Note that if the input is a grayscale image , we then duplicate it into three identical channels, that is, = = =C. These
three channels ( , , ), are then fed into the pre-processing module of our proposed method.



×

some  high-pass  filters  (HPFs)  are  usually  applied  to

transform  the  input  image  to  the  residual  domains.

Most  existing  CNN-based  steganalyzers  also  employ

these HPFs to suppress the image content in the ear-

ly stages, and show that this operation can effective-

ly  facilitate  the  final  detection  performance.  Thus,

these  HPFs  are  also  used  in  the  proposed  method.

Based on our extensive experiments,  we use 62 fixed

HPFs  of  size  5 5  consisting  of  30  SRM filters  from

[4] and 32 Gabor filters from [31].

Note  that  the  use  of  fixed  HPFs  can  make  the

network  focus  on  the  steganographic  artifact  rather

than the image content, which helps the network con-

verge  faster[8, 11].  For  the  residuals  obtained  after

HPFs,  the  truncated  linear  unit  (TLU)  is  then  used

to  limit  their  dynamic  ranges  to  obtain  more  valu-

able steganalytic features. 

2.1.3    Channel Feature Map Concatenation

62× 3

For  various  truncated  image  residuals,  we  then

perform channel  concatenation  operation  rather  than

channel  summation  which  is  widely  used  in  existing

CNN-based steganalyzers[24, 32, 33]. In this way, we can

preserve  the  steganographic  artifacts  in  different

channels  well.  Thus,  the  feature  maps  of  the  three

channels  are  concatenated  to  186  ( )  feature

maps, which are input to the subsequent modules.

Note  that  several  settings  in  the  pre-processing

module may affect the detection accuracy of the pro-

posed  method,  such  as  the  different  HPFs  and  the

truncation threshold T. These settings would be con-

sidered in our ablation studies in Subsection 3.2. 

2.2    Feature Extraction Module

× ×

The proposed feature extraction module is mainly

used  to  extract  sufficient  steganalytic  features  from

the  concatenation  feature  map  (i.e.,  a  feature  map

with  size M N 186)  generated  by  the  pre-process-

ing  module.  Here,  in  the  feature  extraction  module,

the CNN group is set in the early stage for extracting

local steganalytic features, and the Transformer group

is placed in the later stage for further extracting glob-

al  steganalytic  features.  As  shown  in Fig.1,  the  fea-

ture extraction module consists of a CNN group and a

Transformer  group,  and  their  structures  are  as  fol-

lows. 

2.2.1    CNN Group

In general,  the  convolutional  layer  performs filter

sliding  on  local  regions  to  extract  local  features.

Hence,  the  proposed  CNN  group  is  set  in  the  early

stage of the feature extraction module to extract the

local  steganalytic  information  of  the  input  residual

map.  The  CNN  group  consists  of  three  different

blocks, that is, Blocks 1, 2, and 3.

×

×

● Block  1  contains  two  identical  cascade  layers,

each consisting of a 3 3 convolution, BN, and ReLU.

The  input/output  channels  of  the  first  and  second

cascade layers are (186, 64) and (64, 64), respectively,

and an average pooling layer with a 3 3 convolution

and the stride of 2 is appended after the second cas-

cade layer.

×

● Block  2  also  contains  two  cascade  layer  struc-

tures,  where  the  input/output  channels  of  each  cas-

cade layer  are  (64,  128) and (128,  128),  respectively,

and an average pooling layer with a 3 3 convolution

and the stride of 2 is appended after the second cas-

cade layer.

×

● Block 3 contains a cascade layer, where the in-

put/output channels are (128, 256). Then an average

pooling  layer  with  a  3 3  convolution  and  the  stride

of 2 is appended. 

2.2.2    Transformer Group

After  the  CNN  group,  we  use  a  Transformer

group to extract global steganalytic features due to its

huge receptive fields. In the proposed method, we do

not  use  the  previous  split-patch  and  patch  embed-

ding operations in vision Transformer[27, 29],  and only

use the Transformer group with a multi-head self-at-

tention (MHSA) as the key to extract global stegana-

lytic features. In this way, the proposed method needs

less training time and memory requirements.

×

OutCNN
×

OutCNN

T ′
ℓ

As  illustrated  in Fig.1,  the  Transformer  group

consists  of  a  layer  normalization  (LN),  an  MHSA,  a

multi-layer  perception  (MLP),  and  a  1 1  convolu-

tional layer. At the beginning, we reshape the output

 (whose size can be denoted as (b, n, h, w)) of

the CNN group into a vector of the form (b, n, h w)

as the input to the Transformer group, where b is the

batch size, n is the number of channels, and h and w
are the height and width of the feature maps, respec-

tively. The input  first passes through the LN

layer to normalize the activation values of each layer

to obtain the output X, and then the MHSA layer im-

mediately  can  combine  the  information  learned  from

the  different  head  sections,  while  the  starting  input

has  a  residual  connection  after  these  two  layers  get

the  output .  This  process  can  be  expressed  as  fol-

lows:
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T ′
ℓ = MHSA(LN(OutCNN)) +OutCNN.

ai ai

Wq Wk

Wv

qi ai

qi, 1

qi, 2 ki vi

ki, 1 ki, 2 vi, 1 vi, 2

{qi, 1, qi, 2} {ki, 1, ki, 2} {vi, 1, vi, 2}

The output of the MHSA is obtained by concate-

nating the outputs of the two heads after a self-atten-

tion  (SA)  operation.  As  shown  in Fig.2(a),  the  MH-

SA first multiplies the output X after the LN with a

matrix W to obtain , and then  is multiplied by

three different transformation matrices , , and

 to  obtain  three  different  matrices q (query), k
(key), and v (information to be extracted), respective-

ly. Then, the  generated by  is further multiplied

by  two  transformation  matrices  to  become  and

. Similarly, the  and  are further calculated to

obtain ,  and ,  respectively. Finally,

the , ,  and  are

calculated by SA, which can be expressed as:
 

SA(Q,K,V ) = softmax(QKT/
√
dk)V ,

where Q, K, and V are matrices consisting of q, k, and

v, respectively, and d is the length of the vector.
 
 

Linear

Dropout

GELU

Linear

Dropout

Head=2

q 

q k v

a

q  k  k  v  v 

X

(b)(a)

Fig.2.  Illustration of MHSA and MLP. (a) Diagram of MHSA
(e.g., head = 2). (b) Structure of MLP.
 

Tℓ

Then,  a  backbone  consisting  of  an  LN  layer  and

an  MLP  (i.e.,  it  consists  of  linear,  GELU,  and

dropout  layers,  and  the  structure  is  shown  in

Fig.2(b))  layer  is  immediately  followed  by  a  residual

connection. The output  can be expressed as:
 

Tℓ = MLP (LN(T ′
ℓ)) + T ′

ℓ .

Tℓ

×
Outtf

Finally,  is reshaped to the form (b, n, h, w) and

passes through a 1 1 convolutional layer with 256 in-

put and output channels to obtain the output  of

the Transformer group. It can be denoted as:
 

Outtf = Conv(reshape(Tℓ)).

Note  that  the  structure  of  the  feature  extraction

module and the parameters of the Transformer group

can  affect  the  performance  of  the  proposed  method.

Based  on  our  experimental  results  (referring  to Sub-

{1, 2, 4}
{1, 2, 2}

section 3.2.3),  the  structure  of  the  feature  extraction
module  is  the  CNN group  first  and  then  the  Trans-
former  group,  where  the  parameters {depth,  head,
mlp_head} in  the  Transformer  group  are 

and  for  the  color  images  and the  grayscale

images,  respectively.  In  addition,  the  details  of  the
configuration  of  each  module  in  the  proposed  frame-
work are shown in Table 1. 

2.3    Classification Module

In the classification module,  the output of  the fi-

nal layer is the classification probability predicted by

“cover” and “stego”.  First,  a  global  covariance  pool-

ing (GCP)[34] layer is used to convert the output fea-

ture map of the feature extraction module into a fea-

ture vector. Then, two fully-connected (FC) layers are

employed, where the second FC layer uses a softmax

function  to  distinguish  between  the  cover  and  the

stego  images.  Different  from  existing  steganalytic

methods, we add a dropout layer between the two FC

layers in order to enhance the generalization ability of

the  proposed  model.  Based  on  our  experiments,  we

find that different dropout rates can affect the perfor-

mances, referring to Subsection 3.2.5. 

2.4    Similarities and Differences with

Existing Steganalyzers

The major similarities and differences between the

proposed  method  and  some  related  ones  (i.e.,

YeNet[8],  SRNet[9],  CovNet[10],  ZhuNet[11],  the method

of  [29],  WISERNet[22],  and  UCNet[24])  are  illustrated

in Table 2. From Table 2, we obtain the following ob-

servations.

● For the pre-processing module, all filters in SR-

Net are randomly initialized and learned during train-

ing,  while  YeNet,  CovNet,  ZhuNet,  the  method  of

[29], and WISERNet employ 30 learned or fixed SRM

filters. The proposed method uses 62 fixed SRM+Ga-

bor filters and TLU to obtain the truncated residuals

as UCNet.

● For  the  feature  extraction  module,  all  stegana-

lyzers employ the CNN structure. Specifically, SRNet

uses  the  most  (i.e.,  22)  convolutional  layers,  while

WISERNet  uses  the  least  (i.e.,  3)  convolutional  lay-

ers.  The  method  of  [29]  is  a  combination  of  the

ResNet[30] and  ViT[27] structures.  The  proposed

method consists of a CNN with five convolutional lay-

ers  and  a  well  designed  Transformer  for  extracting

steganalytic features.
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● For  the  classification  module,  SRNet,  CovNet,

ZhuNet, WISERNet, and UCNet use pooling and FC

operation, while YeNet and the method of [29] adopt

an FC layer and an MLP head, respectively. The pro-

posed  method  uses  a  GCP  and  two  FC  layers,  and

there is a dropout layer between the two FC layers.

● For  application  scenarios,  SRNet  is  applied  to

grayscale  images  in  both the  spatial  domain and the

JPEG domain, while UCNet is for color images. WIS-

ERNet is designed for color images in the spatial do-

main, while other methods are applicable to grayscale

images.  To  the  best  of  our  knowledge,  the  proposed

model  is  the  only  steganalytic  network  that  is  valid

for both color images and grayscale images in the spa-

tial domain. 

3    Experimental Results

×
In  our  experiments, 20 000 color  images  of  size

256 256 are randomly selected from the ALASKA II

dataset②.  These  images  are  divided  into  three  non-

overlapping parts: 15 000 for training, 1 000 from vali-

dation  and  the  rest 4 000 for  testing.  Three  typical

color  embedding  schemes  (i.e.,  CMD-C[14],  ACMP[16],

and  GINA[17])  combined  with  two  steganographic

methods  (i.e.,  S-UNIWARD[35],  and  HILL[3])  at  0.2,

0.3,  and  0.4  bit  per  channel  (bpc),  respectively,  are

considered.  For  grayscale  images,  two  popular

 

Table  1.    Detailed Configuration of the Proposed Convolutional Transformer Steganalytic Framework

Module Name Input Kernel Size Output Size

Pre-processing HPFs × ×(5 5) 62 × ×(256 256) 62

TLU × ×(5 5) 62 × ×(256 256) 62

Concatenation × ×(5 5) 62 × ×(256 256) 186

Feature extraction CNN group B1 × ×(3 3) 186 × ×(256 256) 64

× ×(3 3) 64 × ×(256 256) 64

×AvgPool: (3 3), stride=2 × ×(128 128) 64

CNN group B2 × ×(3 3) 64 × ×(128 128) 128

× ×(3 3) 128 × ×(128 128) 128

×AvgPool: (3 3), stride=2 × ×(64 64) 128

CNN group B3 × ×(3 3) 128 × ×(64 64) 256

×AvgPool: (3 3), stride=2 × ×(32 32) 256

Transformer × ×LN: 256 (32 32) ×256 1 024

×MHSA: 256 1 024 ×256 1 024

×LN: 256 1 024 × ×256 1 024 4

× ×MLP: 256 1 024 4 ×256 1 024

× ×Conv: (1 1) 256 × ×(32 32) 256

Classification GCP × ×(32 32) 256 ×256 (256+1)/2

Fully-connected ×256 (256+1)/2 2 048

Dropout 2 048 2 048

Fully-connected 2 048 2

× ×Note:  The input kernel  size and output size are both denoted as (width height) depth,  where width and height are the width and
height of the feature map, respectively, and depth is the number of channels.

 

Table  2.    Similarities and Differences Between Existing Modern Steganalyzers and the Proposed Method

Steganzlyzer Pre-Processing Feature Extraction Classification Scenario

YeNet[8] 30 learned SRM CNN (10 layers) 1 FC Grayscale

SRNet[9] 64 learned random filters CNN (22 layers) GAP & 1 FC Grayscale

CovNet[10] 30 fixed SRM CNN (10 layers) GCP & 1 FC Grayscale

ZhuNet[11] 30 learned SRM CNN (6 layers) SPP & 2 FC Grayscale

Luo et al.[29] 30 learned SRM CNN (10 layers) & ViT MLP head Grayscale

WISERNet[22] 30 learned SRM CNN (3 layers) GAP & 4 FC Color

UCNet[24] 62 fixed SRM+Gabor CNN (11 layers) GAP & 1 FC Color

Proposed 62 fixed SRM+Gabor CNN (5 layers) & Transformer GCP & 2 FC Color & grayscale
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512× 512

×

databases (i.e., BOSSBase[36] and BOWS2③) are used,

and  each  database  includes 10 000 images  of  size

.  As  with  many  existing  methods  (e.g.,

[8–10]),  all  images  are  firstly  resampled  to  256 256

using  the “imresize” in  Matlab  with  default  setting.

The  training  set  includes 14 000 images  (4 000 are

from  BOSSBase,  and 10 000 are  from  BOWS2),  the

validation set  includes 1 000 images  from BOSSBase,

and the testing set includes 5 000 images from BOSS-

Base.  Three  steganographic  methods  (i.e.,  S-UNI-

WARD[35],  WOW[37],  and  HILL[3]) with  0.2,  0.3,  and

0.4  bit  per  pixel  (bpp),  respectively,  are  considered.

To achieve more convincing results,  we randomly di-

vide  the  dataset  three  times  and  report  the  average

results in the following experiments. Note that in the

tables  in  the  subsequent  subsections,  the  values

marked  with  an  asterisk  (*)  and  bolded  indicate  the

best  result  in  the  corresponding  case.  Moreover,  the

values  underlined  denote  the  second  best  results  in

the corresponding cases.

5× 10−4 L2

During the training stage, the SGD optimizer with

a momentum of 0.9 is used. In the convolutional lay-

ers,  the  filter  weights  are  initialized with the He ini-

tializer and   regularization. The batch size

is  32  (i.e.,  16  cover-stego  image  pairs).  The  initial

learning  rates  are  0.01  and 0.02  for  the  color  images

and the grayscale images, respectively. The training is

conducted for 200 epochs and the learning rate is di-

vided 80, 130, and 170, respectively, during the train-

ing,  and  the  best  validation  snapshot  in  the  last  30

epochs is taken as the result of training. Based on our

experiments Subsection 3.2.4,  for  the  lower  payloads

(i.e.,  0.3  and 0.2  bpc/bpp),  we employ training from

scratch and curriculum learning strategies for the col-

or images and the grayscale images, respectively. The

source codes for the proposed model are available on

GitHub④ so that readers can repeat the experimental

results easily. 

3.1    Comparative Studies with Related Meth-

ods

In  this  subsection,  we  compare  the  proposed

method with related methods for the color images and

the grayscale images separately.

● Evaluation on Color Images. One traditional de-

tector (i.e.,  CRMQ1[18]) and four modern CNN-based

detectors  (i.e.,  CovNet[10],  SRNet[9]⑤,  WISERNet[22],

and  UCNet[24])  are  considered. Tables 3, 4,  and 5

show the average detection results. From these tables,

we observe that the proposed method can achieve the

best  performances  in  all  cases.  Compared  with  the

current  best  detector  (i.e.,  UCNet),  we  can  achieve

2.85%,  1.94%,  and  4.03%  average  improvements  for
 

Table  3.    Detection Accuracy (%) for CTNet and Five Steganalytic Methods for Color Images Under the CMD-C Strategy

Steganalyzer CMD-C-SUNIWARD (bpc) CMD-C-HILL (bpc)

0.4 0.3 0.2 0.4 0.3 0.2

CRMQ1[18] 73.68 68.83 63.80 71.95 67.29 62.42

CovNet[10] 66.45 62.95 58.30 70.56 66.62 62.85

SRNet[9] 75.96 68.48 66.60 76.20 73.45 68.40

WISERNet[22] 76.15 70.40 63.68 74.96 69.12 60.45

UCNet[24] 80.05 76.85 72.37 82.85 80.75 78.05

Proposed 82.75* 80.00* 74.75* 86.60* 83.73* 80.21*

 

Table  4.    Detection Accuracy (%) for CTNet and Five Steganalytic Methods for Color Images Under the ACMP Strategy

Steganalyzer ACMP-SUNIWARD (bpc) ACMP-HILL (bpc)

0.4 0.3 0.2 0.4 0.3 0.2

CRMQ1[18] 75.42 71.96 66.31 73.61 69.37 63.78

CovNet[10] 70.55 66.75 62.55 78.49 71.33 64.80

SRNet[9] 83.20 78.85 68.45 86.83 81.45 74.40

WISERNet[22] 77.50 71.05 63.30 79.48 70.23 61.75

UCNet[24] 85.60 81.05 76.50 89.52 84.81 79.55

Proposed 88.20* 82.94* 77.65* 90.40* 87.10* 82.40*
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③http://bows2.ec-lille.fr, Mar. 2025.
 

④https://github.com/revere7/CTNet_Steganalysis, Mar. 2025.
 

⑤Note that CovNet[10] and SRNet[9] are originally designed for  grayscale  images.  To detect color  images,  we adjust the input
channel of the first convolution layer from 1 to 3 as it did in [24, 32, 33].

http://bows2.ec-lille.fr
http://bows2.ec-lille.fr
http://bows2.ec-lille.fr
https://github.com/revere7/CTNet_Steganalysis
https://github.com/revere7/CTNet_Steganalysis
https://github.com/revere7/CTNet_Steganalysis


detecting  the  CMD-C,  ACMP,  and  GINA  schemes,

respectively,  which  is  a  significant  improvement  in

image steganalysis.

● Evaluation  on  Grayscale  Images.  Four  modern

CNN-based  steganalyzers  (i.e.,  YeNet[8],  ZhuNet[11],

SRNet[9], and CovNet[10]) are included for a compara-

tive experiment. Table 6 shows the average detection

results.  From Table 6,  we  observe  that  the  proposed

method  can  achieve  the  best  performances  in  most

cases,  and  have  quite  similar  results  in  another  two

cases (i.e., S-UNIWARD at 0.2 bpp and HILL at 0.2

bpp)  than  the  current  best  steganalyzer  (i.e.,

CovNet).  Compared  with  SRNet,  we  can  obtain

0.19%,  0.93%,  and  0.90%  average  improvements  for

detecting the S-UNIWARD, WOW, and HILL meth-

ods, respectively. 

3.2    Ablation Study

In  this  subsection,  we  compare  the  proposed

method  with  many  variants  via  assigning  different

settings  in  the  following  five  model  components,  in-

cluding  HPFs,  truncation  thresholds,  settings  in  the

feature  extraction  module,  parameters  in  the  Trans-

former, and dropout rates in the classification module.

For  simplicity,  two  color  steganographic  methods

(i.e.,  CMD-C-HILL  and  GINA-SUNIWARD  at  0.4

bpc) and two grayscale steganographic methods (i.e.,

S-UNIWARD and WOW at 0.4 bpp) are considered. 

3.2.1    High-Pass Filters

Most of existing steganalysis methods usually use

SRM or Gabor filters to obtain the residuals of the in-

put image. In our experiment, we evaluate the detec-

tion accuracy of the proposed method with three dif-

ferent HPF sets, that is, 30 basic filters from SRM[4],

32  Gabor  filters  from  [31],  and  a  hybrid  set  (i.e.,

SRM+Gabor).  The comparative results  are  shown in

Table 7.  From Table 7,  we  obtain  the  following  two

observations. 1) First of all, SRM outperforms Gabor

for both the color images and the grayscale images. 2)

The  proposed  method  combing  SRM  and  Gabor  al-

ways  obtains  the  best  results.  On  average,  it  can

achieve improvements  of  2.17% and 1.99% compared

with SRM and Gabor, respectively. 

3.2.2    Truncation Thresholds

The  truncation  process  can  effectively  limit  the

residuals after HPFs to a small range, which is benefi-

cial to the subsequent steganalytic feature extraction.

 

Table  5.    Detection Accuracy (%) for CTNet and Five Steganalytic Methods for Color Images under the GINA Strategy

Steganalyzer GINA-SUNIWARD (bpc) GINA-HILL (bpc)

0.4 0.3 0.2 0.4 0.3 0.2

CRMQ1[18] 70.74 67.13 61.80 69.63 65.11 60.63

CovNet[10] 63.90 58.80 52.88 67.62 65.48 61.85

SRNet[9] 70.05 65.20 59.20 76.80 72.90 66.30

WISERNet[22] 73.63 68.25 56.90 71.30 66.55 59.50

UCNet[24] 76.10 73.35 67.30 81.50 77.75 73.46

Proposed 80.75* 76.80* 73.10* 83.50* 81.75* 77.75*

 

Table  6.    Detection Accuracy (%) for CTNet and Four Steganalytic Methods for Grayscale Images

Steganalyzer S-UNIWARD (bpp) WOW (bpp) HILL (bpp)

0.4 0.3 0.2 0.4 0.3 0.2 0.4 0.3 0.2

YeNet[8] 87.69 83.63 77.78 89.98 87.19 82.22 83.63 80.03 74.63

ZhuNet[11] 84.37 78.70 71.11 89.76 86.55 81.59 81.62 77.61 72.04

SRNet[9] 89.70 85.57 79.56 90.87 88.24 84.05 85.46 81.07 75.73

CovNet[10] 89.88 85.98 80.05* 91.93 88.93 84.33 85.87 82.07 77.10*

Proposed 90.00* 86.06* 79.75 92.26* 89.12* 84.58* 86.21* 82.21* 76.54

 

Table  7.    Detection Accuracy (%) Comparison Using Different HPF Sets in CTNet

Filter Color Grayscale

CMDC-HILL GINA-SUNIWARD S-UNIWARD WOW

SRM 85.30 79.00 89.58 91.40

Gabor 83.35 78.40 86.15 89.45

SRM+Gabor 86.60* 80.75* 90.00* 92.26*
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T ∈ {3, 5, 7,
10, 15}

T = 5

T = 5

In  this  experiment,  we  will  evaluate  the  proposed

model  with  five  different  thresholds, 

.  The  detection  results  are  shown in Table 8.

From Table 8,  we observe that the detection accura-

cy  tends  to  decrease  as  the  thresholds  are  increased

from 5 to 15. When , it achieves the best detec-

tion  performance  for  both  the  color  images  and  the

grayscale  images.  Thus,  the  proposed  method  sets

 in the pre-processing module. 

3.2.3    Settings in Feature Extraction Module

In the proposed model, there are two groups (i.e.,

CNN and Transformer) in the feature extraction mod-

ule. In this subsection, we will compare the proposed

method  with  three  other  settings  in  this  module.

● Setting 1: CNN. Just the CNN group is used in

the feature extraction module.

● Setting  2:  Transformer.  Just  the  Transformer

group is  used in the feature extraction module.  Note

that since the sizes of input and output feature maps

of the Transformer group are the same, it  cannot be

used  directly  in  the  feature  extraction  module  alone.

Therefore, we use ViT[27] with patch embedding and a

Transformer  encoder  as  the  feature  extraction  mod-

ule.

● Setting  3:  Transformer -CNN.  The  Transformer

group is placed in front of the CNN group. Note that

since  the  input  and  output  sizes  of  the  Transformer

group are consistent, setting it directly in front of the

CNN group requires huge memory. Due to this limita-

tion,  we  assign  the  Transformer  group  in  front  of

block  3  in  the  CNN  group,  while  preserving  others

unchanged.

The  comparative  results  are  shown  in Table 9.

From Table 9, we can observe that the different com-

bination strategies for the CNN group and the Trans-

former  group  can  affect  the  final  detection  results.

Specifically,  we obtain two following observations.  1)

Just  using  the  CNN  group  in  the  feature  extraction

module  achieves  good  detection  accuracy,  while  just

using  the  Transformer  group  achieves  very  poor  re-

sults (i.e., random guessing). The main reason may be

that Transformer usually captures the global informa-

tion  while  the  steganographic  modifications  typically

change some local statistics within cover, which is rel-

atively easier to be modeled by CNN. 2) Proper com-

bination  of  CNN  and  Transformer  can  further  en-

hance the detection performance of CNN. To balance

detection  accuracy  and  efficiency,  we  firstly  put  the

CNN group to extract local steganalytic features, and

then  assign  the  Transformer  group  to  explore  the

global  steganalytic  features.  By  leveraging  the

strengths  of  both  the  CNN  group  and  the  Trans-

former  group,  our  proposed  steganalyzer  can  capture

both the local steganalytic feature and the global ste-

ganalytic feature, leading to improved detection accu-

racy.  In  this  way,  the  proposed  method  can  achieve

over  0.56%  and  0.18%  average  improvements  com-

pared  with  the  CNN  for  the  color  images  and  the

grayscale images, respectively. Note that such an im-

provement is difficult for the proposed method and it

is  satisfactory  in  image  steganalysis.  However,  if  the

Transformer  group  is  placed  in  front  of  the  CNN

group, the corresponding accuracy would drop around

4.29% and 5.71%, respectively. 

3.2.4    Parameters in Transformer

The parameter settings in the Transformer group
 

Table  8.    Detection Accuracy (%) Comparison Using Different Truncation Thresholds in CTNet

Threshold
Color Grayscale

CMDC-HILL GINA-SUNIWARD S-UNIWARD WOW

T=3 85.85 80.65 89.81 91.48

T=5 86.60* 80.75* 90.00* 92.26*

T=7 85.75 80.55 89.79 91.22

T=10 85.50 80.60 89.00 91.12

T=15 85.00 78.70 89.50 90.67

 

Table  9.    Detection Accuracy (%) Comparison Using Different Structural Setting of the Feature Extraction Module in CTNet

Structural Setting Color Grayscale

CMD-C-HILL GINA-SUNIWARD S-UNIWARD WOW

CNN 85.91 80.30 89.85 92.04

Transformer 50.25 50.10 50.15 50.15

Transformer-CNN 79.28 79.50 84.72 86.12

CNN-Transformer (proposed) 86.60* 80.75* 90.00* 92.26*
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{depth, head,
mlp_head}

{1, 2, 4}
{1, 2, 2}

also have an impact on the final detection results. In

this experiment, we evaluate the model performances

of  different  parameter  combinations 

 in the Transformer group, wherein, depth
represents the number of the Transformer group, head
represents  the  number  of  heads  in  the  MHSA  layer,

and mlp_head represents  the  input  dimension  of  a

head. Table 10 shows  the  comparative  detection  re-

sults.  From Table 10,  we  can  observe  that  the  best

performance  is  achieved  when  using  and

 for  the  color  images  and  the  grayscale  im-

ages,  respectively.  On  average,  the  proposed  model

obtains  improvements  of  0.58% and 0.29% compared

with the other combinations for the color images and

the grayscale images, respectively.
  
Table  10.    Detection Accuracy (%) Comparison Using Differ-
ent Parameters of the Transformer Group in CTNet

Parameter Setting CMD-C-HILL S-UNIWARD

{1, 2, 2} 85.83 90.00*

{1, 2, 4} 86.60* 89.59

{1, 2, 8} 85.85 89.83

{1, 3, 4} 86.37 89.95

{1, 3, 8} 86.14 89.85

{1, 3, 16} 86.38 89.95

{2, 3, 4} 85.80 89.69

{2, 3, 8} 85.50 89.69

{2, 3, 16} 86.15 89.97

{3, 3, 4} 86.00 89.26

{3, 3, 8} 85.95 89.41

{3, 3, 16} 86.23 89.66

Note: The parameter setting indicates {depth, heads, dim_head}.
 

3.2.5    Dropout Rates in Classification Module

During  a  training  stage,  a  dropout  operation  can

effectively prevent overfitting of the model, and differ-

ent  dropout  rates  also  affect  the  performance  of  the

network.  In  our  experiment,  we  evaluate  the  detec-

tion results on three different dropout rates and with-

out a dropout layer in the classification module, that

is,  0.3,  0.5,  0.7  and  without  dropout  (denoted  w/o).

Table 11 shows  the  comparative  detection  perfor-

mance. From Table 11, we observe that the proposed

method has the best results using dropout rates of 0.7

and 0.5 for the color images and the grayscale images,

respectively.  On average,  we obtain improvements  of

0.49% and 0.18% compared with the other three cas-

es  for  the color  images and the grayscale  images,  re-

spectively. 

3.3    Training  from  Scratch  or  Curriculum

Learning

[50, 80, 100]

For  detecting  steganography  with  lower  payloads

(e.g., 0.3, 0.2 bpc/bpp), existing CNN-based stegana-

lyzers[9, 10] usually  use  training  from  scratch  or  cur-

riculum  learning[38] from  a  higher  payload  (e.g.,  0.4

bpc/bpp). In this experiment, we compare the model

performances  with  the  two  learning  strategies.  Note

that  when curriculum learning  is  used  for  a  low em-

bedding rate,  the  corresponding epoch is  150  and its

decay  epoch  is .  The  learning  rates  are

0.01  and 0.02  for  the  color  images  and the  grayscale

images, respectively. Table 12 shows the comparative

results  of  the  two  strategies.  From Table 12,  we  ob-

serve that using training from scratch can obtain im-

provements of 0.32% compared with curriculum learn-

ing  for  the  color  images.  While  for  grayscale  images,

using curriculum learning can obtain improvements of
 

Table  11.    Detection Accuracy (%) Comparison Using Different Dropout Rates R of the Classification Module in CTNet

Ratio
Color Grayscale

CMD-C-HILL GINA-SUNIWARD S-UNIWARD WOW

R=0.3 86.29 80.35 89.81 91.74

R=0.5 86.34 80.15 90.00* 92.26*

R=0.7 86.60* 80.75* 89.82 91.61

w/o R 85.71 80.15 89.84 91.61

 

Table   12.      Detection  Accuracy  (%)  Comparison  Using  Training  from  Scratch  and  Curriculum  Learning  for  Payloads  0.3  and
0.2 bpc/bpp

Strategy Payload Color Grayscale

CMD-C-HILL GINA-SUNIWARD S-UNIWARD WOW

Training from scratch 0.4 86.60 80.75 90.00 92.26

0.3 83.45 √ 76.80 √ 85.97 88.94

0.2 80.23 √ 73.10 √ 79.04 84.50

Curriculum learning 0.3 83.73 77.25 86.06 √ 89.12 √
0.2 80.21 71.10 79.75 √ 84.58 √
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0.28%  compared  with  training  from  scratch.  In  the

proposed  method,  therefore,  we  use  training  from

scratch  and  curriculum learning  for  the  color  images

and the grayscale images, respectively. 

3.4    Model Convergence and Execution Time

In  this  experiment,  we  compare  the  convergence

performance  of  the  proposed  method  with  related

modern  detectors.  For  a  fair  comparison,  all  experi-

ments  are  performed  on  the  same  GPU  NVIDIA

GeForce GTX 2080Ti with 12 GB memory. Our soft-

ware  environment  includes  the  Pytorch  1.10  frame-

work  and  the  Python  2.7  programming  language.

Fig.3 and Fig.4 show the variation curves of the vali-

dation  detection  accuracy  with  increasing  epochs  for

related CNN-based methods during the training stage.

From Fig.3,  we  observe  that  CovNet  (200  epochs),

WISERNet (343 epochs), and SRNet (571 epochs) are

slow to converge in the early training period and SR-

Net  has  large  fluctuations.  The  UCNet  and  the  pro-

posed  method  converge  quickly  and  the  proposed

method requires less epoch, and has a higher accura-

cy. From Fig.4, we observe that YeNet (1 000 epochs),

SRNet  (571  epochs),  and  CovNet  (200  epochs)  all

have  good  convergence  performance,  with  YeNet  re-

quiring  the  most  epochs.  The  proposed  method  has

the fastest  convergence rate in the early stage,  while

ZhuNet (400 epochs) has fluctuations and low accura-

cy.

Besides  the  convergence  performance,  the  execu-

tion time is also considered. Table 13 shows the com-

parative  results  of  related  methods.  From Table 13,

we observe that the proposed method requires only 24

hours of training to achieve the satisfactory detection

accuracy for both color images and grayscale images,

which  is  acceptable  compared  with  other  related

methods.
 
 

Table  13.    Training Time Comparison for CTNet and Relat-
ed Methods for CMD-C-HILL (0.4 bpc) and S-UNIWARD (0.4
bpp)

Scenario Method Training Time (h)

Color CovNet[10] 13

SRNet[9] 51

WISERNet[22] 12

UCNet[24] 22

Proposed 24

Grayscale YeNet[8] 32

SRNet[9] 48

ZhuNet[11] 21

CovNet[10] 12

Proposed 24
 

3.5    Performance on Larger ALASKA II

To  further  validate  the  effectiveness  of  the  pro-

posed  steganalytic  detector,  we  conduct  experiments

on  a  larger  color  dataset  and  grayscale  dataset  (i.e.,

ALASKA  II④ containing 80 005 images).  In  our  ex-

periment, the training set, the validation set, and the

testing  set  contain 35 000, 5 000,  and 40 005 images,

respectively. The initial learning rate is 0.01 for color
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Fig.3.   Validation  accuracy  of  different  steganalytic  methods
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images, and the number of epochs and decay epoch of

the proposed model are 200 and [80, 130, 170] respec-

tively. In addition, to avoid the model overfitting, we

adjust  the  learning  rate  of  the  proposed  network  for

detecting  grayscale  images  to  0.001,  and  the  decay

epoch  setting  is  the  same  as  that  for  color  images.

The  comparative  results  are  shown  in Table 14 and

Table 15.  From  the  two  tables,  we  observe  that  the

proposed method still outperforms the compared mod-

ern  steganalyzers  on  larger  color  ALASKA  II  and

grayscale  ALASKA  II.  On  average,  the  proposed

method  has  a  2.82%  and  0.66%  improvement  com-

pared  to  the  current  best  detectors,  that  is,  UCNet

for the color images and YeNet for the grayscale im-

ages.
  
Table   14.      Detection  Accuracy  (%)  Comparison  for  CTNet
and Related Steganalyzers for CMD-C-HILL (0.4 bpc) on Larg-
er ALASKA II

Method CMD-C-HILL

CovNet[10] 70.79

SRNet[9] 82.69

WISERNet[22] 76.72

UCNet[24] 84.53

Proposed 87.35*
 
  

Table   15.      Detection  Accuracy  (%)  Comparison  for  CTNet
and Related Steganalyzers for S-UNIWARD (0.4 bpp) on Larg-
er ALASKA II

Method S-UNIWARD

YeNet[8] 68.68

SRNet[9] 66.35

ZhuNet[11] 50.00

CovNet[10] 67.25

Proposed 69.34*

  

3.6    Performance on Cover-Source Mismatch

×

To  further  investigate  the  robustness  of  the  pro-

posed  method  under  cover-source  mismatch  condi-

tions,  we  conduct  corresponding  experiments  under

two color datasets (i.e., ALASKA II and BOSSBose).

Similar  to  previous  methods[22, 24],  we  initially  gener-

ate 10 000 color images of size 256 256 from raw da-

ta in BOSSBase, termed as BOSS-PPG-BIL (abbrevi-

ated  as  BOSSBase  in  subsequent  description).  For

ALASKA II and BOSSBose, the training set and the

test set are divided into 14 000/5 000 and 7 000/2 500,

respectively.  It  means  that  when  the  training  set  is

ALASKA II and the test set is ALASKA II or BOSS-

Base,  the  corresponding  numbers  of  the  training  set

and  the  test  set  are 14 000 and 5 000,  respectively.

The  detection  accuracy  of  the  proposed  method  and

other  relevant  methods  under  cover-source  mismatch

are  presented  in Table 16.  From Table 16,  we  ob-

serve that our method not only excels in situations of

cover-source  mismatch  but  also  consistently  surpass-

es  the  other  methods  evaluated.  This  evidences  the

high degree of universality in our proposed method.
 
 

Table  16.    Detection Accuracy (%) of the Proposed Method
and  Related  Methods  for  Detecting  CMD-C-HILL  at  0.4  bpc
Under Cover-Source Mismatch Conditions

Method Training Set Test Set

ALASKA II BOSSBase

CovNet ALASKA II 70.56 76.17

BOSSBase 58.60 85.46

SRNet ALASKA II 76.20 77.48

BOSSBase 61.88 96.50

WISERNet ALASKA II 74.96 80.34

BOSSBase 59.34 91.80

UCNet ALASKA II 82.85 87.56

BOSSBase 59.28 96.80

Proposed ALASKA II 86.60* 91.20*

BOSSBase 62.04* 97.50*
  

3.7    Performance on Color JPEG Images

To verify the performance of the proposed method

for  the  color  JPEG  images,  we  conduct  experiments

using  a  dataset  of 20 000 color  JPEG  images  from

ALASKA II. The steganographic methods used are J-

UNIWARD[35] and J-MiPOD[39] at quality factor (QF)

75  and  0.4  bpnzac,  respectively,  and  the  division  of

the dataset follows the approach described in Subsec-

tion 3.  We  compare  our  results  with  those  from  J-

XuNet[40], SRNet[9], LC-Net[41], and UCNet[24]. As pre-

sented  in Table 17,  the  experimental  results  indicate

that our proposed method surpasses the performance

of J-XuNet, SRNet, and LC-Net, but does not match

up  to  UCNet.  Despite  this,  the  results  showcase  the

efficacy  of  our  proposed  steganalyzer  in  detecting

steganography in color JPEG images, thereby demon-

strating its competitive advantage.
 
 

Table  17.    Detection Accuracy (%) of the Proposed Method
and  Related  Methods  for  Detecting  J-UNIWARD  and  J-Mi-
POD at QF 75 and 0.4 bpnzac

Method J-UNIWARD J-MiPOD

J-XuNet[40] 68.93 74.22

SRNet[9] 89.53 88.95

LC-Net[41] 89.45 88.78

UCNet[24] 90.02* 90.20*

Proposed 89.85 89.05
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3.8    Discussion

The  proposed  method  achieves  better  perfor-

mance  for  detecting both the  color  stego images  and

the  grayscale  stego  images  compared  with  the  exist-

ing  methods,  and  has  a  superior  performance  on

ALASKA II as well as in the case of cover-source mis-

match. However, the proposed method also has some

limitations,  primarily  in  two  aspects.  Firstly,  even

though  our  method  exhibits  remarkable  performance

in detecting color stego images in the spatial domain,

it  falls  short  of  delivering  optimal  results  when  ap-

plied to color JPEG images. Secondly, while our pro-

posed network proves to be effective, there is room for

improvement  as  the  training time has  not  been fully

optimized. 

4    Conclusions

In  this  paper,  we  proposed  a  novel  steganalytic

network  which  employs  the  CNN  and  Transformer

structures  for  color  image  steganalysis.  Extensive

comparative  results  show  that  the  proposed  method

can  significantly  outperform  modern  steganalyzers.

Compared  with  the  current  best  UCNet,  the  pro-

posed  method  can  achieve  2.85%,  1.94%,  and  4.03%

average  improvements  for  detecting  the  CMD-C,

ACMP, and GINA schemes, respectively. In addition,

it  can be applied for grayscale image steganalysis  di-

rectly, and also achieve competitive results compared

with the existing detectors.

In  future,  several  issues  about  the  proposed

method are  worthy of  further  study.  For  instance,  it

may focus on refining the detection of steganography

in  color  JPEG  images  and  improving  the  computa-

tional efficiency of the network training process. Fur-

thermore,  many  existing  steganalyzers  are  designed

for small size images. To have better practical impli-

cations, future steganalyzers should be specifically tai-

lored for larger-sized images. 
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