SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Ping Zhang, Hong-Gang Hu. Generalized Tweakable Even-Mansour Cipher and Its Applications[J]. Journal of Computer Science and Technology, 2018, 33(6): 1261-1277. DOI: 10.1007/s11390-018-1886-4 |
[1] |
Halevi S, Rogaway P. A tweakable enciphering mode. In Lecture Notes in Computer Science 2729, Boneh D (ed.), Springer-Verlag, 2003, pp.482-499.
|
[2] |
Liskov M, Rivest R L, Wagner D. Tweakable block ciphers. In Lecture Notes in Computer Science 2442, Yung M (ed.), Springer-Verlag, 2002, pp.31-46.
|
[3] |
Halevi S, Rogaway P. A parallelizable enciphering mode. In Lecture Notes in Computer Science 2964, Okamoto T (ed.), Springer-Verlag, 2004, pp.292-304.
|
[4] |
Rogaway P, Zhang H. Online ciphers from tweakable blockciphers. In Lecture Notes in Computer Science 6558, Kiayias A (ed.), Springer-Verlag, 2011, pp.237-249.
|
[5] |
Rogaway P. Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC. In Lecture Notes in Computer Science 3329, Lee P J (ed.), Springer-Verlag, 2004, pp.16-31.
|
[6] |
Landecker W, Shrimpton T, Terashima R S. Tweakable blockciphers with beyond birthday-bound security. In Lecture Notes in Computer Science 7417, Safavi-Naini R, Canetti R (eds.), Springer-Verlag, 2012, pp.14-30.
|
[7] |
Krovetz T, Rogaway P. The software performance of authenticated-encryption modes. In Lecture Notes in Computer Science 6733, Joux A (ed.), Springer-Verlag, 2011, pp.306-327.
|
[8] |
Andreeva E, Bogdanov A, Luykx A, Mennink B, Tischhauser E, Yasuda K. Parallelizable and authenticated online ciphers. In Lecture Notes in Computer Science 8269, Sako K, Sarkar P (eds.), Springer-Verlag, 2013, pp.424-443.
|
[9] |
Granger R, Jovanovic P, Mennink B, Neves S. Improved masking for tweakable blockciphers with applications to authenticated encryption. In Lecture Notes in Computer Science 9665, Fischlin M, Coron J S (eds.), Springer-Verlag, 2016, pp.263-293.
|
[10] |
Bossuet L, Datta N, Mancillas-López C, Nandi M. ELmD:A pipelineable authenticated encryption and its hardware implementation. IEEE Trans. Computers, 2016, 65(11):3318-3331.
|
[11] |
Chakraborty D, Sarkar P. On modes of operations of a block cipher for authentication and authenticated encryption. Cryptography and Communications, 2016, 8(4):455-511.
|
[12] |
Peyrin T, Seurin Y. Counter-in-Tweak:Authenticated encryption modes for tweakable block ciphers. In Lecture Notes in Computer Science 9814, Robshaw M, Katz J (eds.), Springer-Verlag, 2016, pp.33-63.
|
[13] |
Wang L, Guo J, Zhang G, Zhao J, Gu D. How to build fully secure tweakable blockciphers from classical blockciphers. In Lecture Notes in Computer Science 10031, Cheon J, Takagi T (eds.), Springer-Verlag, 2016, pp.455-483.
|
[14] |
Cogliati B, Lampe R, Seurin Y. Tweaking Even-Mansour ciphers. In Lecture Notes in Computer Science 9215, Gennaro R, Robshaw M (eds.), Springer-Verlag, 2015, pp.189-208.
|
[15] |
Cogliati B, Seurin Y. Beyond-birthday-bound security for tweakable Even-Mansour ciphers with linear tweak and key mixing. In Lecture Notes in Computer Science 9453, Iwata T, Cheon H (eds.), Springer-Verlag, 2015, pp.134-158.
|
[16] |
Mennink B. XPX:Generalized tweakable Even-Mansour with improved security guarantees. In Lecture Notes in Computer Science 9814, Robshaw M, Katz J (eds.), Springer-Verlag, 2016, pp.64-94.
|
[17] |
Reyhanitabar R, Vaudenay S, Vizár D. Misuse-resistant variants of the OMD authenticated encryption mode. In Lecture Notes in Computer Science 8782, Chow S S M, Liu J K, Hui L C K, Yiu S (eds.), Springer-Verlag, 2014, pp.55-70.
|
[18] |
Reyhanitabar R, Vaudenay S, Vizár D. Boosting OMD for almost free authentication of associated data. In Lecture Notes in Computer Science 9054, Leander G (ed.), Springer-Verlag, 2015, pp.411-427.
|
[19] |
Mouha N, Luykx A. Multi-key security:The Even-Mansour construction revisited. In Lecture Notes in Computer Science 9215, Gennaro R, Robshaw M (eds.), Springer-Verlag, 2015, pp.209-223.
|
[20] |
Reyhanitabar R, Vaudenay S, Vizár D. Authenticated encryption with variable stretch. In Lecture Notes in Computer Science 10031, Cheon J, Takagi T (eds.), SpringerVerlag, 2016, pp.396-425.
|
[21] |
Chatterjee S, Menezes A, Sarkar P. Another look at tightness. In Lecture Notes in Computer Science 10031, Miri A, Vaudenay S (eds.), Springer-Verlag, 2011, pp.293-319.
|
[22] |
Mantin I, Shamir A. A practical attack on broadcast RC4. In Lecture Notes in Computer Science 10031, Matsui M (ed.), Springer-Verlag, 2001, pp.152-164.
|
[23] |
Fouque P, Joux A, Mavromati C. Multi-user collisions:Applications to discrete logarithm, Even-Mansour and PRINCE. In Lecture Notes in Computer Science 8873, Sarkar P, Iwata T (eds.), Springer-Verlag, 2014, pp.420-438.
|
[24] |
Bellare M, Bernstein D J, Tessaro S. Hash-function based PRFs:AMAC and its multi-user security. In Lecture Notes in Computer Science 9665, Fischlin M, Coron J S (eds.), Springer-Verlag, 2016, pp.566-595.
|
[25] |
Bellare M, Tackmann B. The multi-user security of authenticated encryption:AES-GCM in TLS 1.3. In Lecture Notes in Computer Science 9665, Robshaw M, Katz J (eds.), Springer-Verlag, 2016, pp.247-276.
|
[26] |
Hoang V T, Tessaro S. Key-alternating ciphers and keylength extension:Exact bounds and multi-user security. In Lecture Notes in Computer Science 9814, Robshaw M, Katz J (eds.), Springer-Verlag, 2016, pp.3-32.
|
[27] |
Guo Z, Wu W, Liu R, Zhang L. Multi-key analysis of tweakable Even-Mansour with applications to minalpher and OPP. IACR Transactions on Symmetric Cryptology, 2016, 2016(2):288-306.
|
[28] |
Biham E. New types of cryptoanalytic attacks using related keys (extended abstract). In Lecture Notes in Computer Science 765, Helleseth T (ed.), Springer-Verlag, 1993, pp.398-409.
|
[29] |
Biham E. New types of cryptanalytic attacks using related keys. Journal of Cryptology, 1994, 7(4):229-246.
|
[30] |
Bellare M, Kohno T. A theoretical treatment of relatedkey attacks:RKA-PRPs, RKA-PRFs, and applications. In Lecture Notes in Computer Science 2656, Biham E (ed.), Springer-Verlag, 2003, pp.491-506.
|
[31] |
Biryukov A, Khovratovich D. Related-key cryptanalysis of the full AES-192 and AES-256. In Lecture Notes in Computer Science 5912, Matsui M (ed.), Springer-Verlag, 2009, pp.1-18.
|
[32] |
Sun S, Hu L, Wang P, Qiao K, Ma X, Song L. Automatic security evaluation and (related-key) differential characteristic search:Application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In Lecture Notes in Computer Science 8873, Sarkar P, Iwata T (eds.), Springer-Verlag, 2014, pp.158-178.
|
[33] |
Chen J, Miyaji A. A new practical key recovery attack on the stream cipher RC4 under related-key model. In Lecture Notes in Computer Science 6584, Lai X, Yung M, Lin D (eds.), Springer-Verlag, 2010, pp.62-76.
|
[34] |
Cogliati B, Seurin Y. On the provable security of the iterated Even-Mansour cipher against related-key and chosenkey attacks. In Lecture Notes in Computer Science 9056, Oswald E, Fischlin M (eds.), Springer-Verlag, 2015, pp.584-613.
|
[35] |
Wang P, Li Y, Zhang L, Zheng K. Related-key almost universal hash functions:Definitions, constructions and applications. In Lecture Notes in Computer Science 9783, Peyrin T (ed.), Springer-Verlag, 2016, pp.514-532.
|
[36] |
Peyrin T, Sasaki Y, Wang L. Generic related-key attacks for HMAC. In Lecture Notes in Computer Science 7658, Wang X, Sako K (eds.), Springer-Verlag, 2012, pp.580-597.
|
[37] |
Bhattacharyya R, Roy A. Secure message authentication against related-key attack. In Lecture Notes in Computer Science 8424, Moriai S (ed.), Springer-Verlag, 2013, pp.305-324.
|
[38] |
Dobraunig C, Eichlseder M, Mendel F. Related-key forgeries for Prost-OTR. In Lecture Notes in Computer Science 9054, Leander G (ed.), Springer-Verlag, 2015, pp.282-296.
|
[39] |
Patarin J. The "Coefficients H" technique. In Lecture Notes in Computer Science 5381, Avanzi R M, Keliher L, Sica F (eds.), Springer-Verlag, 2008, pp.328-345.
|
[40] |
Kurosawa K. Power of a public random permutation and its application to authenticated encryption. IEEE Transactions on Information Theory, 2010, 5(10):5366-5374.
|
[41] |
Chen S, Steinberger J P. Tight security bounds for keyalternating ciphers. In Lecture Notes in Computer Science 8441, Nguyen P Q, Oswald E (eds.), Springer-Verlag, 2014, pp.327-350.
|
[42] |
Cogliati B, Seurin Y. EWCDM:An efficient, beyondbirthday secure, nonce-misuse resistant MAC. In Lecture Notes in Computer Science 9814, Robshaw M, Katz J (eds.), Springer-Verlag, 2016, pp.121-149.
|
[43] |
Datta N, Nandi M. ELmE:A misuse resistant parallel authenticated encryption. In Lecture Notes in Computer Science 8544, Susilo W, Mu Y (eds.), Springer-Verlag, 2014, pp.306-321.
|
[44] |
Daemen J, Lamberger M, Pramstaller N, Rijmen V, Vercauteren F. Computational aspects of the expected differential probability of 4-round AES and AES-like ciphers. Computing, 2009, 85(1):85-104.
|
[45] |
Rogaway P, Bellare M, Black J. OCB:A block-cipher mode of operation for efficient authenticated encryption. ACM Transactions on Information and System Security, 2003, 6(3):365-403.
|
[46] |
Sasaki Y, Yasuda K. A new mode of operation for incremental authenticated encryption with associated data. In Lecture Notes in Computer Science 9566, Dunkelman O, Keliher L (eds.), Springer-Verlag, 2016, pp.397-416.
|
[47] |
Sarkar P. Modes of operations for encryption and authentication using stream ciphers supporting an initialisation vector. Cryptography and Communications, 2014, 6(3):189-231.
|
[1] | Yuan Li, Xing-Chen Wang, Lin Huang, Yun-Lei Zhao. Order-Revealing Encryption: File-Injection Attack and Forward Security[J]. Journal of Computer Science and Technology, 2021, 36(4): 877-895. DOI: 10.1007/s11390-020-0060-y |
[2] | Yan-Hong Fan, Mei-Qin Wang, Yan-Bin Li, Kai Hu, Mu-Zhou Li. A Secure IoT Firmware Update Scheme Against SCPA and DoS Attacks[J]. Journal of Computer Science and Technology, 2021, 36(2): 419-433. DOI: 10.1007/s11390-020-9831-8 |
[3] | Qi-Qi Lai, Bo Yang, Yong Yu, Zhe Xia, Yan-Wei Zhou, Yuan Chen. Updatable Identity-Based Hash Proof System Based on Lattices and Its Application to Leakage-Resilient Public-Key Encryption Schemes[J]. Journal of Computer Science and Technology, 2018, 33(6): 1243-1260. DOI: 10.1007/s11390-018-1885-5 |
[4] | Jing Xu, Wen-Tao Zhu. A Generic Framework for Anonymous Authentication in Mobile Networks[J]. Journal of Computer Science and Technology, 2013, 28(4): 732-742. DOI: 10.1007/s11390-013-1371-z |
[5] | Yan Zhu, Hong-Xin Hu, Gail-Joon Ahn, Huai-Xi Wang, Shan-Biao Wang. Provably Secure Role-Based Encryption with Revocation Mechanism[J]. Journal of Computer Science and Technology, 2011, 26(4): 697-710. DOI: 10.1007/s11390-011-1169-9 |
[6] | Hai-Bo Tian, Willy Susilo, Yang Ming, Yu-Min Wang. A Provable Secure ID-Based Explicit Authenticated Key Agreement Protocol Without Random Oracles[J]. Journal of Computer Science and Technology, 2008, 23(5): 832-842. |
[7] | Yong-Dong Zhang, Sheng Tang, Jin-Tao Li. Secure and Incidental Distortion Tolerant Digital Signature for Image Authentication[J]. Journal of Computer Science and Technology, 2007, 22(4): 618-625. |
[8] | Sin-Kyu Kim, Jae-Woo Choi, Dae-Hun Nyang, Gene-Beck Hahn, Joo-Seok Song. Smart Proactive Caching Scheme for Fast Authenticated Handoff in Wireless LAN[J]. Journal of Computer Science and Technology, 2007, 22(3): 476-480. |
[9] | Qing-Hua Zheng, David L. Pepyne, Qing Wang. New Approach to WLAN Security with Synchronized Pseudo Random[J]. Journal of Computer Science and Technology, 2004, 19(6). |
[10] | ZHENG Dong, CHEN Kefei, YOU Jinyuan. Multiparty Authentication Services and Key Agreement Protocols with Semi-Trusted Third Party[J]. Journal of Computer Science and Technology, 2002, 17(6). |