SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Chen ZH, Cai SW, Gao J et al. Heuristic search with cut point based strategy for critical node problem. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 39(6): 1328−1340 Nov. 2024. DOI: 10.1007/s11390-024-2850-0. |
The critical node problem (CNP) aims to deal with critical node identification in a graph, which has extensive applications in many fields. Solving CNP is a challenging task due to its computational complexity, and it attracts much attention from both academia and industry. In this paper, we propose a population-based heuristic search algorithm called CPHS (Cut Point Based Heuristic Search) to solve CNP, which integrates two main ideas. The first one is a cut point based greedy strategy in the local search, and the second one involves the functions used to update the solution pool of the algorithm. Besides, a mutation strategy is applied to solutions with probability based on the overall average similarity to maintain the diversity of the solution pool. Experiments are performed on a synthetic benchmark, a real-world benchmark, and a large-scale network benchmark to evaluate our algorithm. Compared with state-of-the-art algorithms, our algorithm has better performance in terms of both solution quality and run time on all the three benchmarks.
[1] |
Shen Y, Nguyen N P, Xuan Y, Thai M T. On the discovery of critical links and nodes for assessing network vulnerability. IEEE/ACM Trans. Networking, 2013, 21(3): 963–973. DOI: 10.1109/TNET.2012.2215882.
|
[2] |
Boginski V, Commander C W. Identifying critical nodes in protein-protein interaction networks. In Clustering Challenges in Biological Networks, Butenko S, Chaovalitwongse W A, Pardalos P M (eds.), World Scientific, 2009, pp.153–167. DOI: 10.1142/9789812771667_0007.
|
[3] |
Tomaino V, Arulselvan A, Veltri P, Pardalos P M. Studying connectivity properties in human protein–protein interaction network in cancer pathway. In Data Mining for Biomarker Discovery, Pardalos P M, Xanthopoulos P, Zervakis M (eds.), Springer-Verlag, 2012, pp.187–197. DOI: 10.1007/978-1-4614-2107-8_10.
|
[4] |
Nguyen D T, Shen Y, Thai M T. Detecting critical nodes in interdependent power networks for vulnerability assessment. IEEE Trans. Smart Grid, 2013, 4(1): 151–159. DOI: 10.1109/TSG.2012.2229398.
|
[5] |
Aspnes J, Chang K, Yampolskiy A. Inoculation strategies for victims of viruses and the sum-of-squares partition problem. Journal of Computer and System Sciences, 2006, 72(6): 1077–1093. DOI: 10.1016/j.jcss.2006.02.003.
|
[6] |
Kempe D, Kleinberg J, Tardos É. Maximizing the spread of influence through a social network. In Proc. the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug. 2003, pp.137–146. DOI: 10.1145/956750.956769.
|
[7] |
Borgatti S P. Identifying sets of key players in a social network. Computational & Mathematical Organization Theory, 2006, 12: 21–34. DOI: 10.1007/s10588-006-7084-x.
|
[8] |
Arulselvan A, Commander C W, Elefteriadou L, Pardalos P M. Detecting critical nodes in sparse graphs. Computers & Operations Research, 2009, 36(7): 2193–2200. DOI: 10.1016/j.cor.2008.08.016.
|
[9] |
Shen S, Smith J C. Polynomial-time algorithms for solving a class of critical node problems on trees and series-parallel graphs. Networks, 2012, 60(2): 103–119. DOI: 10.1002/net.20464.
|
[10] |
Lalou M, Tahraoui M A, Kheddouci H. The critical node detection problem in networks: A survey. Computer Science Review, 2018, 28: 92–117. DOI: 10.1016/j.cosrev.2018.02.002.
|
[11] |
Di Summa M, Grosso A, Locatelli M. Branch and cut algorithms for detecting critical nodes in undirected graphs. Computational Optimization and Applications, 2012, 53(3): 649–680. DOI: 10.1007/s10589-012-9458-y.
|
[12] |
Pavlikov K. Improved formulations for minimum connectivity network interdiction problems. Computers & Operations Research, 2018, 97: 48–57. DOI: 10.1016/j.cor.2018.04.012.
|
[13] |
Dinh T N, Thai M T. Precise structural vulnerability assessment via mathematical programming. In Proc. the 2011 Military Communications Conference, Nov. 2011, pp.1351–1356. DOI: 10.1109/MILCOM.2011.6127492.
|
[14] |
Walteros J L, Veremyev A, Pardalos P M, Pasiliao E L. Detecting critical node structures on graphs: A mathematical programming approach. Networks, 2019, 73(1): 48–88. DOI: 10.1002/net.21834.
|
[15] |
Aringhieri R, Grosso A, Hosteins P, Scatamacchia R. VNS solutions for the critical node problem. Electronic Notes in Discrete Mathematics, 2015, 47: 37–44. DOI: 10.1016/j.endm.2014.11.006.
|
[16] |
Ventresca M, Aleman D. A derandomized approximation algorithm for the critical node detection problem. Computers & Operations Research, 2014, 43: 261–270. DOI: 10.1016/j.cor.2013.09.012.
|
[17] |
Ventresca M. Global search algorithms using a combinatorial unranking-based problem representation for the critical node detection problem. Computers & Operations Research, 2012, 39(11): 2763–2775. DOI: 10.1016/j.cor.2012.02.008.
|
[18] |
Ventresca M, Aleman D. A fast greedy algorithm for the critical node detection problem. In Proc. the 8th International Conference on Combinatorial Optimization and Applications, Dec. 2014, pp.603–612. DOI: 10.1007/978-3-319-12691-3_45.
|
[19] |
Aringhieri R, Grosso A, Hosteins P, Scatamacchia R. Local search metaheuristics for the critical node problem. Networks, 2016, 67(3): 209–221. DOI: 10.1002/net.21671.
|
[20] |
Pullan W. Heuristic identification of critical nodes in sparse real-world graphs. Journal of Heuristics, 2015, 21(5): 577–598. DOI: 10.1007/s10732-015-9290-5.
|
[21] |
Zhou Y, Hao J K, Glover F. Memetic search for identifying critical nodes in sparse graphs. IEEE Trans. Cybernetics, 2019, 49(10): 3699–3712. DOI: 10.1109/TCYB.2018.2848116.
|
[22] |
Addis B, Aringhieri R, Grosso A, Hosteins P. Hybrid constructive heuristics for the critical node problem. Annals of Operations Research, 2016, 238(1/2): 637–649. DOI: 10.1007/s10479-016-2110-y.
|
[23] |
Aringhieri R, Grosso A, Hosteins P, Scatamacchia R. A general evolutionary framework for different classes of critical node problems. Engineering Applications of Artificial Intelligence, 2016, 55: 128–145. DOI: 10.1016/j.engappai.2016.06.010.
|
[24] |
Zhou Y, Hao J K, Fu Z H, Wang Z, Lai X. Variable population memetic search: A case study on the critical node problem. IEEE Trans. Evolutionary Computation, 2021, 25(1): 187–200. DOI: 10.1109/TEVC.2020.3011959.
|
[25] |
Zhou Y, Hao J K. A fast heuristic algorithm for the critical node problem. In Proc. the Genetic and Evolutionary Computation Conference Companion, Jul. 2017, pp.121–122. DOI: 10.1145/3067695.3075993.
|
[26] |
Tarjan R. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1972, 1(2): 146–160. DOI: 10.1137/0201010.
|
[27] |
Lü Z, Hao J K. A memetic algorithm for graph coloring. European Journal of Operational Research, 2010, 203(1): 241–250. DOI: 10.1016/j.ejor.2009.07.016.
|
[28] |
Rossi R A, Ahmed N K. The network data repository with interactive graph analytics and visualization. In Proc. the 29th AAAI Conference on Artificial Intelligence, Jan. 2015, pp.4292–4293. DOI: 10.1609/aaai.v29i1.9277.
|
[29] |
Rossi R A, Gleich D F, Gebremedhin A H, Patwary M M A. Fast maximum clique algorithms for large graphs. In Proc. the 23rd Int. Conf. World Wide Web, Apr. 2014, pp.365–366. DOI: 10.1145/2567948.2577283.
|
[30] |
Lin J, Cai S, Luo C, Su K. A reduction based method for coloring very large graphs. In Proc. the 26th International Joint Conference on Artificial Intelligence, Aug. 2017, pp.517–523. DOI: 10.24963/ijcai.2017/73.
|
[31] |
Cai S, Hou W, Wang Y, Luo C, Lin Q. Two-goal local search and inference rules for minimum dominating set. In Proc. the 29th International Joint Conference on Artificial Intelligence, Jul. 2020, pp.1467–1473. DOI: 10.24963/ijcai.2020/204.
|
[32] |
Conover W J. Practical Nonparametric Statistics (3rd edition). John Wiley & Sons, 1999.
|
[33] |
Luo C, Zhao Q, Cai S, Zhang H, Hu C. SamplingCA: Effective and efficient sampling-based pairwise testing for highly configurable software systems. In Proc. the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Nov. 2022, pp.1185–1197. DOI: 10.1145/3540250.3549155.
|
[1] | Nuo Qun, Hang Yan, Xi-Peng Qiu, Xuan-Jing Huang. Chinese Word Segmentation via BiLSTM+Semi-CRF with Relay Node[J]. Journal of Computer Science and Technology, 2020, 35(5): 1115-1126. DOI: 10.1007/s11390-020-9576-4 |
[2] | CHEN Yangjun. On the Arc Consistency Problem[J]. Journal of Computer Science and Technology, 1999, 14(4): 298-308. |
[3] | GU Jun, GU Qianping, DU Dingzhu. On Optimizing the Satisfiability (SAT) Problem[J]. Journal of Computer Science and Technology, 1999, 14(1): 1-17. |
[4] | Shuai Dianxun. Hyper-Distributed Hyper-Parallel Implementation of Heuristic Search of Implicit AND/OR Graph[J]. Journal of Computer Science and Technology, 1997, 12(6): 532-542. |
[5] | Shuai Dianxun. New Heuristic Distributed Parallel Algorithms for Searching and Planning[J]. Journal of Computer Science and Technology, 1995, 10(4): 354-374. |
[6] | Li Weidong, Wei Daozheng. Test Derivation Through Critical Path Transitions[J]. Journal of Computer Science and Technology, 1992, 7(1): 12-18. |
[7] | Zhang Bo, Zhang Ling. Why SA Can Beat the Exponential Explosion in Heuristic Search[J]. Journal of Computer Science and Technology, 1990, 5(3): 259-265. |
[8] | Zhang Bo, Zhang Ling. The Comparison between the Statistical Heuristic Search and A[J]. Journal of Computer Science and Technology, 1989, 4(2): 126-132. |
[9] | Li Hao, Liu Qun. A Problem of Tree Graph[J]. Journal of Computer Science and Technology, 1989, 4(1): 61-66. |
[10] | Zhang Bo, Zhang Ling. Statistical Heuristic Search[J]. Journal of Computer Science and Technology, 1987, 2(1): 1-11. |