We use cookies to improve your experience with our site.

深度学习训练中的流水线并行训练方法进展

Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview

  • 摘要:
    研究背景 以深度神经网络为代表的人工智能技术高速发展,并且在图像分类、语音识别和自然语言处理等诸多领域获得了巨大成功。然而,随着解决问题复杂性的增加,深度学习模型变得越来越复杂,出现了很多参数数量惊人的“大模型”。
    目的 鉴于流水线并行技术对于加速训练深度神经网络模型(特别是“大模型”)的重要作用和意义,为帮助研究人员全面了解流水线并行相关技术,本文对流水线模型并行进行了全面调查研究。
    方法 我们在对流水线并行相关技术进行大量调研的基础上,分析总结了流水线并行存在的三大挑战。然后分别从流水线调度、负载均衡和降低流水线并行的计算、存储和通信开销等方面,依次展开对相关关键技术的探讨。
    结果 在分析完流水线并行技术的三大挑战之后,我们认为设计高效的流水线并行训练方法首先需要同时考虑收敛性和训练速度;同时需要在计算、存储和通信三个方面取得最佳平衡;此外,还需充分考虑并行计算机的体系结构特征,以充分发挥其计算能力。我们给出了流水线并行具有潜在研究意义的两个研究方向,包括通过动态权重预测来同时解决异步流水线并行中存在的权重不一致和权重陈旧问题,以及面向大规模异构计算体系结构的流水线并行。
    结论 本文对流水线并行训练技术进行了全面综述,涵盖了流水线模型并行的基本概念和主要挑战,还全面比较分析了流水线并行训练方法中的同步和异步流水线调度,并讨论了实现节点内和节点间训练负载平衡的主要技术。此外,还介绍了优化计算、存储和通信的主要技术,并讨论了潜在的研究方向。

     

    Abstract: Deep learning has become the cornerstone of artificial intelligence, playing an increasingly important role in human production and lifestyle. However, as the complexity of problem-solving increases, deep learning models become increasingly intricate, resulting in a proliferation of large language models with an astonishing number of parameters. Pipeline model parallelism (PMP) has emerged as one of the mainstream approaches to addressing the significant challenge of training “big models”. This paper presents a comprehensive review of PMP. It covers the basic concepts and main challenges of PMP. It also comprehensively compares synchronous and asynchronous pipeline schedules for PMP approaches, and discusses the main techniques to achieve load balance for both intra-node and inter-node training. Furthermore, the main techniques to optimize computation, storage, and communication are presented, with potential research directions being discussed.

     

/

返回文章
返回