SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Xin Li, Zhang-Jin Huang, Zhao Liu. A Geometric Approach for Multi-Degree Spline[J]. Journal of Computer Science and Technology, 2012, 27(4): 841-850. DOI: 10.1007/s11390-012-1268-2 |
[1] |
Sederberg T W, Zheng J M, Sewell D, Sabin M. Non-uniformrecursive subdivision surfaces. In Proc. the 25th SIGGRAPH,Orlando, USA, July 1998, pp.387-394.
|
[2] |
Peters J. Patching Catmull-Clark meshes. In Proc. the27th SIGGRAPH, New Orleans, Louisiana, USA, July 2000,pp.255-258.
|
[3] |
Kaklis P D, Pandelis D G. Convexity-preserving polynomialsplines of non-uniform degree. IMA Journal of NumericalAnalysis, 1990, 10(2): 223-234.
|
[4] |
Costantini P. Variable degree polynomial splines. In Curvesand Surfaces with Applications in CAGD, Rabut C, LeMehaute A, Schumaker L L (Eds.), Nashville: Vanderbilt UniversityPress, 1997, pp.85-94.
|
[5] |
Costantini P. Curve and surface construction using variabledegree polynomial splines. Computer Aided Geometric Design,2000, 17(5): 419-446.
|
[6] |
Wang G Z, Deng C Y. On the degree elevation of B-splinecurves and corner cutting. Computer Aided Geometric Design,2007, 24(2): 90-98.
|
[7] |
Shen W Q, Wang G Z. A basis of multi-degree splines. ComputerAided Geometric Design. 2010, 27(1): 23-35.
|
[8] |
Shen W Q, Wang G Z. Changeable degree spline basis functions.Journal of Computational and Applied Mathematics,2010, 234(8): 2516-2529.
|
[9] |
Sederberg T W, Zheng J M, Song X W. Knot intervals andmulti-degree splines. Computer Aided Geometric Design,2003, 20(7): 455-468.
|
[10] |
Lyche T, Morken K. Knot removal for parametric B-splinecurves and surfaces. Computer Aided Geometric Design,1987, 4(3): 217-230.
|