[1] Parthasarathy S, Ruan Y, Satuluri V. Community discov-ery in social networks: Applications, methods and emergingtrends. In Social Network Data Analytics, Aggarwal C (ed.),2011, pp.79-113.[2] Tang W, Zhuang H, Tang J. Learning to infer social ties inlarge networks. In Proc. the 2011 European Conf. MachineLearning and Knowledge Discovery in Databases, Sept. 2011,Part 3, pp.381-397.[3] Kumar R, Raghavan P, Rajagopalan S, Sivakumar D, Tomp-kins A, Upfal E. The web as a graph. In Proc. the 19thACM SIGMOD-SIGACT-SIGART Symposium on Principlesof Database Systems, May 2000, pp.1-10.[4] Tang J, Zhang J, Yao L, Li J, Zhang L, Su Z. Arnetminer: Ex-traction and mining of academic social networks. In Proc. the14th ACM SIGKDD International Conference on KnowledgeDiscovery and Data Mining, Aug. 2008, pp.990-998.[5] Clauset A, Newman M, Moore C. Finding community struc-ture in very large networks. Physical review E, 2004, 70(6):066111.[6] Rattigan M, Maier M, Jensen D. Graph clustering with net-work structure indices. In Proc. the 24th International Con-ference on Machine Learning, June 2007, pp.783-790.[7] Von Luxburg U. A tutorial on spectral clustering. Statisticsand Computing, 2007, 17(4): 395-416.[8] Pan J J, Yang Q. Co-localization from labeled and unlabeleddata using graph laplacian. In Proc. the 20th Int. JointConf. Artificial Intelligence, Jan. 2007, pp.2166-2171.[9] Fortunato S. Community detection in graphs. Physics Re-ports, 2010, 486(3/5): 75-174.[10] Su Z, Yang Q, Zhang H, Xu X, Hu Y. Correlation-based doc-ument clustering using web logs. In Proc. the 34th AnnualHawaii Int. Conf. System Sciences, 2001, Vol.5,, p.5022.[11] Kriegel H, Kröger P, Zimek A. Clustering high-dimensionaldata: A survey on subspace clustering, pattern-based cluster-ing, and correlation clustering. ACM Transactions on Knowl-edge Discovery from Data, 2009, 3(1), Article No.1.[12] Liu N, Yang Q. Eigenrank: A ranking-oriented approach tocollaborative filtering. In Proc. the 31st Int. Conf. Researchand Develop. Inform. Retrieval, July 2008, pp.83-90.[13] Hotho A, Jäschke R, Schmitz C, Stumme G. Information re-trieval in folksonomies: Search and ranking. In Proc. the 3rdEuropean Conf. The Semantic Web: Research and Applica-tions, June 2006, pp.411-426.[14] Newman M. Detecting community structure in networks. TheEuropean Physical Journal B-Condensed Matter and Com-plex Systems, 2004, 38(2): 321-330.[15] Bagrow J, Bollt E. Local method for detecting communities.Physical Review E, 2005, 72(4): 046108.[16] Clauset A. Finding local community structure in networks.Physical Review E, 2005, 72(2): 026132.[17] Luo F, Wang J, Promislow E. Exploring local communitystructures in large networks. Web Intelligence and Agent Sys-tems, 2008, 6(4): 387-400.[18] Bagrow J. Evaluating local community methods in networks.Journal of Statistical Mechanics: Theory and Experiment,2008, 2008: P05001.[19] Chen J, Zaane O, Goebel R. Local community identificationin social networks. In Proc. the 2009 Int. Conf. Advances inSocial Network Analysis and Mining, July 2009, pp.237-242.[20] Zhang X, Wang L, Li Y, Liang W. Extracting local com-munity structure from local cores. In Proc. the 16th Int.Conf. Database Systems for Advanced Applications, April2011, pp.287-298.[21] Rosvall M, Bergstrom C. Maps of random walks on complexnetworks reveal community structure. Proc. the NationalAcademy of Sciences of the United States of America, 2008,105(4): 1118-1123.[22] Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D.Defining and identifying communities in networks. Proc. theNational Academy of Sciences of the United States of Amer-ica, 2004, 101(9): 2658-2663.[23] Andersen R. A local algorithm for finding dense subgraphs.ACM Transactions on Algorithms, 2010, 6(4), Article No. 60.[24] Andersen R, Lang K. An algorithm for improving graph par-titions. In Proc. the 19th Annual ACM-SIAM Symposiumon Discrete Algorithms, Jan. 2008, pp.651-660.[25] Andersen R, Lang K. Communities from seed sets. In Proc.the 15th International Conference on World Wide Web, May2006, pp.223-232.[26] Riedy J, Bader D, Jiang K, Pande P, Sharma R. Detectingcommunities from given seeds in social networks. TechnicalReport GT-CSE-11-01, Georgia Institute of Technology, Feb.2011.[27] Flake G, Lawrence S, Giles C. Efficient identification of Webcommunities. In Proc. the 6th Int. Conf. Knowledge Dis-covery and Data Mining, Aug. 2000, pp.150-160.[28] Girvan M, Newman M. Community structure in social andbiological networks. Proc. the National Academy of Sciencesof the United States of America, 2002, 99(12): 7821-7826.[29] Xu X, Yuruk N, Feng Z, Schweiger T. Scan: A structural clus-tering algorithm for networks. In Proc. the 13th Int. Conf.Knowledge Discovery and Data Mining, Aug. 2007, pp.824-833.[30] McCallum A, Nigam K, Rennie J, Seymore K. Automatingthe construction of internet portals with machine learning.Information Retrieval, 2000, 3(2): 127-163.[31] Lu Y, Zhang L, Liu J, Tian Q. Constructing concept lexicawith small semantic gaps. IEEE Transactions on Multimedia,2010, 12(4): 288-299.[32] Yang J, Cai R, Wang Y, Zhu J, Zhang L, Ma W. Incorporat-ing site-level knowledge to extract structured data from webforums. In Proc. the 18th International Conference on WorldWide Web, April 2009, pp.181-190.[33] Li X, Wang Y, Acero A. Learning query intent from reg-ularized click graphs. In Proc. the 31st Int. Conf. Re-search and Development in Information Retrieval, July 2008,pp.339-346. |