|
Journal of Computer Science and Technology ›› 2021, Vol. 36 ›› Issue (2): 299-309.doi: 10.1007/s11390-021-0804-3
Special Issue: Emerging Areas
• Special Section on AI and Big Data Analytics in Biology and Medicine • Previous Articles Next Articles
Li Wang1, Hao Zhang1,2,*, Senior Member, CCF, Hao-Wu Chang2, Qing-Ming Qin3, Bo-Rui Zhang4, Xue-Qing Li2, Tian-Heng Zhao2, and Tian-Yue Zhang2
[1] Kuwabara P E. DNA microarrays and gene expression:From experiments to data analysis and modeling. Briefings in Functional Genomics and Proteomics, 2003, 2(1):80-81. DOI:10.1093/bfgp/2.1.80. [2] Jain A K, Murty M N, Flynn P J et al. Data clustering:A review. ACM Computing Surveys, 1999, 31(3):264-323. DOI:10.1145/331499.331504. [3] Wang H, Wang W, Yang J et al. Clustering by pattern similarity in large data sets. In Proc. the 2002 ACM SIGMOD International Conference on Management of Data, June 2002, pp.394-405. DOI:10.1145/564691.564737. [4] Gasch A P, Eisen M B. Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biology, 2002, 3(11):Article No. research0059. DOI:10.1186/gb-2002-3-11-research0059. [5] Cheng Y, Church G M. Biclustering of expression data. In Proc. the 8th International Conference on Intelligent Systems for Molecular Biology, August 2000, pp.93-103. [6] Madeira S C, Oliveira A L. Biclustering algorithms for biological data analysis:A survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2004, 1(1):24-45. DOI:10.1109/TCBB.2004.2. [7] Busygin S, Prokopyev O A, Pardalos P M et al. Biclustering in data mining. Computers & Operations Research, 2008, 35(9):2964-2987. DOI:10.1016/j.cor.2007.01.005. [8] Eren K, Deveci M, Küçüktunç O et al. A comparative analysis of biclustering algorithms for gene expression data. Briefings in Bioinformatics, 2013, 14(3):279-292. DOI:10.1093/bib/bbs032. [9] Oghabian A, Kilpinen S, Hautaniemi S et al. Biclustering methods:Biological relevance and application in gene expression analysis. PLoS ONE, 2014, 9(3):Ariticle No. e90801. DOI:10.1371/journal.pone.0090801. [10] Pontes B, R. Giráldez, Aguilar-Ruiz J S. Biclustering on expression data:A review. Journal of Biomedical Informatics, 2015, 57:163-180. DOI:10.1016/j.jbi.2015.06.028. [11] Getz G, Levine E, Domany E. Coupled two-way clustering analysis of gene microarray data. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(22):12079-12084. DOI:10.1073/pnas.210134797. [12] Bhattacharya A, De Rajat K. Bi-correlation clustering algorithm for determining a set of co-regulated genes. Bioinformatics, 2009, 25(21):2795-2801. DOI:10.1093/bioinformatics/btp526. [13] Prelić A, Bleuler S, Zimmermann P et al. A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics, 2006, 22(9):1122-1129. DOI:10.1093/bioinformatics/btl060. [14] Hartigan J A. Direct clustering of a data matrix. Journal of the American Statistical Association, 1972, 67(337):123-129. DOI:10.1080/01621459.1972.10481214. [15] Yang J, Wang H, Wang W et al. Enhanced biclustering on expression data. In Proc. the 3rd IEEE Symposium on BioInformatics and BioEngineering, March 2003, pp.321-327. DOI:10.1109/BIBE.2003.1188969. [16] Liu J, Wang W. OP-cluster:Clustering by tendency in high dimensional space. In Proc. the 3rd IEEE International Conference on Data Mining, November 2003, pp.187-194. DOI:10.1109/ICDM.2003.1250919. [17] Tanay A, Sharan R, Shamir R. Discovering statistically significant biclusters in gene expression data. In Proc. the 10th International Conference on Intelligent Systems for Molecular Biology, August 2002, pp.136-144. [18] Rodriguez-Baena D S, Perez-Pulido A J, Aguilarruiz J S. A biclustering algorithm for extracting bit-patterns from binary datasets. Bioinformatics, 2011, 27(19):2738-2745. DOI:10.1093/bioinformatics/btr464. [19] Alzahrani M, Kuwahara H, Wang W et al. Gracob:A novel graph-based constant-column biclustering method for mining growth phenotype data. Bioinformatics, 2017, 33(16):2523-2531. DOI:10.1093/bioinformatics/btx199. [20] Sheng Q, Moreau Y, De Moor B. Biclustering microarray data by Gibbs sampling. Bioinformatics, 2003, 19(suppl 2):ii196-ii205. DOI:10.1093/bioinformatics/btg1078. [21] Kluger Y, Basri R, Chang J T et al. Spectral biclustering of microarray data:Coclustering genes and conditions. Genome Research, 2003, 13(4):703-716. DOI:10.1101/gr.648603. [22] Kipf T, Welling M. Semi-supervised classification with graph convolutional networks. In Proc. the 5th International Conference on Learning Representations, April 2017. [23] Niepert M, Ahmed M H, Kutzkov K. Learning convolutional neural networks for graphs. In Proc. the 33rd International Conference on Machine Learning, June 2016, pp.2014-2023. [24] Kipf T N, Welling M. Variational graph auto-encoders. arXiv:1611.07308, 2016. https://arxiv.org/abs/1611.07308, November 2020. [25] Zhou J, Cui G, Zhang Z et al. Graph neural networks:A review of methods and applications. arXiv:1812.08434, 2018. https://arxiv.org/abs/1812.08434, July 2020. [26] Wu Z, Pan S, Chen F et al. A comprehensive survey on graph neural networks. arXiv:1901.00596, 2019. https://arxiv.org/abs/1901.00596v4, December 2019. [27] Cao S S, Lu W, Xu Q K. Deep neural networks for learning graph representations. In Proc. the 13th AAAI Conference on Artificial Intelligence, February 2016, pp.1145-1152. [28] Hammer B, Micheli A, Sperduti A. Universal approximation capability of cascade correlation for structures. Neural Computation, 2005, 17(5):1109-1159. DOI:10.1162/0899766053491878. [29] Wang D, Cui P, Zhu W. Structural deep network embedding. In Proc. the 22nd ACM Conference on Knowledge Discovery and Data Mining, August 2016, pp.1225-1234. DOI:10.1145/2939672.2939753. [30] Hamilton W L, Ying Z, Leskovec J. Inductive representation learning on large graphs. In Proc. the 31st Annual Conference on Neural Information Processing Systems, December 2017, pp.1024-1034. |
[1] | Amichai Painsky and Saharon Rosset. Optimal Set Cover Formulation for Exclusive Row Biclustering of Gene Expression [J]. , 2014, 29(3): 423-435. |
[2] | Jooil Lee, Yanhua Jin, and Won Suk Lee. SUBic: A Scalable Unsupervised Framework for Discovering High Quality Biclusters [J]. , 2013, 28(4): 636-646. |
|
|