Processing math: 100%
We use cookies to improve your experience with our site.

Indexed in:

SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.

Submission System
(Author / Reviewer / Editor)
Hong-Ding Wang, Yun-Hai Tong, Shao-Hua Tan, Shi-Wei Tang, Dong-Qing Yang, Guo-Hui Sun. An Adaptive Approach to Schema Classification for Data Warehouse Modeling[J]. Journal of Computer Science and Technology, 2007, 22(2): 252-260.
Citation: Hong-Ding Wang, Yun-Hai Tong, Shao-Hua Tan, Shi-Wei Tang, Dong-Qing Yang, Guo-Hui Sun. An Adaptive Approach to Schema Classification for Data Warehouse Modeling[J]. Journal of Computer Science and Technology, 2007, 22(2): 252-260.

An Adaptive Approach to Schema Classification for Data Warehouse Modeling

More Information
  • Received Date: April 30, 2006
  • Revised Date: January 06, 2007
  • Published Date: March 14, 2007
  • Data warehouse (DW) modeling is a complicated task,involving both knowledge of business processes and familiarity withoperational information systems structure and behavior. Existing DWmodeling techniques suffer from the following majordrawbacks --- data-driven approach requires high levels of expertise andneglects the requirements of end users, while demand-driven approachlacks enterprise-wide vision and is regardless of existing models ofunderlying operational systems. In order to make up for thoseshortcomings, a method of classification of schema elements for DWmodeling is proposed in this paper. We first put forward the vectorspace models for subjects and schema elements, then present an adaptiveapproach with self-tuning theory to construct context vectors ofsubjects, and finally classify the source schema elements intodifferent subjects of the DW automatically. Benefited from the resultof the schema elements classification, designers can model andconstruct a DW more easily.
  • [1]
    Inmon W H. Building the Data Warehouse. 3rd Edition, John Wiley \& Sons, 2002.
    [2]
    Jukic N. Modeling strategies and alternatives for data warehousing projects. -\it Communications of the ACM}, 2006, 49(4): 83--88.
    [3]
    Dori D, Reldman R, Sturm A. Transforming an operational system model to a data warehouse model: A survey of techniques. In -\it Proc. IEEE Int. Conf. Software---Science, Technology and Engineering}, Herzelia, Israel, 2005, pp.47--56.
    [4]
    Winter R, Strauch B. A method for demand-driven information requirements analysis in data warehousing projects. In -\it Proc. Hawaii Int. Conf. System Sciences}, Big Island, HI, USA, 2003, pp.231.
    [5]
    Husemann B, Lechtenborger J, Vossen G. Conceptual data warehouse modeling. In -\it Proc. Int. Workshop on Design and Management of Data Warehouses}, Stockholm, Sweden, 2000, pp.6.1--6.11.
    [6]
    Golfarelli M, Maio D, Rizzi S. The dimensional fact model: A conceptual model for data warehouses. -\it Int. J. Cooperative Information Systems}, 1998, 7(2-3): 215--247.
    [7]
    Moody D, Kortink M. From enterprise models to dimensional models: A methodology for data warehouse and data mart design. In -\it Proc. Int. Workshop on Design and Management of Data Warehouses}, Stockholm, Sweden, 2000, pp.5.1--5.12.
    [8]
    Bruckner R M, List B, Schiefer J. Developing requirements for data warehouse systems with use cases. In -\it Proc. The Annual Americas' Conf. Information System}, Boston, Massachusetts, USA, 2001, pp.329--335.
    [9]
    Prakash N, Gosain A. Requirements driven data warehouse development. In -\it Proc. Int. Conf. Advanced Information Systems Engineering}, Klagenfurt, Austria, 2003, pp.13--16.
    [10]
    Giorgini P, Rizzi S, Garzetti M. Goal-oriented requirement analysis for data warehouse design. In -\it Proc. Int. Workshop on Data Warehousing and OLAP}, Bremen, Germany, 2005, pp.47--56.
    [11]
    Lujan-Mora S, Trujillo J. A comprehensive method for data warehouse design. In -\it Proc. Int. Workshop on Design and Management of Data Warehouses}, Berlin, Germany, 2003, pp.1.1--1.13.
    [12]
    Kimball R, Reeves L, Ross M \it et al. \rm The Data Warehouse Lifecycle Toolkit. 2nd Edition, John Wiley \& Sons, 2002, pp.16--24.
    [13]
    Breslin M. Data warehousing battle of the giants: Comparing the basics of the Kimball and Inmon models. -\it Business Intelligence Journal}, 2004, 9(1): 6--20.
    [14]
    Wang H D, Yu B, Tang S W \it et al. \rm An Effective Approach to Design Data warehouse. -\it Computer Engineer and Applications}, 2004, 40(9): 1--2. (in Chinese)
    [15]
    Rahm E, Do H H. Data cleaning: Problems and current approaches. -\it IEEE Data Eng. Bulletin}, 2000, 23(4): 3--13.
    [16]
    Vassiliadis P, Simitsis A, Skiadopoulos S. Conceptual Modeling for ETL Processes. -\it In Proc. Int. Workshop on Data Warehousing and OLAP}, McLean, VA, USA, 2002, pp.14--21.
    [17]
    B\"ohnlein M, Ende A U. Deriving initial data warehouse structures from the conceptual data models of the underlying operational information systems. In -\it Proc. Int. Workshop on Data Warehousing and OLAP}, Kansas City, MO, USA, 1999, pp.15--21.
    [18]
    Salton G, Buckley C. Term-weighting approaches in automatic text retrieval. -\it International Journal of Information Processing and Management}, 1988, 24(5): 513--523.
    [19]
    Salton G. Automatic Text Processing: The Transformation Analysis and Retrieval of Information by Computer. Addison-Wesley, 1989.
    [20]
    Castano S, De Antonellis V, De Capitani di Vemercati S. Global viewing of heterogeneous data sources. -\it IEEE Trans. Knowl. Data Eng}., 2001, 13(2): 277--297.
    [21]
    WordReference.com. English dictionary. http://www.wordrefe\-rence.com/definition.
    [22]
    Widdows D. A mathematical model for context and word-meaning. In -\it Proc. Int. and Interdisciplinary Conf. Modeling and Using Context}, Stanford, CA, USA, 2003, pp.369--382.
    [23]
    Schutze H. Automatic word sense discrimination. -\it Computational Linguistics}. 1998, 24(1): 97--124.
    [24]
    Jing H Y, Tzoukermann E. Information retrieval based on context distance and morphology. In -\it Proc. Annual Int. ACM SIGIR Conf.}, Berkeley, CA, USA, 1999, pp.90--96.
    [25]
    Wu L, Faloutsos C, Sycara K \it et al. \rm Falcon: Feedback adaptive loop for content-based retrieval. In -\it Proc. VLDB}, Cairo, Egypt, 2000, pp.297--306.
    [26]
    Rui Y, Huang T %Ortega M \it et al. \rm Relevance feedback: A power tool for interactive content-based image retrieval. -\it IEEE Tran. Circuits and Systems for Video Technology}, 1998, 8(5): 644--655.
    [27]
    Kim D H, Chung C W. Qcluster: Relevance feedback using adaptive clustering for content-based image retrieval. In -\it Proc. ACM SIGMOD,} San Diego, CA, USA, 2003, pp.599--610.
    [28]
    Pottinger R A, Bernstein P A. Merging models based on given correspondences. In -\it Proc. VLDB}, Berlin, Germany, 2003, pp.826--873.
    [29]
    Rahm E, Bernstein P A. A survey of approaches to automatic schema matching. -\it The VLDB Journal}, 2001, 10(4): 334--350.
    [30]
    Doan A, Halevy A Y. Semantic integration research in the database community: A brief survey. -\it AI Magazine}, 2005, 26(1): 83--94.
    [31]
    Giunchiglia F, Shvaiko P, Yatskevich M. Semantic schema matching. In -\it Proc. Int. Conf. Cooperative Information Systems}, Agia Napa, Cyprus, 2005, pp.347--365.
    [32]
    Bilke A, Naumann F. Schema matching using duplicates. In -\it Proc. ICDE}, Tokyo, Japan, 2005, pp.69--81.
    [33]
    Aumuller D, Do H H, Massmann S \it et al. \rm Schema and ontology matching with COMA-++}. In -\it Proc. ACM SIGMOD}, Baltimore, MD, USA, 2005, pp.906--908.
    [34]
    Xu L, Embley D W. Discovering direct and indirect matches for schema elements. In -\it Proc. Int. Conf. Database Systems for Advanced Applications}, Kyoto, Japan, 2003, pp.39--46.
    [35]
    Wang H D, Tang S W, Tong Y H \it et al. \rm An approach for identifying attribute correspondences in multilingual schemas. In -\it Proc. ACM SAC}, Dijon, France, 2006, pp.1674--1678.
    [36]
    Wang H D, Tan S H, Tang S W \it et al. \rm Identifying indirect attribute correspondences in multilingual schemas. In -\it Proc. Int. Workshop on DEXA}, Krakow, Poland, 2006, pp.652--656.
    [37]
    Zille H, Muhammad J N, Nadeem I. An ontology-based framework for semi-automatic schema integration. -\it J. Comput. Sci. & Technol.,} 2005, 20(6): 788--796.
  • Related Articles

    [1]Chun-Meng Kang, Lu Wang, Yan-Ning Xu, Xiang-Xu Meng, Yuan-Jie Song. Adaptive Photon Mapping Based on Gradient[J]. Journal of Computer Science and Technology, 2016, 31(1): 217-224. DOI: 10.1007/s11390-016-1622-x
    [2]Mei Wen, Nan Wu, Hai-Yan Li, Chun-Yuan Zhang. Multiple-Morphs Adaptive Stream Architecture[J]. Journal of Computer Science and Technology, 2005, 20(5): 635-646.
    [3]YANG Jianwu, CHEN Xiaoou. A Semi-Structured Document Model for Text Mining[J]. Journal of Computer Science and Technology, 2002, 17(5).
    [4]WEN Jirong, CHEN Hong, WANG Shan. POTENTIAL: A Highly Adaptive Core of Parallel Database System[J]. Journal of Computer Science and Technology, 2000, 15(6): 527-541.
    [5]DU Lin, SUN Yufang. A New Indexing Method Based on Word Proximity for Chinese Text Retrieval[J]. Journal of Computer Science and Technology, 2000, 15(3): 280-286.
    [6]LU Sanglu, ZHOU Xiaoboand, XIE Li. A Model for Dynamic Adaptive Coscheduling[J]. Journal of Computer Science and Technology, 1999, 14(3): 267-275.
    [7]Lin Chengiiang, Li Sanli. Strategy and Simulation of Adaptive RID for Distributed Dynamic Load Balancing in Parallel Systems[J]. Journal of Computer Science and Technology, 1997, 12(2): 113-120.
    [8]Zhou Jianqiang, Xie Li, Dai Fei, Sun Zhongxiu. Adaptive Memory Coherence Algorithms in DSVM[J]. Journal of Computer Science and Technology, 1994, 9(4): 365-372.
    [9]Tian Xinmin, Wang DingXing, Shen Meiming, Zheng Weimin, Wen Dongchan. Granularity Analysis for Exploiting Adaptive Parallelism of Declarative Programs on Multiprocessors[J]. Journal of Computer Science and Technology, 1994, 9(2): 144-152.
    [10]Zhou Jianqiang, Xie Li, Sun Zhongxiu, Zhu Genjiang. An Adaptive Strategy Integrating Locking with Optimistic Concurrency Control[J]. Journal of Computer Science and Technology, 1993, 8(4): 61-69.

Catalog

    Article views (19) PDF downloads (4195) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return