SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Guo-Dong Zhou, Fang Kong. Learning Noun Phrase Anaphoricity in Coreference Resolution via Label Propagation[J]. Journal of Computer Science and Technology, 2011, 26(1): 34-44. DOI: 10.1007/s11390-011-1109-8 |
[1] |
Soon W M, Ng H T, Lim D. A machine learning approach o coreference resolution of noun phrase. Computational Linuistics, 2001, 27(4): 521-544.
|
[2] |
Ng V, Cardie C. Improving machine learning approaches to oreference resolution. In Proc. ACL 2002, Philadelphia, SA, Jul. 6-12, 2002, pp.104-111.
|
[3] |
Strube M, Muller C. A machine learning approach to pronoun esolution in spoken dialogue. In Proc. ACL 2003, Sapporo, apan, Jul. 7-12, 2003, pp.68-175.
|
[4] |
Yang X F, Zhou G D, Su J, Chew C L. Coreference resolution sing competition learning approach. In Proc. ACL 2003, apporo, Japan, Jul. 7-12, 2003, pp.177-184.
|
[5] |
Yang X F, Su J, Lang J, Tan C L, Liu T, Li S. An entityention model for coreference resolution with inductive logic rogramming. In Proc. ACL 2008, Columbus, USA, Jun. 15-20, 2008, pp.843-851.
|
[6] |
Paice C D, Husk G D. Towards the automatic recognition of naphoric features in English text: The impersonal pronoun it. Computer Speech and Language, 1987, 2(2): 109-132.
|
[7] |
Lappin S, Leass H J. An algorithm for pronominal anaphora esolution. Computational Linguistics, 1994, 20(4): 535-561.
|
[8] |
Kennedy C, Boguraev B. Anaphora for everyone: Pronoinal anaphora resolution without a parser. In Proc. COLNG 1996, Copenhagen, Denmark, Aug. 5-9, 1996, pp.113-118.
|
[9] |
Denber M. Automatic resolution of anaphora in English. echnical Report, Eastman Kodak Co. 1998.
|
[10] |
Vieira R, Poesio M. An empirically based system for processng definite descriptions. Computational Linguistics, 2000, 7(4): 539-592.
|
[11] |
Bean D, Riloff E. Corpus-based identification of nonnaphoric noun phrases. In Proc. ACL 1999, University of aryland, College Park, USA, Jun. 20-26, 1999, pp.373-380.
|
[12] |
Bergsma S, Lin D K, Goebel R. Distributional identification f non-referential pronouns. In Proc. ACL 2008, Columbus, SA, Jun. 15-20, 2008, pp.10-18.
|
[13] |
Evans R. Applying machine learning toward an automatic lassification of it. Literary and Linguistic Computing, 2001, 6(1): 45-57.
|
[14] |
Ng V, Cardie C. Identifying anaphoric and non-anaphoric oun phrases to improve coreference resolution. In Proc. OLING 2002, Taipei, China, Aug. 24-Sept. 1, 2002, pp.730-736.
|
[15] |
Ng V. Learning noun phrase anaphoricity to improve confernce resolution: Issues in representation and optimization. In Proc. ACL 2004, Barcelona, Spain, Jul. 21-26, 2004, pp.151-158.
|
[16] |
Yang X F, Su J, Tan C L. A twin-candidate model of coreerence resolution with non-anaphor identification capability. In Proc. IJCNLP 2005, Jeju Island, Korea, Oct. 11-13, 2005, p.719-730.
|
[17] |
Denis P, Baldridge J. Joint determination of anaphoricity and oreference using integer programming. In Proc. NAACLLT2007, Rochester, USA, Apr. 22-27, 2007, pp.236-243.
|
[18] |
Cherry C, Bergsma S. An expectation maximization approach o pronoun resolution. In Proc. CoNLL 2005, Ann Arbor, SA, Jun. 29-30, 2005, pp.88-95.
|
[19] |
Zhu X, Ghahramani Z. Learning from labeled and unlabeled ata with label propagation. CMU CALD Technical Report, MU-CALD-02-107, 2002.
|
[20] |
Charniak E. Immediate-head parsing for language models. In Proc. ACL 2001, Toulouse, France, Jul. 9-11, 2001, pp.129-137.
|
[21] |
Yang X F, Su J, Tan C L. Kernel-based pronoun resolution ith structured syntactic knowledge. In Proc. COLINGCL 2006, Sydney, Australia, Jul. 17-21, 2006, pp.41-48.
|
[22] |
Zhou G D, Kong F, Zhu Q M. Context-sensitive convolution ree kernel for pronoun resolution. In Proc. IJCNLP 2008, yderabad, India, Jan. 7-12, 2008, pp.25-31.
|
[23] |
Yang X F, Su J, Tan C L. A twin-candidate model for earning-based anaphora resolution. Computational Linguisics, 2008, 34(3): 327-356.
|
[24] |
Haussler D. Convolution kernels on discrete structures. Techical Report UCS-CRL-99-10, University of California, Santa ruz, USA, 1999.
|
[25] |
Collins M, Duffy N. Convolution kernels for natural language. In Proc. NIPS 2001, Vancouver, Canada, Dec. 3-8, 2001, p.625-632.
|
[26] |
Zhang M, Che W X, Aw A T, Tan C L, Zhou G D, Liu T, Li . A grammar-driven convolution tree kernel for semantic role lassification. In Proc. ACL 2007, Prague, Czech Republic, un. 23-30, 2007, pp.200-207.
|
[27] |
Moschitti A. Efficient convolution kernels for dependency and onstituent syntactic trees. In Proc. ECML2006, Berlin, ermany, Sept. 18-22, 2006, pp.318-329.
|
[28] |
Zhou G D, Su J. Error-driven HMM-based chunk tagger with ontext-dependent lexicon. In Proc. EMNLP-VLC 2000, ong Kong, China, Oct. 7-8, 2000, pp.71-79.
|
[29] |
Zhou G D, Su J. Named entity recognition using an HMMased chunk tagger. In Proc. ACL 2002, Philadelphia, USA, ul. 6-12, 2002, pp.473-480.
|
[30] |
Joachims T. Text categorization with support vector machine: earning with many relevant features. In Proc. ECML1998, hemnitz, Germany, Apr. 21-23, 1998, pp.137-142.
|
[31] |
Vilain M, Burger J, Aberdeen J, Connolly D, Hirschman L. A odel theoretic coreference scoring scheme. In Proc. MUC-6, olumbia, USA, Nov. 1-3, 1995, pp.45-52.
|
[1] | Qi-Guo Dai, Mao-Zu Guo, Xiao-Yan Liu, Zhi-Xia Teng, Chun-Yu Wang. CPL: Detecting Protein Complexes by Propagating Labels on Protein-Protein Interaction Network[J]. Journal of Computer Science and Technology, 2014, 29(6): 1083-1093. DOI: 10.1007/s11390-014-1492-z |
[2] | Wei Wu, Hang Li, Yun-Hua Hu, Rong Jin. A Kernel Approach to Multi-Task Learning with Task-Specific Kernels[J]. Journal of Computer Science and Technology, 2012, 27(6): 1289-1301. DOI: 10.1007/s11390-012-1305-1 |
[3] | Guo-Dong Zhou, Qiao-Ming Zhu. Kernel-Based Semantic Relation Detection and Classification via Enriched Parse Tree Structure[J]. Journal of Computer Science and Technology, 2011, 26(1): 45-56. DOI: 10.1007/s11390-011-1110-2 |
[4] | Kilho Shin, Tetsuji Kuboyama. A Generalization of Haussler's Convolution Kernel &mdash|Mapping Kernel and Its Application to Tree Kernels[J]. Journal of Computer Science and Technology, 2010, 25(5): 1040-1054. DOI: 10.1007/s11390-010-1082-7 |
[5] | Lei Jia, Shi-Zhong Liao, Li-Zhong Ding. Learning with Uncertain Kernel Matrix Set[J]. Journal of Computer Science and Technology, 2010, 25(4): 709-727. DOI: 10.1007/s11390-010-1055-x |
[6] | Lin Xueyin, Chen Xiangrong, Zhu Zhigang, Shi Dingji. Range Information Propagation Transform[J]. Journal of Computer Science and Technology, 1998, 13(5): 438-447. |
[7] | Wang Hui, Liu Dayou, Wang Yafei. Sequential Back-Propagation[J]. Journal of Computer Science and Technology, 1994, 9(3): 252-260. |
[8] | Xu Meirui, Liu Xiaolin. A VLSI Algorithm for Calculating the Tree to Tree Distance[J]. Journal of Computer Science and Technology, 1993, 8(1): 68-76. |
[9] | Xue Xing, Sun Zhongxiu, Zhou Jianqiang, Xu Xihao. A Message-Based Distributed Kernel for a Full Heterogeneous Environment[J]. Journal of Computer Science and Technology, 1990, 5(1): 47-56. |
[10] | Zhang Cui, Zhao Qinping, Xu Jiafu. Kernel Language KLND[J]. Journal of Computer Science and Technology, 1986, 1(3): 65-79. |