SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Kiatichai Treerattanapitak, Chuleerat Jaruskulchai. Exponential Fuzzy C-Means for Collaborative Filtering[J]. Journal of Computer Science and Technology, 2012, 27(3): 567-576. DOI: 10.1007/s11390-012-1244-x |
[1] |
Herlocker J L, Konstan J A, Borchers A, Riedl J. An algorith-mic framework for performing collaborative filtering. In Proc.the 22nd ACM SIGIR Conf. Research and Development inInformation Retrieval, Aug. 1999, pp.230-237.
|
[2] |
Sarwar B, Karypis G, Konstan J, Riedl, J. Item-based col-laborative filtering recommendation algorithms. In Proc. the10th Int. Conf. World Wide Web, May 2001, pp.285-295.
|
[3] |
Karypis G. Evaluation of item-based top-N recommendationalgorithms. In Proc. the 10th Conf. Information and Know-ledge Management, Nov. 2001, pp.247-254.
|
[4] |
Linden G, Smith B, York J. Amazon.com recommendations:Item-to-item collaborative filtering. IEEE Internet Comput-ing, 2003, 7(1): 76-80.
|
[5] |
Bell R, Koren Y. Scalable collaborative filtering with jointlyderived neighborhood interpolation weights. In Proc. the 7thInt. Conf. Data Mining, Oct. 2007, pp.43-52.
|
[6] |
Koren Y, Bell R. Advanced in collaborative filtering. In Reco-mmender Systems Handbook (1st edition), Springer, 2011, pp.145-186.
|
[7] |
Sarwar B M, Karypis G, Konstan J A, Riedl J T. Applica-tion of dimensionality reduction in recommender system —— Acase study. In ACM WebKDD Web Mining for ECommenceWorkshop, Aug. 2000.
|
[8] |
Vozalis M, Markos A, Margaritis K G. Evaluation of standardSVD-based techniques for collaborative filtering. In Proc. the9th Hellenic European Research on Computer Mathematicsand its Applications, Sept. 2009.
|
[9] |
Rendle S. Factorization machines. In Proc. the 10th Int.Conf. Data Mining, Dec. 2010, pp.995-1000.
|
[10] |
Ali K, van Stam W. TiVo: Making show recommendations us-ing a distributed collaborative filtering architecture. In Proc.the 10th ACM SIGKDD Int. Conf. Knowledge Discoveryand Data Mining, Aug. 2004, pp.394-401.
|
[11] |
Koren Y. Factorization meets the neighborhood: A multi-faceted collaborative filtering model. In Proc. the 14th ACMSIGKDD Int. Conf. Knowledge Discovery and Data Mining,Aug. 2008, pp.426-434.
|
[12] |
Liu N N, Yang Q. EigenRank: A ranking-oriented approach tocollaborative filtering. In Proc. the 31st Conf. ACM SIGIRon Information Retrieval, Jul. 2008, pp.83-90.
|
[13] |
Treerattnapitak K, Jaruskulchai C. Entropy based fuzzy C-mean for item-based collaborative filtering. In Proc. the 9thInt. Symposium on Communication and Information Tech-nology, Sept. 2009, pp.881-886.
|
[14] |
Treerattnapitak K, Jaruskulchai C. Items based fuzzy C-meanclustering for collaborative filtering. Information TechnologyJournal, 2009, 5(10): 30-34.
|
[15] |
Jin R, Si L. A study of methods for normalizing user ratingsin collaborative filtering. In Proc. the 27th Conf. ACM SI-GIR on Research and Development in Information Retrieval,Jul. 2004, pp.568-569.
|
[16] |
Breese J S, Heckerman D, Kadie C. Empirical analysis of pre-dictive algorithms for collaborative filtering. In Proc. the14th Conf. Uncertainty in Artificial Intelligence, Jul. 1998,pp.43-52.
|
[17] |
George T, Merugu S. A scalable collaborative filtering frame-work based on co-clustering. In Proc. the 5th IEEE Int.Conf. Data Mining, Nov. 2005, pp.625-628.
|
[18] |
Ungar L H, Foster D P. Clustering methods for collabora-tive filtering. In Proc. AAAI Workshop on RecommendationSystem, Jul. 1998.
|
[19] |
Pham M C, Cao Y, Klamma R, Jarke M. A clustering ap-proach for collaborative filtering recommendation using socialnetwork analysis. Journal of Universal Computer Science,2011, 17(4): 583-604.
|
[20] |
Gong S. A collaborative filtering recommendation algorithmbased on user clustering and item clustering. Journal of Soft-ware, 2010, 5(7): 745-752.
|
[21] |
Wu J, Li T. A modified fuzzy C-means algorithm for collabo-rative filtering. In Proc. the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competi-tion, Aug. 2008, Article No. 2.
|
[22] |
Treerattnapitak K, Jaruskulchai C. Membership enhancementwith exponential fuzzy clustering for collaborative filtering.In Proc. the 17th Int. Conf. Neural Information Processing,Nov. 2010, pp.559-566.
|
[23] |
Wang H, Pei J. Clustering by pattern similarity. Journal ofComputer Science and Technology, 2008, 23(4): 481-496.
|
[24] |
Wattanachon U, Suksawatchon J, Lursinsap C. Nonlineardata analysis using a new hybrid data clustering algorithm.In Lecture Notes in Computer Science 5476, TheeramunkongT et al. (eds.), Springer-Verlag, 2009, pp.160-171.
|
[25] |
Dunn J C. A fuzzy relative of the ISODATA process and itsuse in detecting compact well-separated clusters. Journal ofCybernetics., 1973, 3(3): 32-57.
|
[26] |
Bezdek J C. Pattern Recognition with Fuzzy Objective Func-tion Algoritms. New York: Plenum Press, 1981.
|
[27] |
Miyamoto S, Mukaidono M. Fuzzy C-means as a regulariza-tion and maximum entropy approach. In Proc. the 7th Int.Fuzzy System Association World Congress (IFSA 1997), Jun.1997, 2: 86-92.
|
[28] |
Miyamoto S, Ichihashi H, Katsuhiro H. Algorithms for FuzzyClustering: Methods in c-Means Clustering with Applica-tions. Springer-Verlag Berlin Heidelberg, 2008.
|
[29] |
Goharian N, El-Ghazawi T A, Grossman D A, Chowdhury A.On the enhancements of a sparse matrix information retrievalapproach. In Proc. the Int. Conf. Parallel and DistributedProcessing Technology and Application, Jun. 2000.
|
[1] | Yi-Fan Chen, Xiang Zhao, Jin-Yuan Liu, Bin Ge, Wei-Ming Zhang. Item Cold-Start Recommendation with Personalized Feature Selection[J]. Journal of Computer Science and Technology, 2020, 35(5): 1217-1230. DOI: 10.1007/s11390-020-9864-z |
[2] | Jin-Qi Zhu, Li Lu, Chun-Mei Ma. From Interest to Location: Neighbor-Based Friend Recommendation in Social Media[J]. Journal of Computer Science and Technology, 2015, 30(6): 1188-1200. DOI: 10.1007/s11390-015-1593-3 |
[3] | Duksan Ryu, Jong-In Jang, Jongmoon Baik. A Hybrid Instance Selection Using Nearest-Neighbor for Cross-Project Defect Prediction[J]. Journal of Computer Science and Technology, 2015, 30(5): 969-980. DOI: 10.1007/s11390-015-1575-5 |
[4] | Wei-Wei Sun, Chu-Nan Chen, Liang Zhu, Yun-Jun Gao, Yi-Nan Jing, Qing Li. On Efficient Aggregate Nearest Neighbor Query Processing in Road Networks[J]. Journal of Computer Science and Technology, 2015, 30(4): 781-798. DOI: 10.1007/s11390-015-1560-z |
[5] | Yi Zhuang, Yue-Ting Zhuang, Fei Wu. Composite Distance Transformation for Indexing and k-Nearest-Neighbor Searching in High-Dimensional Spaces[J]. Journal of Computer Science and Technology, 2007, 22(2): 208-217. |
[6] | ZHANG Hongbin, SUN Guangyu. Optimal Selection of Reference Set for the Nearest Neighbor Classification by Tabu Search[J]. Journal of Computer Science and Technology, 2001, 16(2). |
[7] | Chen Bin, Hong Jiarong, Wang Yadong. The Minimum Feature Subset Selection Problem[J]. Journal of Computer Science and Technology, 1997, 12(2): 145-153. |
[8] | Zong Chengqing, Chen Zhaoxiong, Huang Heyan. Parsing with Dynamic Rule Selection[J]. Journal of Computer Science and Technology, 1997, 12(1): 90-96. |
[9] | Chen Guoliang, Shen Hong. A Bitonic Selection Algorithm on Multiprocessor System[J]. Journal of Computer Science and Technology, 1989, 4(4): 315-322. |
[10] | Chen Guoliang. A Partitioning Selection Algorithm on Multiprocessors[J]. Journal of Computer Science and Technology, 1988, 3(4): 241-250. |