We use cookies to improve your experience with our site.

Indexed in:

SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.

Submission System
(Author / Reviewer / Editor)
Ratnakar Dash, Pankaj Kumar Sa, Banshidhar Majhi. Particle Swarm Optimization Based Support Vector Regression for Blind Image Restoration[J]. Journal of Computer Science and Technology, 2012, 27(5): 989-995. DOI: 10.1007/s11390-012-1279-z
Citation: Ratnakar Dash, Pankaj Kumar Sa, Banshidhar Majhi. Particle Swarm Optimization Based Support Vector Regression for Blind Image Restoration[J]. Journal of Computer Science and Technology, 2012, 27(5): 989-995. DOI: 10.1007/s11390-012-1279-z

Particle Swarm Optimization Based Support Vector Regression for Blind Image Restoration

More Information
  • Received Date: October 13, 2011
  • Revised Date: February 21, 2012
  • Published Date: September 04, 2012
  • This paper presents a swarm intelligence based parameter optimization of the support vector machine (SVM) for blind image restoration. In this work, SVM is used to solve a regression problem. Support vector regression (SVR) has been utilized to obtain a true mapping of images from the observed noisy blurred images. The parameters of SVR are optimized through particle swarm optimization (PSO) technique. The restoration error function has been utilized as the fitness function for PSO. The suggested scheme tries to adapt the SVM parameters depending on the type of blur and noise strength and the experimental results validate its effectiveness. The results show that the parameter optimization of the SVR model gives better performance than conventional SVR model as well as other competent schemes for blind image restoration.
  • [1]
    Kundur D, Hatzinakos D. Blind image deconvolution. IEEESignal Processing Magazine, 1996, 13(3): 43-64.
    [2]
    Chen L, Yap K H. A soft double regularization approach toparametric blind image deconvolution. IEEE Transactionson Image Processing, 2005, 14(5): 624-633.
    [3]
    Bronstein M M, Bronstein A M, Zibulevsky M, Zeevi Y Y.Blind deconvolution of images using optimal sparse repre-sentations. IEEE Transactions on Image Processing, 2005,14(6): 726-736.
    [4]
    Gonzalez R,Woods R. Digital Image Processing (3rd edition).Addison-Wesley Longman, 1992.
    [5]
    Lagendijk R L, Biemond J, Boekee D E. Regularized iterativeimage restoration with ring reduction. IEEE Transactions onAcoustics, Speech, and Signal Processing, 1988, 36(12): 1874-1888.
    [6]
    Tikhonov A N, Arsenin V Y. Solutions of Ill-Posed Problems,Winston, 1977.
    [7]
    Hansen P C. Rank-Deficient and Discrete Ill-Posed Problems:Numerical Aspects of Linear Inversion. SIAM, 1997.
    [8]
    Ayers G R, Dainty J C. Iterative blind deconvolution methodand its applications. Optics letters, 1988, 13(7): 547-549.
    [9]
    Lucy L B. An iterative technique for the rectification of ob-served distributions. Astronomical Journal, 1974, 79(6): 745-754.
    [10]
    Richardson W H. Bayesian-based iterative method of imagerestoration. Journal of Optical Society of America, 1972,62(1): 55-59.
    [11]
    Seghouane A K. Maximum likelihood blind image restorationvia alternating minimization. In Proc. the 17th IEEE Inter-national Conference on Image Processing, September 2010,pp. 3581-3584.
    [12]
    Bell A J, Sejnowski T J. An information-maximization ap-proach to blind separation and blind deconvolution. NeuralComputing, 1995, 7(6): 1129-1159.
    [13]
    Li D, Mersereau R M, Simske S. Atmospheric turbulence-degraded image restoration using principal components anal-ysis. IEEE Geoscience and Remote Sensing Letters, 2007,4(3): 340-344.
    [14]
    Aizenberg I, Paliy D V, Zurada J M, Astola J T. Blur identifi-cation by multilayer neural network based on multivalued neu-rons. IEEE Transactions on Neural Networks, 2008, 19(5):883-898.
    [15]
    Freeman W T, Jones T R, Pasztor E C. Example-based su-perresolution. IEEE Computer Graphics Applications, 2002,22(2): 56-65.
    [16]
    Li D, Mersereau R M, Simske S. Blind image deconvolutionthrough support vector regression. IEEE Transactions onNeural Networks, 2007, 18(3): 931-935.
    [17]
    Vapnik V N. The Nature of Statistical Learning Theory.Springer-Verlag, 1995.
    [18]
    Joachims T. Making large-scale support vector machine learn-ing practical. In Advances in Kernel Methods: Support Vec-tor Learning, Schölkopf B, Burges C J C, Smola A J (eds.),MIT Press, 1999, pp.169-184.
    [19]
    Wu C H, Tzeng G H, Lin R H. A novel hybrid genetic al-gorithm for kernel function and parameter optimization insupport vector regression. Expert Systems with Applications,2009, 36(3): 4725-4735.
    [20]
    Huang C L, Wang C J. A GA-based feature selection andparameters optimization for support vector machines. ExpertSystems with Applications, 2006, 31(2): 231-240.
    [21]
    Kennedy J, Eberhart R C. Particle swarm optimization. InProc. International Conference on Neural Networks, Novem-ber 27-December 1, 1995, pp.1942-1948.
    [22]
    Kennedy J, Eberhart R C. A discrete binary version of theparticle swarm algorithm. In Proc. IEEE International Con-ference on Systems, Man and Cybernetics, October 1997, pp.4104-4108.
    [23]
    Fan H. A modification to particle swarm optimization algo-rithm. Engineering Computations, 2002, 19(8): 970-989.
    [24]
    Katsaggelos A K, Lay K T. Maximum likelihood blur identifi-cation and image restoration using the EM algorithm. IEEETransactions on Signal Processing, 1991, 39(3): 729-733.
  • Related Articles

    [1]Gen Zhang, Peng-Fei Wang, Tai Yue, Xiang-Dong Kong, Xu Zhou, Kai Lu. ovAFLow: Detecting Memory Corruption Bugs with Fuzzing-Based Taint Inference[J]. Journal of Computer Science and Technology, 2022, 37(2): 405-422. DOI: 10.1007/s11390-021-1600-9
    [2]Ri-Sheng Liu, Cai-Sheng Mao, Zhi-Hui Wang, Hao-Jie Li. Blind Image Deblurring via Adaptive Optimization with Flexible Sparse Structure Control[J]. Journal of Computer Science and Technology, 2019, 34(3): 609-621. DOI: 10.1007/s11390-019-1930-z
    [3]Geng Lin, Jian Guan. A Binary Particle Swarm Optimization for the Minimum Weight Dominating Set Problem[J]. Journal of Computer Science and Technology, 2018, 33(2): 305-322. DOI: 10.1007/s11390-017-1781-4
    [4]Xiao-Hu Yan, Fa-Zhi He, Yi-Lin Chen. A Novel Hardware/Software Partitioning Method Based on Position Disturbed Particle Swarm Optimization with Invasive Weed Optimization[J]. Journal of Computer Science and Technology, 2017, 32(2): 340-355. DOI: 10.1007/s11390-017-1714-2
    [5]Hua-Zheng Du, Na Xia, Jian-Guo Jiang, Li-Na Xu, Rong Zheng. A Monte Carlo Enhanced PSO Algorithm for Optimal QoM in Multi-Channel Wireless Networks[J]. Journal of Computer Science and Technology, 2013, 28(3): 553-563. DOI: 10.1007/s11390-013-1355-z
    [6]Yi-Fei Chen, Xiao-Lin Qin, Liang Liu, Bo-Han Li. Fuzzy Distance-Based Range Queries over Uncertain Moving Objects[J]. Journal of Computer Science and Technology, 2012, (2): 376-396. DOI: 10.1007/s11390-012-1229-9
    [7]Xu Sun, Hou-Feng Wang, Bo Wang. Predicting Chinese Abbreviations from Definitions: An Empirical Learning Approach Using Support Vector Regression[J]. Journal of Computer Science and Technology, 2008, 23(4): 602-611.
    [8]Anwar M. Mirza, Asmatullah Chaudhry, Badre Munir. Spatially Adaptive Image Restoration Using Fuzzy Punctual Kriging[J]. Journal of Computer Science and Technology, 2007, 22(4): 580-589.
    [9]Menq-Wen Lin, K. Robert Lai, Ting-Jung Yu. Fuzzy Constraint-Based Agent Negotiation[J]. Journal of Computer Science and Technology, 2005, 20(3): 319-330.
    [10]Gao Wen, Chen Xilin. A Stochastic Approach for Blurred Image Restoration and Optical Flow Computation on Field Image Sequence[J]. Journal of Computer Science and Technology, 1997, 12(5): 385-399.

Catalog

    Article views (24) PDF downloads (1901) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return