We use cookies to improve your experience with our site.

利用迭代滤波和神经网络对非平稳信号进行预测和恢复的两阶段策略

A 2-Stage Strategy for Non-Stationary Signal Prediction and Recovery Using Iterative Filtering and Neural Network

  • 摘要: 预测未来信息并恢复时间序列中的缺失数据是各种应用领域面临的两项重要任务。它们经常受到很大的挑战,特别是当信号是具有非线性和非平稳时,这在实践中很常见。在本文中,我们提出了一种称为IF2FNN的混合两阶段方法来预测(包括短期和长期预测)并恢复一般类型的时间序列。在第一阶段,我们通过迭代滤波(IF)方法将原始非平稳序列分解为几个“近似平稳”本征模态函数(IMF)。在第二阶段,所有IMF都作为输入馈送到基于机器的神经网络模型进行预测和恢复。我们使用五组数据集进行测试,包括人工构造信号(ACS)和四个真实世界信号,包括:日照长度(LOD),北半球的土地-海洋温度指数(NHLTI),对流层月平均温度(TMMT)和全国证券交易商协会自动报价指数(纳斯达克)。将实验结果与其他主流方法的结果进行了比较得出:在相同条件下,根据平均绝对误差(MAE),均方根误差(RMSE)和平均绝对百分比误差(MAPE)等各种指标,本文所提出的方法优于其他方法进行预测和恢复。目的:本文主要解决对非线性、非平稳时间序列数据的预测和恢复问题。创新点:本论文创新点在于:(1)使用迭代滤波算法对时间序列进行分解,用于降低非平稳性的影响;(2)数据预测和恢复模型使用改进的神经网络模型,该模型比传统的神经网络具有更强的非线性表达能力。方法:迭代滤波算法(IF)+改进的神经网络模型(FNN)结论:本论文提出的方法在设计上对时间序列数据的非平稳性,预测和恢复能力的非线性性都有较强的优势。5组数据,包括1组人为构造数据和4组真实数据也验证了该结论。

     

    Abstract: Predicting the future information and recovering the missing data for time series are two vital tasks faced in various application fields. They are often subjected to big challenges, especially when the signal is nonlinear and nonstationary which is common in practice. In this paper, we propose a hybrid 2-stage approach, named IF2FNN, to predict (including short-term and long-term predictions) and recover the general types of time series. In the first stage, we decompose the original non-stationary series into several “quasi stationary” intrinsic mode functions (IMFs) by the iterative filtering (IF) method. In the second stage, all of the IMFs are fed as the inputs to the factorization machine based neural network model to perform the prediction and recovery. We test the strategy on five datasets including an artificial constructed signal (ACS), and four real-world signals: the length of day (LOD), the northern hemisphere land-ocean temperature index (NHLTI), the troposphere monthly mean temperature (TMMT), and the national association of securities dealers automated quotations index (NASDAQ). The results are compared with those obtained from the other prevailing methods. Our experiments indicate that under the same conditions, the proposed method outperforms the others for prediction and recovery according to various metrics such as mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE).

     

/

返回文章
返回