车辆环境中边缘运算的应用:对比研究和主要问题
Edge Computing Based Applications in Vehicular Environments: Comparative Study and Main Issues
-
摘要: 尽管付出了极大的努力,车载自组织网络(VANETs)仍然面临许多问题,诸如:网络性能,网络可扩展性和场景感知。为了克服这些问题,提出了很多解决方案,其中,作为云计算的扩展的边缘计算就是其一。使用边缘运算,通信,存储和计算能力拉近了终端用户之间的距离。这能给全球车辆网络带来很多好处,例如,低延迟,网络卸载和场景感知(地点,环境因素等等)。已有很多边缘计算方法,例如:移动边缘运算(MEC),雾计算(FC)和微云计算(cloudlet)。介绍车辆环境背景之后,本文旨在研究和对比这些不同的技术。具体地,本文分析了它们的主要特征,以及在VANETs中最先进的应用。此外,对MEC,FC和微云运算进行分类,并且探讨了对于不同类型的车辆应用而言,它们的适用水平。最后,我们讨论了边缘计算和VANET领域的一些挑战及其未来的发展方向。Abstract: Despite the expanded efforts, the vehicular ad-hoc networks (VANETs) are still facing many challenges such as network performances, network scalability and context-awareness. Many solutions have been proposed to overcome these obstacles, and the edge computing, an extension of the cloud computing, is one of them. With edge computing, communication, storage and computational capabilities are brought closer to end users. This could offer many benefits to the global vehicular network including, for example, lower latency, network off-loading and context-awareness (location, environment factors, etc.). Different approaches of edge computing have been developed:mobile edge computing (MEC), fog computing (FC) and cloudlet are the main ones. After introducing the vehicular environment background, this paper aims to study and compare these different technologies. For that purpose their main features are compared and the state-ofthe-art applications in VANETs are analyzed. In addition, MEC, FC, and cloudlet are classified and their suitability level is debated for different types of vehicular applications. Finally, some challenges and future research directions in the fields of edge computing and VANETs are discussed.
-
Keywords:
- cloud computing /
- edge computing /
- fog computing /
- cloudlet /
- vehicular network
-
-
[1] Vijayakumar P, Azees M, Kannan A, Deborah L J. Dual authentication and key management techniques for secure data transmission in vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(4):1015-1028.
[2] Zheng K, Zheng Q, Chatzimisios P, Xiang W, Zhou Y. Heterogeneous vehicular networking:A survey on architecture, challenges, and solutions. IEEE Communications Surveys & Tutorials, 2015, 17(4):2377-2396.
[3] Bouali T, Senouci S M. A fuzzy logic-based communication medium selection for QoS preservation in vehicular networks. In Proc. the 5th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications, November 2015, pp.101-108.
[4] He D, Zeadally S, Xu B, Huang X. An efficient identitybased conditional privacy-preserving authentication scheme for vehicular ad hoc networks. IEEE Transactions on Information Forensics and Security, 2015, 10(12):2681-2691.
[5] La Vinh H, Cavalli A. Security attacks and solutions in vehicular ad hoc networks:A survey. International Journal on Ad Hoc Networking Systems, 2014, 4(2):1-20.
[6] Raw R S, Kumar M, Singh N. Security challenges, issues and their solutions for VANET. International Journal of Network Security & Its Applications, 2013, 5(5):95-105.
[7] Liang W, Li Z, Zhang H, Wang S, Bie R. Vehicular ad hoc networks:Architectures, research issues, methodologies, challenges, and trends. International Journal of Distributed Sensor Networks, 2015, 11:Article No. 745303.
[8] Rasheed A, Gillani S, Ajmal S, Qayyum A. Vehicular ad hoc network (VANET):A survey, challenges, and applications. In Proc. the 2nd Int. Workshop on Vehicular Ad-Hoc Networks for Smart Cities, April 2016, pp.39-51.
[9] Hussain R, Son J, Eun H, Kim S, Oh H. Rethinking vehicular communications:Merging VANET with cloud computing. In Proc. the 4th IEEE International Conference on Cloud Computing Technology and Science, December 2012, pp.606-609.
[10] Jabbarpour M R, Marefat A, Jalooli A, Zarrabi H. Couldbased vehicular networks:A taxonomy, survey, and conceptual hybrid architecture. Wireless Networks, 2019, 25(1):335-354.
[11] Shi W, Cao J, Zhang Q, Li Y, Xu L. Edge computing:Vision and challenges. IEEE Internet of Things Journal, 2016, 3(5):637-646.
[12] Ha K, Pillai P, Lewis G, Simanta S, Clinch S, Davies N, Satyanarayanan M. The impact of mobile multimedia applications on data center consolidation. In Proc. the 2013 IEEE International Conference on Cloud Engineering, March 2013, pp.166-176.
[13] Dolui K, Datta S K. Comparison of edge computing implementations:Fog computing, cloudlet and mobile edge computing. In Proc. the 2017 Global Internet of Things Summit, June 2017, Article No. 77.
[14] Baktir A C, Ozgovde A, Ersoy C. How can edge computing benefit from software-defined networking:A survey, use cases, and future directions. IEEE Communications Surveys & Tutorials, 2017, 19(4):2359-2391.
[15] Wang S, Zhang X, Zhang Y, Wang L, Yang J, Wang W. A survey on mobile edge networks:Convergence of computing, caching and communications. IEEE Access, 2017, 5:6757-6779.
[16] Borcoci E, Vochin M, Obreja S. Mobile edge computing versus fog computing in Internet of Vehicles. In Proc. the 10th International Conference on Advances in Future Internet, September 2018, pp.8-15.
[17] Yaqoob I, Ahmad I, Ahmed E, Gani A, Imran M, Guizani N. Overcoming the key challenges to establishing vehicular communication:Is SDN the answer? IEEE Communications Magazine, 2017, 55(7):128-134.
[18] Huang X, Yu R, Kang J, He Y, Zhang Y. Exploring mobile edge computing for 5G-enabled software defined vehicular networks. IEEE Wireless Communications, 2017, 24(6):55-63.
[19] Anaya J J, Merdrignac P, Shagdar O, Nashashibi F, Naranjo J E. Vehicle to pedestrian communications for protection of vulnerable road users. In Proc. the 2014 IEEE Intelligent Vehicles Symposium, June 2014, pp.1037-1042.
[20] Ota Y, Taniguchi H, Nakajima T, Liyanage K M, Baba J, Yokoyama A. Autonomous distributed V2G (vehicle-togrid) satisfying scheduled charging. IEEE Transactions on Smart Grid, 2012, 3(1):559-564.
[21] Tomar R, Prateek M, Sastry G H. Vehicular ad hoc network (vanet)-An introduction. International Journal of Control Theory and Applications, 2016, 9(18):8883-8888.
[22] Bergenhem C, Shladover S, Coelingh E, Englund C, TsugAwa S. Overview of platooning systems. In Proc. the 19th ITS World Congress, October 2012, Article No. EU-00336.
[23] Fagnant D J, Kockelman K M. The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios. Transportation Research Part C:Emerging Technologies, 2014, 40:1-13.
[24] Umamaheswari S, Priya R M. An efficient healthcare monitoring system in vehicular ad hoc networks. International Journal of Computer Applications, 2013, 78(7):45-49.
[25] Liu L, Zhang X, Qiao M, Shi W. SafeShareRide:Edgebased attack detection in ridesharing services. In Proc. the 2018 IEEE/ACM Symposium on Edge Computing, October 2018, pp.17-29.
[26] Satyanarayanan M, Bahl P, Cáceres R, Davies N. The case for VM-based cloudlets in mobile computing. IEEE Pervasive Computing, 2009, 8(4):14-23.
[27] Satyanarayanan M. The emergence of edge computing. IEEE Computer, 2017, 50(1):30-39.
[28] Bilal K, Khalid O, Erbad A, Khan S U. Potentials, trends, and prospects in edge technologies:Fog, cloudlet, mobile edge, and micro data centers. Computer Networks, 2018, 130:94-120.
[29] Jelassi S, Bouzid A, Youssef H. QoE-driven video streaming system over cloud-based VANET. In Proc. the 8th International Workshop on Communication Technologies for Vehicles, May 2015, pp.84-93.
[30] Garai M, Rekhis S, Boudriga N. Communication as a service for cloud VANETs. In Proc. the 2015 IEEE Symposium on Computers and Communication, July 2015, pp.371-377.
[31] Yu R, Ding J, Huang X, Zhou M T, Gjessing S, Zhang Y. Optimal resource sharing in 5G-enabled vehicular networks:A matrix game approach. IEEE Transactions on Vehicular Technology, 2016, 65(10):7844-7856.
[32] Otomo M, Sato G, Shibata Y. In-vehicle cloudlet computing based on delay tolerant network protocol for disaster information system. In Proc. the 11th International Conference on Broad-Band and Wireless Computing, Communication and Applications, November 2016, pp.255-266.
[33] Hagenauer F, Sommer C, Higuchi T, Altintas O, Dressler F. Vehicular micro clouds as virtual edge servers for efficient data collection. In Proc. the 2nd ACM International Workshop on Smart, Autonomous, and Connected Vehicular Systems and Services, October 2017, pp.31-35.
[34] Wang C, Li Y, Jin D, Chen S. On the serviceability of mobile vehicular cloudlets in a large-scale urban environment. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10):2960-2970.
[35] Li L, Li Y, Hou R. A novel mobile edge computing-based architecture for future cellular vehicular networks. In Proc. the 2017 IEEE Wireless Communications and Networking Conference, March 2017, Article No. 352.
[36] Yuan Q, Zhou H, Li J, Liu Z, Yang F, Shen X S. Toward efficient content delivery for automated driving services:An edge computing solution. IEEE Network, 2018, 32(1):80-86.
[37] Liu J, Wan J, Zeng B, Wang Q, Song H, Qiu M. A scalable and quick-response software defined vehicular network assisted by mobile edge computing. IEEE Communications Magazine, 2017, 55(7):94-100.
[38] Zhang K, Mao Y, Leng S, He Y, Zhang Y. Mobileedge computing for vehicular networks:A promising network paradigm with predictive off-loading. IEEE Vehicular Technology Magazine, 2017, 12(2):36-44.
[39] Huang C M, Chiang M S, Dao D T, Su W L, Xu S, Zhou H. V2V data offloading for cellular network based on the software defined network (SDN) inside mobile edge computing (MEC) architecture. IEEE Access, 2018, 6:17741-17755.
[40] Vigneri L, Spyropoulos T, Barakat C. Quality of experienceaware mobile edge caching through a vehicular cloud. In Proc. the 20th ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems, November 2017, pp.91-98.
[41] Datta S K, Bonnet C, Haerri J. Fog computing architecture to enable consumer centric Internet of things services. In Proc. the 2015 International Symposium on Consumer Electronics, June 2015, Article No. 15.
[42] Wang X, Ning Z, Wang L. Offloading in Internet of Vehicles:A fog-enabled real-time traffic management system. IEEE Transactions on Industrial Informatics, 2018, 14(10):4568-4578.
[43] Sookhak M, Yu F R, He Y, Talebian H, Safa N S, Zhao N, Khan M K, Kumar N. Fog vehicular computing:Augmentation of fog computing using vehicular cloud computing. IEEE Vehicular Technology Magazine, 2017, 12(3):55-64.
[44] Hou X, Li Y, Chen M, Wu D, Jin D, Chen S. Vehicular fog computing:A viewpoint of vehicles as the infrastructures. IEEE Transactions on Vehicular Technology, 2016, 65(6):3860-3873.
[45] Zhang W, Zhang Z, Chao H C. Cooperative fog computing for dealing with big data in the Internet of Vehicles:Architecture and hierarchical resource management. IEEE Communications Magazine, 2017, 55(12):60-67.
[46] Darwish T S, Bakar K A. Fog based intelligent transportation big data analytics in the Internet of Vehicles environment:Motivations, architecture, challenges, and critical issues. IEEE Access, 2018, 6:15679-15701.
[47] Yu R, Zhang Y, Gjessing S, Xia W, Yang K. Toward cloudbased vehicular networks with efficient resource management. IEEE Network, 2013, 27(5):48-55.
[48] Grover J, Jain A, Singhal S, Yadav A. Real-time VANET applications using fog computing. In Proc. the 1st International Conference on Smart System, Innovations and Computing, April 2017, pp.683-691.
[49] Hasrouny H, Samhat A E, Bassil C, Laouiti A. VANet security challenges and solutions:A survey. Vehicular Communications, 2017, 7:7-20.
[50] Wang L, Liu G, Sun L. A secure and privacy-preserving navigation scheme using spatial crowdsourcing in fog-based VANETs. Sensors, 2017, 17(4):Article No. 668.
[51] Mukherjee M, Matam R, Shu L, Maglaras L, Ferrag M A, Choudhury N, Kumar V. Security and privacy in fog computing:Challenges. IEEE Access, 2017, 5:19293-19304.
[52] Huang C, Lu R, Choo K K R. Vehicular fog computing:Architecture, use case, and security and forensic challenges. IEEE Communications Magazine, 2017, 55(11):105-111.
[53] Shaukat U, Ahmed E, Anwar Z, Xia F. Cloudlet deployment in local wireless networks:Motivation, architectures, applications, and open challenges. Journal of Network and Computer Applications, 2016, 62:18-40.
[54] Alouache L, Nguyen N, Aliouat M, Chelouah R. Nouveau protocole robuste pour les communications dans l'IoV. Internet des objets, 2017, 17-1(1):3-19. (in French)
[55] Oliveira R, Montez C, Boukerche A, Wangham M S. Reliable data dissemination protocol for VANET traffic safety applications. Ad Hoc Networks, 2017, 63:30-44.
[56] Rasool I U, Zikria Y B, Kim S W. A review of wireless access vehicular environment multichannel operational medium access control protocols:Quality-of-service analysis and other related issues. International Journal of Distributed Sensor Networks, 2017, 13(5):Article No. 23.
[57] Li H, Shou G, Hu Y, Guo Z. Mobile edge computing:Progress and challenges. In Proc. the 4th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering, March 2016, pp.83-84.
[58] Mekki T, Jabri I, Rachedi A, ben Jemaa M. Vehicular cloud networks:Challenges, architectures, and future directions. Vehicular Communications, 2017, 9:268-280.
[59] Skarlat O, Nardelli M, Schulte S, Dustdar S. Towards QoSaware fog service placement. In Proc. the 1st IEEE International Conference on Fog and Edge Computing, May 2017, pp.89-96.
[60] Jiang Y, Huang Z, Tsang D H. Challenges and solutions in fog computing orchestration. IEEE Network, 2018, 32(3):122-129.
[61] Ahmed E, Rehmani M H. Mobile edge computing:Opportunities, solutions, and challenges. Future Generation Computer Systems, 2017, 70:59-63.
[62] Zhang H, Liu N, Chu X, Long K, Aghvami A H, Leung V C. Network slicing based 5G and future mobile networks:Mobility, resource management, and challenges. IEEE Communications Magazine, 2017, 55(8):138-145.
[63] Chang C Y, Alexandris K, Nikaein N, Katsalis K, Spyropoulos T. MEC architectural implications for LTE/LTEA networks. In Proc. the 2016 Workshop on Mobility in the Evolving Internet Architecture, October 2016, pp.13-18.
-
期刊类型引用(37)
1. Tidiane Sylla, Leo Mendiboure, Mohamed Aymen Chalouf, et al. User-Centric IoT Service Placement in Shared Edge Computing Infrastructures. SN Computer Science, 2025, 6(5) 必应学术
2. Syed Aizaz Ul Haq, Muqaddas Imran, Nadir Shah, et al. SDN-Based Edge Computing in Vehicular Communication Networks: A Survey of Existing Approaches. IEEE Access, 2025, 13: 74252. 必应学术
3. Rodrigo Rosmaninho, Duarte Raposo, Pedro Rito, et al. Edge-Cloud Continuum Orchestration of Critical Services: A Smart-City Approach. IEEE Transactions on Services Computing, 2025, 18(3): 1381. 必应学术
4. Ossama Nazih, Nabil Benamar, Hanane Lamaazi, et al. Toward Secure and Trustworthy Vehicular Fog Computing: A Survey. IEEE Access, 2024, 12: 35154. 必应学术
5. Francesco Tusa, Stuart Clayman, Alina Buzachis, et al. Microservices and serverless functions—lifecycle, performance, and resource utilisation of edge based real-time IoT analytics. Future Generation Computer Systems, 2024, 155: 204. 必应学术
6. Marieh Talebkhah, Aduwati Sali, Vahid Khodamoradi, et al. Task offloading for edge-IoV networks in the industry 4.0 era and beyond: A high-level view. Engineering Science and Technology, an International Journal, 2024, 54: 101699. 必应学术
7. Mayssa Dardour, Mohamed Mosbah, Toufik Ahmed. Improving Emergency Response: An In-Depth Analysis of an ITS-G5 Messaging Strategy for Bus Blockage Emergencies at Level Crossings. Journal of Network and Systems Management, 2024, 32(2) 必应学术
8. Juan Zhang, Yulei Wu, Geyong Min, et al. Neural Network-Based Game Theory for Scalable Offloading in Vehicular Edge Computing: A Transfer Learning Approach. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(7): 7431. 必应学术
9. Muhammad Ali Naeem, Sushank Chaudhary, Yahui Meng. Road to Efficiency: V2V Enabled Intelligent Transportation System. Electronics, 2024, 13(13): 2673. 必应学术
10. Marieh Talebkhah, Aduwati Sali, Meisam Gordan, et al. Comprehensive Review on Development of Smart Cities Using Industry 4.0 Technologies. IEEE Access, 2023, 11: 91981. 必应学术
11. Kobra Behravan, Nazbanoo Farzaneh, Mohsen Jahanshahi, et al. A comprehensive survey on using fog computing in vehicular networks. Vehicular Communications, 2023, 42: 100604. 必应学术
12. Fengchun Liu, Meng Li, Xiaoxiao Liu, et al. A Review of Federated Meta-Learning and Its Application in Cyberspace Security. Electronics, 2023, 12(15): 3295. 必应学术
13. Romain Dulout, Leo Mendiboure, Yannis Pousset, et al. Non-Orthogonal Multiple Access for Offloading in Multi-Access Edge Computing: A Survey. IEEE Access, 2023, 11: 118983. 必应学术
14. Ermioni Qafzezi, Kevin Bylykbashi, Phudit Ampririt, et al. A QoS-Aware Fuzzy-Based System for Assessment of Edge Computing Resources in SDN-VANETs. International Journal of Mobile Computing and Multimedia Communications, 2022, 12(4): 1. 必应学术
15. Aisha Muhammad A. Hamdi, Farookh Khadeer Hussain, Omar K. Hussain. Task offloading in vehicular fog computing: State-of-the-art and open issues. Future Generation Computer Systems, 2022, 133: 201. 必应学术
16. Ermioni Qafzezi, Kevin Bylykbashi, Phudit Ampririt, et al. An Intelligent Approach for Cloud-Fog-Edge Computing SDN-VANETs Based on Fuzzy Logic: Effect of Different Parameters on Coordination and Management of Resources. Sensors, 2022, 22(3): 878. 必应学术
17. Lina Liu. The artistic design of user interaction experience for mobile systems based on context-awareness and machine learning. Neural Computing and Applications, 2022, 34(9): 6721. 必应学术
18. Tidiane Sylla, Leo Mendiboure, Sassi Maaloul, et al. Multi-Connectivity for 5G Networks and Beyond: A Survey. Sensors, 2022, 22(19): 7591. 必应学术
19. Ermioni Qafzezi, Kevin Bylykbashi, Phudit Ampririt, et al. FSAQoS. International Journal of Distributed Systems and Technologies, 2022, 13(1): 1. 必应学术
20. M. Almutiq, L. Sellami, B. Alaya. Dynamic Vehicular Clustering Enhancing Video on Demand Services Over Vehicular Ad-hoc Networks. Computers, Materials & Continua, 2022, 72(2): 3493. 必应学术
21. Bo Li, Feilong Chen, Ziyi Peng, et al. Mobility-aware dynamic offloading strategy for C-V2X under multi-access edge computing. Physical Communication, 2021, 49: 101446. 必应学术
22. Ali Hassan Sodhro, Joel J. P. C. Rodrigues, Sandeep Pirbhulal, et al. Link Optimization in Software Defined IoV Driven Autonomous Transportation System. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3511. 必应学术
23. Firdose Saeik, Marios Avgeris, Dimitrios Spatharakis, et al. Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control theory solutions. Computer Networks, 2021, 195: 108177. 必应学术
24. Dun Liang, Yuan-Chen Guo, Shao-Kui Zhang, et al. Lane Detection: A Survey with New Results. Journal of Computer Science and Technology, 2020, 35(3): 493. 必应学术
25. Jakob Mass, Satish Narayana Srirama, Chii Chang. STEP-ONE: Simulated testbed for Edge-Fog processes based on the Opportunistic Network Environment simulator. Journal of Systems and Software, 2020, 166: 110587. 必应学术
26. Leo Mendiboure, Mohamed Aymen Chalouf, Francine Krief. A SDN-Based Pub/Sub Middleware for Geographic Content Dissemination in Internet of Vehicles. 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), 必应学术
27. El-Hacen Diallo, Omar Dib, Khaldoun Al Agha. The journey of Blockchain inclusion in Vehicular Networks: A Taxonomy. 2021 Third International Conference on Blockchain Computing and Applications (BCCA), 必应学术
28. Léo Mendiboure, Mohamed Aymen Chalouf, Francine Krief. Intelligent Network Management and Control. 必应学术
29. Francine Krief, Hasnaâ Aniss, Marion Berbineau, et al. Intelligent Network Management and Control. 必应学术
30. Jiapeng Li, Hua Huang. Research Study on Edge Computing. 2021 IEEE 6th International Conference on Smart Cloud (SmartCloud), 必应学术
31. Weimin Gan, Juan Li, Yan Guo. Research on ant colony optimization network access algorithm based on model of vehicle fog calculation. 2021 2nd International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), 必应学术
32. Sabri Khamari, Toufik Ahmed, Mohamed Mosbah. Edge-based Safety Intersection Assistance Architecture for Connected Vehicles. 2021 International Wireless Communications and Mobile Computing (IWCMC), 必应学术
33. Radheshyam Singh, Mohamed Aymen Chalouf, Leo Mendiboure, et al. Towards an SDN-based Reconfigurable Edge Architecture for Railway Environment. 2024 7th International Conference on Advanced Communication Technologies and Networking (CommNet), 必应学术
34. Tidiane Sylla, Leo Mendiboure, Marion Berbineau, et al. Implementing Edge Computing Architectures for Railway Applications: An example Using the Emu5GNet Platform. 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), 必应学术
35. Bechir Alaya, Lamaa Sellami, Mutiq Al Mutiq. Advances in Computational Collective Intelligence. Communications in Computer and Information Science, 必应学术
36. Tidiane SYLLA, Mohamed Aymen CHALOUF, Léo MENDIBOURE, et al. Cooperative Intelligent Transport Systems. 必应学术
37. Catherine Nayer Tadros, Mohamed Gad, Bassem Mahmoud Mokhtar, et al. Vehicular Edge of Thing Computing for Sustainable Smart IoT Services. 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), 必应学术
其他类型引用(0)
-
其他相关附件
-
本文英文pdf
2019-4-11-9021-Highlights 点击下载(181KB)
-
计量
- 文章访问数: 127
- HTML全文浏览量: 0
- PDF下载量: 28
- 被引次数: 37