We use cookies to improve your experience with our site.

SIES:在FPGA上的脉冲卷积神经网络推理引擎的新型实现

SIES: A Novel Implementation of Spiking Convolutional Neural Network Inference Engine on Field-Programmable Gate Array

  • 摘要: 类脑计算被认为是机器学习的未来,它提供了一种新的认知计算方式。受到脉冲神经网络(SNN)在低功耗和并行计算领域的出色性能的启发,许多团队试图用硬件平台模拟SNN。然而,用拟神经形态算法训练SNN的效率还不够理想。面对这一点,迈克尔等人提出了DNN-to-SNN方法。通过这种方法,我们可以轻松地将训练好的深度神经网络(DNN)转换为SCNN(脉冲卷积神经网络)。到目前为止,有一些工作侧重于SCNN的硬件加速。本文的动机是设计一个SNN处理器来加速通过这种DNN到SNN方法获得的SNN的SNN推断。我们提出了SIES(用于SCNN加速的脉冲神经网络推理引擎)。它使用收缩阵列来完成膜电位增量计算的任务。它集成了max-pooling的可选硬件模块,以减少主机和SIES之间移动的额外数据。我们还为SIES上的卷积层设计了硬件数据建立机制,通过它我们可以最大限度地减少输入脉冲准备的时间。我们在FPGA XCVU440上实现了SIES。它支持的神经元数量高达4 K,而突触为256 K.SIES可以在200 MHz的工作频率下运行,其峰值性能为1.5625 TOPS。

     

    Abstract: Neuromorphic computing is considered to be the future of machine learning, and it provides a new way of cognitive computing. Inspired by the excellent performance of spiking neural networks (SNNs) on the fields of low-power consumption and parallel computing, many groups tried to simulate the SNN with the hardware platform. However, the efficiency of training SNNs with neuromorphic algorithms is not ideal enough. Facing this, Michael et al. proposed a method which can solve the problem with the help of DNN (deep neural network). With this method, we can easily convert a well-trained DNN into an SCNN (spiking convolutional neural network). So far, there is a little of work focusing on the hardware accelerating of SCNN. The motivation of this paper is to design an SNN processor to accelerate SNN inference for SNNs obtained by this DNN-to-SNN method. We propose SIES (Spiking Neural Network Inference Engine for SCNN Accelerating). It uses a systolic array to accomplish the task of membrane potential increments computation. It integrates an optional hardware module of max-pooling to reduce additional data moving between the host and the SIES. We also design a hardware data setup mechanism for the convolutional layer on the SIES with which we can minimize the time of input spikes preparing. We implement the SIES on FPGA XCVU440. The number of neurons it supports is up to 4 000 while the synapses are 256 000. The SIES can run with the working frequency of 200 MHz, and its peak performance is 1.562 5 TOPS.

     

/

返回文章
返回