SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Chao Wang, Yang Liu, Xiaohu Guo, Zichun Zhong, Binh Le, Zhigang Deng. Spectral Animation Compression[J]. Journal of Computer Science and Technology, 2015, 30(3): 540-552. DOI: 10.1007/s11390-015-1544-z |
[1] |
Sumner R, Popovi? J. Deformation transfer for triangle meshes. ACM Transactions on Graphics, 2004, 23(3): 399-405.
|
[2] |
Shoemake K, Duff T. Matrix animation and polar decomposition. In Proc. the Conference on Graphics Interface, May 1992, pp.258-264.
|
[3] |
Baker A. Matrix Groups: An Introduction to Lie Group Theory. Springer, 2002.
|
[4] |
Karni Z, Gotsman C. Spectral compression of mesh geometry. In Proc. the 27th Annual Conference on Computer Graphics and Interactive Techniques, July 2000, pp.279-286.
|
[5] |
Vallet B, Lévy B. Spectral geometry processing with manifold harmonics. Computer Graphics Forum, 2008, 27(2): 251-260.
|
[6] |
Karni Z, Gotsman C. Compression of soft-body animation sequences. Computers & Graphics, 2004, 28(1): 25-34.
|
[7] |
Alexa M, Müller W. Representing animations by principal components. Computer Graphics Forum, 2000, 19(3): 411-418.
|
[8] |
Váša L, Skala V. COBRA: Compression of the basis for PCA represented animations. Computer Graphics Forum, 2009, 28(6): 1529-1540.
|
[9] |
Sattler M, Sarlette R, Klein R. Simple and efficient compression of animation sequences. In Proc. the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2005, pp.209-217.
|
[10] |
Tejera M, Hilton A. Compression techniques for 3D video mesh sequences. In Articulated Motion and Deformable Objects, Perales F J, Fisher R B, Moeslund T B (eds.), Springer Berlin Heidelberg, 2012, pp.12–25.
|
[11] |
Váša L, Skala V. Combined compression and simplification of dynamic 3D meshes. Computer Animation and Virtual Worlds, 2009, 20(4): 447-456.
|
[12] |
Ibarria L, Rossignac J. Dynapack: Space-time compression of the 3D animations of triangle meshes with fixed connectivity. In Proc. the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2003, pp.126-135.
|
[13] |
Ahn J, Koh Y, Kim C. Efficient fine-granular scalable coding of 3D mesh sequences. IEEE Transactions on Multimedia, 2013, 15(3): 485-497.
|
[14] |
Khodakovsky A, Schröder P, Sweldens W. Progressive geometry compression. In Proc. the 27th Annual Conference on Computer Graphics and Interactive Techniques, July 2000, pp.271-278.
|
[15] |
Amjoun R, Straßer W. Single-rate near lossless compression of animated geometry. Computer-Aided Design, 2009, 41(10): 711-718.
|
[16] |
Stefanoski N, Ostermann J. SPC: Fast and efficient scalable predictive coding of animated meshes. Computer Graphics Forum, 2010, 29(1): 101-116.
|
[17] |
Váša L, Skala V. CODDYAC: Connectivity driven dynamic mesh compression. In Proc. 3DTV Conference, May 2007.
|
[18] |
Váša L, Skala V. Geometry-driven local neighbourhood based predictors for dynamic mesh compression. Computer Graphics Forum, 2010, 29(6): 1921-1933.
|
[19] |
Lee D, Sull S, Kim C. Progressive 3D mesh compression using MOG-based Bayesian entropy coding and gradual prediction. The Visual Computer, 2014, 30(10): 1077-1091.
|
[20] |
Zhang J, Zheng C, Hu X. Triangle mesh compression along the Hamiltonian cycle. The Visual Computer, 2013, 29(6/7/8): 717-727.
|
[21] |
James D, Twigg C. Skinning mesh animations. ACM Transactions on Graphics, 2005, 24(3): 399-407.
|
[22] |
Mamou K, Zaharia T, Prêteux F. A skinning approach for dynamic 3D mesh compression. Computer Animation and Virtual Worlds, 2006, 17(3/4): 337-346.
|
[23] |
Mamou K, Zaharia T, Prêteux F. FAMC: The MPEG-4 standard for animated mesh compression. In Proc. the 15th IEEE International Conference on Image Processing, October 2008, pp.2676-2679.
|
[24] |
Le B, Deng Z. Smooth skinning decomposition with rigid bones. ACM Transactions on Graphics, 2012, 31(6): Article No. 199.
|
[25] |
Kavan L, Sloan P, O'Sullivan C. Fast and efficient skinning of animated meshes. Computer Graphics Forum, 2010, 29(2): 327-336.
|
[26] |
Váša L, Skala V. A perception correlated comparison method for dynamic meshes. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(2): 220-230.
|
[27] |
Váša L, Pet?Ík O. Optimising perceived distortion in lossy encoding of dynamic meshes. Computer Graphics Forum, 2011, 30(5): 1439-1449.
|
[28] |
Zhang H, Kaick O, Dyer R. Spectral methods for mesh processing and analysis. In Proc. EUROGRAPHICS, Sept. 2007.
|
[29] |
Taubin G. A signal processing approach to fair surface design. In Proc. the 22nd Annual Conference on Computer Graphics and Interactive Techniques, September 1995, pp.351-358.
|
[30] |
Liu R, Zhang H. Mesh segmentation via spectral embedding and contour analysis. Computer Graphics Forum, 2007, 26(3): 385-394.
|
[31] |
Cotting D, Weyrich T, Pauly M, Markus G. Robust watermarking of point-sampled geometry. In Proc. Shape Modeling International, June 2004, pp.233-242.
|
[32] |
Dong S, Bremer P, Garland M, Pascucci V, Hart J. Spectral surface quadrangulation. ACM Transactions on Graphics, 2006, 25(3): 1057-1066.
|
[33] |
Reuter M, Wolter F, Peinecke N. Laplace-Beltrami spectra as “Shape-DNA” of surfaces and solids. Computer-Aided Design, 2006, 38(4): 342-366.
|
[34] |
Liu Y, Prabhakaran B, Guo X. Point-based manifold harmonics. IEEE Transaction on Visualization and Computer Graphics, 2012, 18(10): 1693-1703.
|
[35] |
Belkin M, Niyogi P. Towards a theoretical foundation for Laplacian-based manifold methods. In Learning Theory, Auer P, Meir R (eds.), Springer Berlin Heidelberg, 2005, pp.486-500.
|
[36] |
Belkin M, Sun J, Wang Y. Constructing Laplace operator from point clouds in Rd. In Proc. the 20th Annual ACMSIAM Symposium on Discrete Algorithms, January 2009, pp.1031-1040.
|
[37] |
Tapp K. Matrix Groups for Undergraduates. American Mathematical Society, 2005.
|
[1] | Guang-Hao Ma, Ming-Li Zhang, Xue-Mei Li, Cai-Ming Zhang. Image Smoothing Based on Image Decomposition and Sparse High Frequency Gradient[J]. Journal of Computer Science and Technology, 2018, 33(3): 502-510. DOI: 10.1007/s11390-018-1834-3 |
[2] | Cui-Cui Zhang, Zhi-Lei Liu. Prior-Free Dependent Motion Segmentation Using Helmholtz-Hodge Decomposition Based Object-Motion Oriented Map[J]. Journal of Computer Science and Technology, 2017, 32(3): 520-535. DOI: 10.1007/s11390-017-1741-z |
[3] | Luke Kien-Weng Tan, Jin-Cheon Na, Yin-Leng Theng, Kuiyu Chang. Phrase-Level Sentiment Polarity Classification Using Rule-Based Typed Dependencies and Additional Complex Phrases Consideration[J]. Journal of Computer Science and Technology, 2012, 27(3): 650-666. DOI: 10.1007/s11390-012-1251-y |
[4] | Yuan Ping, Ying-Jie Tian, Ya-Jian Zhou, Yi-Xian Yang. Convex Decomposition Based Cluster Labeling Method for Support Vector Clustering[J]. Journal of Computer Science and Technology, 2012, (2): 428-442. DOI: 10.1007/s11390-012-1232-1 |
[5] | Yong Dou, Jie Zhou, Gui-Ming Wu, Jing-Fei Jiang, Yuan-Wu Lei, Shi-Ce Ni. A Unified Co-Processor Architecture for Matrix Decomposition[J]. Journal of Computer Science and Technology, 2010, 25(4): 874-885. DOI: 10.1007/s11390-010-1068-5 |
[6] | Wei-Wei Xu, Kun Zhou. Gradient Domain Mesh Deformation - A Survey[J]. Journal of Computer Science and Technology, 2009, 24(1): 6-18. |
[7] | Liang Xundong, Li Bin, Liu Shenquan. Three-Dimensional Vector Field Visualization Based on Tensor Decomposition[J]. Journal of Computer Science and Technology, 1996, 11(5): 452-460. |
[8] | Ma Guangsheng, Zhang Zhongwei, Huang Shaobin. A New Method of Solving Kernels in Algebraic Decomposition for the Synthesis of Logic Cell Array[J]. Journal of Computer Science and Technology, 1995, 10(6): 569-573. |
[9] | Zheng Fangqing. The Decomposition of Belief Function[J]. Journal of Computer Science and Technology, 1992, 7(2): 189-192. |
[10] | Xu Xiaoshu. Simplification of Multivalued Sequential SULM Network by Using Cascade Decomposition[J]. Journal of Computer Science and Technology, 1986, 1(4): 84-95. |