
Performance under different protocols. (a) Online dataset, NCR (normalized cumulative rank), k = 64. (b) Online dataset, squared error, k = 64. (c) IBM dataset, NCR, k = 64. (d) IBM dataset, squared error, k = 64.
Figures of the Article
-
Innovations: sacrificing non-sensitive privacy for more accurate results.
-
Illustration of UISM.
-
Illustration of encoding and perturbation in IHFO. (a) Process of IHFO. (b) Mapping Hadamard matrix.
-
Performance under different protocols. (a) Online dataset, NCR (normalized cumulative rank), k = 64. (b) Online dataset, squared error, k = 64. (c) IBM dataset, NCR, k = 64. (d) IBM dataset, squared error, k = 64.
-
Singleton identification for the IBM dataset. (a) IBM dataset, NCR (normalized cumulative rank), k = 64. (b) IBM dataset, SE (squared error), k = 64. (c) IBM dataset, KLD (Kullback-Leibler divergence), k = 64. (d) IBM dataset, NCR, k = 32. (e) IBM dataset, SE, k = 32. (f) IBM dataset, KLD, k = 32.
-
Singleton identification for the Online dataset. (a) Online dataset, NCR, k = 64. (b) Online dataset, SE, k = 64. (c) Online dataset, KLD, k = 64. (d) Online dataset, NCR, k = 32. (e) Online dataset, SE, k = 32. (f) Online dataset, KLD, k = 32.
-
Itemset mining results for the IBM dataset. (a) IBM dataset, NCR, k = 64. (b) IBM dataset, SE, k = 64. (c) IBM dataset, KLD, k = 64. (d) IBM dataset, NCR, k = 32. (e) IBM dataset, SE, k = 32. (f) IBM dataset, KLD, k = 32.
-
Itemset mining results for the Online dataset. (a) Online dataset, NCR, k = 64. (b) Online dataset, SE, k = 64. (c) Online dataset, KLD, k = 64. (d) Online dataset, NCR, k = 32. (e) Online dataset, SE, k = 32. (f) Online dataset, KLD, k = 32.
-
(a) NCR and (b) SE of varying dataset division η under different ε.
Others
-
External link to attachment
https://rdcu.be/dxI8J -
PDF format
2023-6-13-1346-Highlights 150KB -
Compressed file
2023-6-13-1346-Highlights 37KB
Related articles
-
2022, 37(2): 423-442. DOI: 10.1007/s11390-021-0263-x
-
2020, 35(5): 1099-1114. DOI: 10.1007/s11390-020-9828-3
-
2018, 33(3): 502-510. DOI: 10.1007/s11390-018-1834-3
-
2017, 32(2): 368-385. DOI: 10.1007/s11390-017-1726-y
-
2015, 30(6): 1370-1377. DOI: 10.1007/s11390-015-1604-4
-
2015, 30(5): 957-968. DOI: 10.1007/s11390-015-1574-6
-
2015, 30(4): 696-712. DOI: 10.1007/s11390-015-1555-9
-
2008, 23(1): 77-02.
-
2007, 22(5): 725-735.
-
2007, 22(2): 334-337.