SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Bei-Ji Zou, Yao Chen, Cheng-Zhang Zhu, Zai-Liang Chen, Zi-Qian Zhang. Supervised Vessels Classification Based on Feature Selection[J]. Journal of Computer Science and Technology, 2017, 32(6): 1222-1230. DOI: 10.1007/s11390-017-1796-x |
[1] |
Niemeijer M, van Ginneken B, Abràmoff M D. Automatic classification of retinal vessels into arteries and veins. In Proc. SPIE7260, Medical Imaging 2009:Computer-Aided Diagnosis, October 2009, p.72601F.
|
[2] |
Grisan E, Ruggeri A. A divide et impera strategy for automatic classification of retinal vessels into arteries and veins. In Proc. the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sept. 2003, pp.890-893.
|
[3] |
Hubbard L D, Brothers R J, King W N, Clegg L X, Klein R, Cooper L S et al. Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the atherosclerosis risk in communities study. Ophthalmology, 1999, 106(12):2269-2280.
|
[4] |
Wong T Y, Knudtson M D, Klein R, Klein B E K, Meuer S M, Hubbard L D. Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study:Methodology, correlation between eyes, and effect of refractive errors. Ophthalmology, 2004, 111(6):1183-1190.
|
[5] |
Aguilar W, Martinez-Perez M E, Frauel Y, Escolano F, Lozano M A, Espinosa-Romero A. Graph-based methods for retinal mosaicing and vascular characterization. In Proc. the 6th IAPR-TC-15 International Workshop on GraphBased Representations in Pattern Recognition, June 2007, pp.25-36.
|
[6] |
Rothaus K, Jiang X, Rhiem P. Separation of the retinal vascular graph in arteries and veins based upon structural knowledge. Image and Vision Computing, 2009, 27(7):864-875.
|
[7] |
Niemeijer M, Xu X, Dumitrescu A V, Gupta P, van Ginneken B et al. Automated measurement of the arteriolarto-venular width ratio in digital color fundus photographs. IEEE Transactions on Medical Imaging, 2011, 30(11):1941-1950.
|
[8] |
Dashtbozorg B, Mendonca A M, Campilho A. An automatic graph-based approach for artery/vein classification in retinal images. IEEE Transactions on Image Processing, 2014, 23(3):1073-1083.
|
[9] |
Estrada R, Allingham M J, Mettu P S, Cousins S W, Tomasi C, Farsiu S. Retinal artery-vein classification via topology estimation. IEEE Transactions on Medical Imaging, 2015, 34(12):2518-2534.
|
[10] |
Relan D, Ballerini L, Trucco E, MacGillivray T. Retinal vessel classification based on maximization of squared-loss mutual information. In Proc. Machine Intelligence and Signal Processing, October 2016, pp.77-84.
|
[11] |
Staal J, Abramoff M D, Niemeijer M, Viergever M A, Ginneken B V. Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging, 2004, 23(4):501-509.
|
[12] |
Vijayakumar V, Koozekanani D D, White R, Kohler J, Roychowdhury S, Parhi K K. Artery/vein classification of retinal blood vessels using feature selection. In Proc. the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), August 2016, pp.1320-1323.
|
[13] |
Zhu C, Zou B, Zhao R et al. Retinal vessel segmentation in colour fundus images using extreme learning machine. Computerized Medical Imaging and Graphics, 2017, 55:68-77.
|
[14] |
Abdullah M, Fraz M M, Barman S A. Localization and segmentation of optic disc in retinal images using circular Hough transform and grow-cut algorithm. https://peerj.com/articles/2003/, Sept. 2017.
|
[15] |
Telea A, van Wijk J J. An augmented fast marching method for computing skeletons and centerlines. In Proc. the Symposium on Data Visualisation, May 2002, pp.251-260.
|
[16] |
Foracchia M, Grisan E, Ruggeri A. Luminosity and contrast normalization in retinal images. Medical Image Analysis, 2005, 9(3):179-190.
|
[17] |
Soares J V B, Leandro J J G, Cesar R M, Jelinek H F, Cree M J. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging, 2006, 25(9):1214-1222.
|
[18] |
Hanchuan P, Fuhui L, Ding C. Feature selection based on mutual information:Criteria of max-dependency, maxrelevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8):1226-1238.
|
[19] |
Chhabra S, Bhushan B. Supervised pixel classification into arteries and veins of retinal images. In Proc. Innovative Applications of Computational Intelligence on Power, Energy and Controls with Their Impact on Humanity (CIPECH), November 2014, pp.59-62.
|
[1] | Shu-Zheng Liu, Shuai Ma, Han-Qing Chen, Li-Zhen Cui, Jie Ding. Combining KNN with AutoEncoder for Outlier Detection[J]. Journal of Computer Science and Technology, 2024, 39(5): 1153-1166. DOI: 10.1007/s11390-023-2403-y |
[2] | Gökçer Peynirci, Mete Eminaǧaoǧlu, Korhan Karabulut. Feature Selection for Malware Detection on the Android Platform Based on Differences of IDF Values[J]. Journal of Computer Science and Technology, 2020, 35(4): 946-962. DOI: 10.1007/s11390-020-9323-x |
[3] | Shu-Zheng Zhang, Zhen-Yu Zhao, Chao-Chao Feng, Lei Wang. A Machine Learning Framework with Feature Selection for Floorplan Acceleration in IC Physical Design[J]. Journal of Computer Science and Technology, 2020, 35(2): 468-474. DOI: 10.1007/s11390-020-9688-x |
[4] | Chao Ni, Wang-Shu Liu, Xiang Chen, Qing Gu, Dao-Xu Chen, Qi-Guo Huang. A Cluster Based Feature Selection Method for Cross-Project Software Defect Prediction[J]. Journal of Computer Science and Technology, 2017, 32(6): 1090-1107. DOI: 10.1007/s11390-017-1785-0 |
[5] | Lan Yao, Feng Zeng, Dong-Hui Li, Zhi-Gang Chen. Sparse Support Vector Machine with Lp Penalty for Feature Selection[J]. Journal of Computer Science and Technology, 2017, 32(1): 68-77. DOI: 10.1007/s11390-017-1706-2 |
[6] | Chao Han, Yun-Kun Tan, Jin-Hui Zhu, Yong Guo, Jian Chen, Qing-Yao Wu. Online Feature Selection of Class Imbalance via PA Algorithm[J]. Journal of Computer Science and Technology, 2016, 31(4): 673-682. DOI: 10.1007/s11390-016-1656-0 |
[7] | Fatemeh Azmandian, Ayse Yilmazer, Jennifer G. Dy, Javed A. Aslam, David R. Kaeli. Harnessing the Power of GPUs to Speed Up Feature Selection for Outlier Detection[J]. Journal of Computer Science and Technology, 2014, 29(3): 408-422. DOI: 10.1007/s11390-014-1439-4 |
[8] | Hyeong-Il Kim, Jae-Woo Chang. k-Nearest Neighbor Query Processing Algorithms for a Query Region in Road Networks[J]. Journal of Computer Science and Technology, 2013, 28(4): 585-596. DOI: 10.1007/s11390-013-1359-8 |
[9] | Yun-Jun Gao, Chun Li, Gen-Cai Chen, Ling Chen, Xian-Ta Jiang, Chun Chen. Efficient k-Nearest-Neighbor Search Algorithms for Historical Moving Object Trajectories[J]. Journal of Computer Science and Technology, 2007, 22(2): 232-244. |
[10] | Chen Bin, Hong Jiarong, Wang Yadong. The Minimum Feature Subset Selection Problem[J]. Journal of Computer Science and Technology, 1997, 12(2): 145-153. |