SCIE, EI, Scopus, INSPEC, DBLP, CSCD, etc.
Citation: | Dong-Di Zhao, Fan Li, Kashif Sharif, Guang-Min Xia, Yu Wang. Space Efficient Quantization for Deep Convolutional Neural Networks[J]. Journal of Computer Science and Technology, 2019, 34(2): 305-317. DOI: 10.1007/s11390-019-1912-1 |
[1] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In Proc. the 26th Annual Conf. Neural Information Processing Systems, December 2012, pp.1106-1114.
|
[2] |
Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proc. the 29th Annual Conf. Neural Information Processing Systems, December 2015, pp.91-99.
|
[3] |
Abdel-Hamid O, Mohamed A R, Jiang H, Deng L, Penn G, Yu D. Convolutional neural networks for speech recognition. IEEE/ACM Trans. Audio, Speech, and Language processing, 2014, 22(10): 1533-1545.
|
[4] |
Mao H, Alizadeh M, Menache I, Kandula S. Resource management with deep reinforcement learning. In Proc. the 15th ACM Workshop on Hot Topics in Networks, November 2016, pp.50-56.
|
[5] |
Deng J, Dong W, Socher R, Li L J, Li K, Li F F. ImageNet: A large-scale hierarchical image database. In Proc. the 2009 IEEE Computer Society Conf. Computer Vision and Pattern Recognition, June 2009, pp.248-255.
|
[6] |
He K, Shang X, Ren S, Sun J. Deep residual learning for image recognition. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2016, pp.770-778.
|
[7] |
Yao S, Hu S, Zhao Y, Zhang A, Abdelzaher T. DeepSense: A unified deep learning framework for time-series mobile sensing data processing. In Proc. the 26th International Conference on World Wide Web, April 2017, pp.351-360.
|
[8] |
Guo B, Wang Z, Yu Z, Wang Y, Yen N, Huang R, Zhou X. Mobile crowd sensing and computing: The review of an emerging human-powered sensing paradigm. ACM Computing Surveys, 2015, 48(1): Article No. 7.
|
[9] |
Vanhoucke V, Senior A, Mao M Z. Improving the speed of neural networks on CPUs. In Proc. NIPS Deep Learning and Unsupervised Feature Learning Workshop, December 2011, pp.611-620.
|
[10] |
Han S, Mao H, Dally W J. Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding. In Proc. Int. Conf. Learning Representations, May 2016, pp.351-360.
|
[11] |
Gysel P, Motamedi M, Ghiasi S. Hardware-oriented approximation of convolutional neural networks. arXiv:1604.03168, 2016. https://arxiv.org/abs/1604.03168,October2018.
|
[12] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014. https://arxiv.org/abs/1409.1556,April2018.
|
[13] |
Chen W, Wilson J T, Tyree S, Weinberger K Q, Chen Y. Compressing neural networks with the hashing trick. In Proc. the 32nd Int. Conf. Machine Learning, July 2015, pp.2285-2294.
|
[14] |
Wu J, Leng C, Wang Y, Hu Q, Cheng J. Quantized convolutional neural networks for mobile devices. In Proc. the 2016 IEEE Conf. Computer Vision and Pattern Recognition, June 2016, pp.4820-4828.
|
[15] |
Zhou A, Yao A, Guo Y, Xu L, Chen Y. Incremental network quantization: Towards lossless CNNs with low precision weights. arXiv:1702.03044, 2017. https://arxiv.org/abs/1702.03044,August2017.
|
[16] |
Park E, Ahn J, Yoo S. Weighted-entropy-based quantization for deep neural networks. In Proc. the 2017 IEEE Conf. Computer Vision and Pattern Recognition, July 2017, pp.7197-7205.
|
[17] |
Jaderberg M, Vedaldi A, Zisserman A. Speeding up convolutional neural networks with low rank expansions. In Proc. British Machine Vision Conference, September 2014, Article No. 73.
|
[18] |
Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network. arXiv:1503.02531, 2015. https://arxiv.org/pdf/1503.02531.pdf,November2018.
|
[19] |
Iandola F N, Han S, Moskewicz M W, Ashraf A, Dally W J, Keutzer K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv:1602.07360, 2016. https://arxiv.org/abs/1602.07360,November2018.
|
[20] |
Chollet F. Xception: Deep learning with depthwise separable convolutions. In Proc. the 2017 IEEE Conf. Computer Vision and Pattern Recognition, July 2017, pp.1800-1807.
|
[21] |
Lin D, Talathi S, Annapureddy S. Fixed point quantization of deep convolutional networks. In Proc. the 33rd Int. Conf. Machine Learning, Jun. 2016, pp.2849-2858.
|
[22] |
Gupta S, Argawal A, Gopalakrishnan K, Narayanan P. Deep learning with limited numerical precision. In Proc. the 32nd Int. Conf. Machine Learning, July 2015, pp.1737- 1746.
|
[23] |
Gong Y, Liu L, Yang M., Bourdev L. Compressing deep convolutional networks using vector quantization. arXiv:1412.6115, 2014. https://arxiv.org/abs/1412.6115,December2018.
|
[24] |
Kullback S, Leibler R A. On information and sufficiency. The Annals of Mathematical Statistics, 1951, 22(1): 79-86.
|
[25] |
Abadi M, Barham P, Chen J, Chen Z et al. TensorFlow: A system for large-scale machine learning. In Proc. the 12th USENIX Symposium on Operating Systems Design and Implementation, November 2016, pp.265-283.
|
[1] | Cheng Gong, Ye Lu, Su-Rong Dai, Qian Deng, Cheng-Kun Du, Tao Li. AutoQNN: An End-to-End Framework for Automatically Quantizing Neural Networks[J]. Journal of Computer Science and Technology, 2024, 39(2): 401-420. DOI: 10.1007/s11390-022-1632-9 |
[2] | Zhang-Jin Huang, Xiang-Xiang He, Fang-Jun Wang, Qing Shen. A Real-Time Multi-Stage Architecture for Pose Estimation of Zebrafish Head with Convolutional Neural Networks[J]. Journal of Computer Science and Technology, 2021, 36(2): 434-444. DOI: 10.1007/s11390-021-9599-5 |
[3] | Shu-Chang Zhou, Yu-Zhi Wang, He Wen, Qin-Yao He, Yu-Heng Zou. Balanced Quantization: An Effective and Efficient Approach to Quantized Neural Networks[J]. Journal of Computer Science and Technology, 2017, 32(4): 667-682. DOI: 10.1007/s11390-017-1750-y |
[4] | Xi-Jin Zhang, Yi-Fan Lu, Song-Hai Zhang. Multi-Task Learning for Food Identification and Analysis with Deep Convolutional Neural Networks[J]. Journal of Computer Science and Technology, 2016, 31(3): 489-500. DOI: 10.1007/s11390-016-1642-6 |
[5] | Si-Wei Ma, Wen Gao. Low Complexity Integer Transform and Adaptive Quantization Optimization[J]. Journal of Computer Science and Technology, 2006, 21(3): 354-359. |
[6] | Zhou Jingzhou. A Neural Network Model Based on Logical Operations[J]. Journal of Computer Science and Technology, 1998, 13(5): 464-470. |
[7] | Qin Kaihuai. Neural Network Methods for NURBS Curve and Surface Interpolation[J]. Journal of Computer Science and Technology, 1997, 12(1): 76-89. |
[8] | Zhang Zhong. Simulation of ATPG Neural Network and Its Experimental Results[J]. Journal of Computer Science and Technology, 1995, 10(4): 310-324. |
[9] | Zhang Bo, Zhang Ling. On Memory Capacity of the Probabilistic Logic Neuron Network[J]. Journal of Computer Science and Technology, 1993, 8(3): 62-66. |
[10] | Weigeng Shi. Reconnectable Network with Limited Resources[J]. Journal of Computer Science and Technology, 1991, 6(3): 243-249. |
1. | Bhoomi Shah, Hetal Bhavsar. Time Complexity in Deep Learning Models. Procedia Computer Science, 2022, 215: 202. DOI:10.1016/j.procs.2022.12.023 |
2. | Xiaohui Kuang, Xianfeng Gao, Lianfang Wang, et al. A discrete cosine transform-based query efficient attack on black-box object detectors. Information Sciences, 2021, 546: 596. DOI:10.1016/j.ins.2020.05.089 |
3. | Jakub Nalepa, Marek Antoniak, Michal Myller, et al. Towards resource-frugal deep convolutional neural networks for hyperspectral image segmentation. Microprocessors and Microsystems, 2020, 73: 102994. DOI:10.1016/j.micpro.2020.102994 |
4. | Chollette C. Olisah, Lyndon Smith. Understanding unconventional preprocessors in deep convolutional neural networks for face identification. SN Applied Sciences, 2019, 1(11) DOI:10.1007/s42452-019-1538-5 |
5. | Andras Formanek, Daniel Hadhazi. Compressing Convolutional Neural Networks by L0 Regularization. 2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO), DOI:10.1109/ICCAIRO47923.2019.00032 |